1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
|
/*
* FP/SIMD context switching and fault handling
*
* Copyright (C) 2012 ARM Ltd.
* Author: Catalin Marinas <catalin.marinas@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/bottom_half.h>
#include <linux/bug.h>
#include <linux/compat.h>
#include <linux/cpu.h>
#include <linux/cpu_pm.h>
#include <linux/kernel.h>
#include <linux/linkage.h>
#include <linux/irqflags.h>
#include <linux/init.h>
#include <linux/percpu.h>
#include <linux/preempt.h>
#include <linux/ptrace.h>
#include <linux/sched/signal.h>
#include <linux/sched/task_stack.h>
#include <linux/signal.h>
#include <linux/slab.h>
#include <asm/fpsimd.h>
#include <asm/cputype.h>
#include <asm/simd.h>
#include <asm/sigcontext.h>
#include <asm/sysreg.h>
#include <asm/traps.h>
#define FPEXC_IOF (1 << 0)
#define FPEXC_DZF (1 << 1)
#define FPEXC_OFF (1 << 2)
#define FPEXC_UFF (1 << 3)
#define FPEXC_IXF (1 << 4)
#define FPEXC_IDF (1 << 7)
/*
* (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
*
* In order to reduce the number of times the FPSIMD state is needlessly saved
* and restored, we need to keep track of two things:
* (a) for each task, we need to remember which CPU was the last one to have
* the task's FPSIMD state loaded into its FPSIMD registers;
* (b) for each CPU, we need to remember which task's userland FPSIMD state has
* been loaded into its FPSIMD registers most recently, or whether it has
* been used to perform kernel mode NEON in the meantime.
*
* For (a), we add a 'cpu' field to struct fpsimd_state, which gets updated to
* the id of the current CPU every time the state is loaded onto a CPU. For (b),
* we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
* address of the userland FPSIMD state of the task that was loaded onto the CPU
* the most recently, or NULL if kernel mode NEON has been performed after that.
*
* With this in place, we no longer have to restore the next FPSIMD state right
* when switching between tasks. Instead, we can defer this check to userland
* resume, at which time we verify whether the CPU's fpsimd_last_state and the
* task's fpsimd_state.cpu are still mutually in sync. If this is the case, we
* can omit the FPSIMD restore.
*
* As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
* indicate whether or not the userland FPSIMD state of the current task is
* present in the registers. The flag is set unless the FPSIMD registers of this
* CPU currently contain the most recent userland FPSIMD state of the current
* task.
*
* In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
* save the task's FPSIMD context back to task_struct from softirq context.
* To prevent this from racing with the manipulation of the task's FPSIMD state
* from task context and thereby corrupting the state, it is necessary to
* protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
* flag with local_bh_disable() unless softirqs are already masked.
*
* For a certain task, the sequence may look something like this:
* - the task gets scheduled in; if both the task's fpsimd_state.cpu field
* contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
* variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
* cleared, otherwise it is set;
*
* - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
* userland FPSIMD state is copied from memory to the registers, the task's
* fpsimd_state.cpu field is set to the id of the current CPU, the current
* CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
* TIF_FOREIGN_FPSTATE flag is cleared;
*
* - the task executes an ordinary syscall; upon return to userland, the
* TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
* restored;
*
* - the task executes a syscall which executes some NEON instructions; this is
* preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
* register contents to memory, clears the fpsimd_last_state per-cpu variable
* and sets the TIF_FOREIGN_FPSTATE flag;
*
* - the task gets preempted after kernel_neon_end() is called; as we have not
* returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
* whatever is in the FPSIMD registers is not saved to memory, but discarded.
*/
static DEFINE_PER_CPU(struct fpsimd_state *, fpsimd_last_state);
/*
* Call __sve_free() directly only if you know task can't be scheduled
* or preempted.
*/
static void __sve_free(struct task_struct *task)
{
kfree(task->thread.sve_state);
task->thread.sve_state = NULL;
}
static void sve_free(struct task_struct *task)
{
WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
__sve_free(task);
}
/* Offset of FFR in the SVE register dump */
static size_t sve_ffr_offset(int vl)
{
return SVE_SIG_FFR_OFFSET(sve_vq_from_vl(vl)) - SVE_SIG_REGS_OFFSET;
}
static void *sve_pffr(struct task_struct *task)
{
return (char *)task->thread.sve_state +
sve_ffr_offset(task->thread.sve_vl);
}
static void change_cpacr(u64 val, u64 mask)
{
u64 cpacr = read_sysreg(CPACR_EL1);
u64 new = (cpacr & ~mask) | val;
if (new != cpacr)
write_sysreg(new, CPACR_EL1);
}
static void sve_user_disable(void)
{
change_cpacr(0, CPACR_EL1_ZEN_EL0EN);
}
static void sve_user_enable(void)
{
change_cpacr(CPACR_EL1_ZEN_EL0EN, CPACR_EL1_ZEN_EL0EN);
}
/*
* TIF_SVE controls whether a task can use SVE without trapping while
* in userspace, and also the way a task's FPSIMD/SVE state is stored
* in thread_struct.
*
* The kernel uses this flag to track whether a user task is actively
* using SVE, and therefore whether full SVE register state needs to
* be tracked. If not, the cheaper FPSIMD context handling code can
* be used instead of the more costly SVE equivalents.
*
* * TIF_SVE set:
*
* The task can execute SVE instructions while in userspace without
* trapping to the kernel.
*
* When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
* corresponding Zn), P0-P15 and FFR are encoded in in
* task->thread.sve_state, formatted appropriately for vector
* length task->thread.sve_vl.
*
* task->thread.sve_state must point to a valid buffer at least
* sve_state_size(task) bytes in size.
*
* During any syscall, the kernel may optionally clear TIF_SVE and
* discard the vector state except for the FPSIMD subset.
*
* * TIF_SVE clear:
*
* An attempt by the user task to execute an SVE instruction causes
* do_sve_acc() to be called, which does some preparation and then
* sets TIF_SVE.
*
* When stored, FPSIMD registers V0-V31 are encoded in
* task->fpsimd_state; bits [max : 128] for each of Z0-Z31 are
* logically zero but not stored anywhere; P0-P15 and FFR are not
* stored and have unspecified values from userspace's point of
* view. For hygiene purposes, the kernel zeroes them on next use,
* but userspace is discouraged from relying on this.
*
* task->thread.sve_state does not need to be non-NULL, valid or any
* particular size: it must not be dereferenced.
*
* * FPSR and FPCR are always stored in task->fpsimd_state irrespctive of
* whether TIF_SVE is clear or set, since these are not vector length
* dependent.
*/
/*
* Update current's FPSIMD/SVE registers from thread_struct.
*
* This function should be called only when the FPSIMD/SVE state in
* thread_struct is known to be up to date, when preparing to enter
* userspace.
*
* Softirqs (and preemption) must be disabled.
*/
static void task_fpsimd_load(void)
{
WARN_ON(!in_softirq() && !irqs_disabled());
if (system_supports_sve() && test_thread_flag(TIF_SVE))
sve_load_state(sve_pffr(current),
¤t->thread.fpsimd_state.fpsr,
sve_vq_from_vl(current->thread.sve_vl) - 1);
else
fpsimd_load_state(¤t->thread.fpsimd_state);
if (system_supports_sve()) {
/* Toggle SVE trapping for userspace if needed */
if (test_thread_flag(TIF_SVE))
sve_user_enable();
else
sve_user_disable();
/* Serialised by exception return to user */
}
}
/*
* Ensure current's FPSIMD/SVE storage in thread_struct is up to date
* with respect to the CPU registers.
*
* Softirqs (and preemption) must be disabled.
*/
static void task_fpsimd_save(void)
{
WARN_ON(!in_softirq() && !irqs_disabled());
if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
if (system_supports_sve() && test_thread_flag(TIF_SVE)) {
if (WARN_ON(sve_get_vl() != current->thread.sve_vl)) {
/*
* Can't save the user regs, so current would
* re-enter user with corrupt state.
* There's no way to recover, so kill it:
*/
force_signal_inject(
SIGKILL, 0, current_pt_regs(), 0);
return;
}
sve_save_state(sve_pffr(current),
¤t->thread.fpsimd_state.fpsr);
} else
fpsimd_save_state(¤t->thread.fpsimd_state);
}
}
#define ZREG(sve_state, vq, n) ((char *)(sve_state) + \
(SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
/*
* Transfer the FPSIMD state in task->thread.fpsimd_state to
* task->thread.sve_state.
*
* Task can be a non-runnable task, or current. In the latter case,
* softirqs (and preemption) must be disabled.
* task->thread.sve_state must point to at least sve_state_size(task)
* bytes of allocated kernel memory.
* task->thread.fpsimd_state must be up to date before calling this function.
*/
static void fpsimd_to_sve(struct task_struct *task)
{
unsigned int vq;
void *sst = task->thread.sve_state;
struct fpsimd_state const *fst = &task->thread.fpsimd_state;
unsigned int i;
if (!system_supports_sve())
return;
vq = sve_vq_from_vl(task->thread.sve_vl);
for (i = 0; i < 32; ++i)
memcpy(ZREG(sst, vq, i), &fst->vregs[i],
sizeof(fst->vregs[i]));
}
#ifdef CONFIG_ARM64_SVE
/*
* Return how many bytes of memory are required to store the full SVE
* state for task, given task's currently configured vector length.
*/
size_t sve_state_size(struct task_struct const *task)
{
return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task->thread.sve_vl));
}
/*
* Ensure that task->thread.sve_state is allocated and sufficiently large.
*
* This function should be used only in preparation for replacing
* task->thread.sve_state with new data. The memory is always zeroed
* here to prevent stale data from showing through: this is done in
* the interest of testability and predictability: except in the
* do_sve_acc() case, there is no ABI requirement to hide stale data
* written previously be task.
*/
void sve_alloc(struct task_struct *task)
{
if (task->thread.sve_state) {
memset(task->thread.sve_state, 0, sve_state_size(current));
return;
}
/* This is a small allocation (maximum ~8KB) and Should Not Fail. */
task->thread.sve_state =
kzalloc(sve_state_size(task), GFP_KERNEL);
/*
* If future SVE revisions can have larger vectors though,
* this may cease to be true:
*/
BUG_ON(!task->thread.sve_state);
}
/*
* Called from the put_task_struct() path, which cannot get here
* unless dead_task is really dead and not schedulable.
*/
void fpsimd_release_task(struct task_struct *dead_task)
{
__sve_free(dead_task);
}
#endif /* CONFIG_ARM64_SVE */
/*
* Trapped SVE access
*
* Storage is allocated for the full SVE state, the current FPSIMD
* register contents are migrated across, and TIF_SVE is set so that
* the SVE access trap will be disabled the next time this task
* reaches ret_to_user.
*
* TIF_SVE should be clear on entry: otherwise, task_fpsimd_load()
* would have disabled the SVE access trap for userspace during
* ret_to_user, making an SVE access trap impossible in that case.
*/
asmlinkage void do_sve_acc(unsigned int esr, struct pt_regs *regs)
{
/* Even if we chose not to use SVE, the hardware could still trap: */
if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
force_signal_inject(SIGILL, ILL_ILLOPC, regs, 0);
return;
}
sve_alloc(current);
local_bh_disable();
task_fpsimd_save();
fpsimd_to_sve(current);
/* Force ret_to_user to reload the registers: */
fpsimd_flush_task_state(current);
set_thread_flag(TIF_FOREIGN_FPSTATE);
if (test_and_set_thread_flag(TIF_SVE))
WARN_ON(1); /* SVE access shouldn't have trapped */
local_bh_enable();
}
/*
* Trapped FP/ASIMD access.
*/
asmlinkage void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
{
/* TODO: implement lazy context saving/restoring */
WARN_ON(1);
}
/*
* Raise a SIGFPE for the current process.
*/
asmlinkage void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
{
siginfo_t info;
unsigned int si_code = 0;
if (esr & FPEXC_IOF)
si_code = FPE_FLTINV;
else if (esr & FPEXC_DZF)
si_code = FPE_FLTDIV;
else if (esr & FPEXC_OFF)
si_code = FPE_FLTOVF;
else if (esr & FPEXC_UFF)
si_code = FPE_FLTUND;
else if (esr & FPEXC_IXF)
si_code = FPE_FLTRES;
memset(&info, 0, sizeof(info));
info.si_signo = SIGFPE;
info.si_code = si_code;
info.si_addr = (void __user *)instruction_pointer(regs);
send_sig_info(SIGFPE, &info, current);
}
void fpsimd_thread_switch(struct task_struct *next)
{
if (!system_supports_fpsimd())
return;
/*
* Save the current FPSIMD state to memory, but only if whatever is in
* the registers is in fact the most recent userland FPSIMD state of
* 'current'.
*/
if (current->mm)
task_fpsimd_save();
if (next->mm) {
/*
* If we are switching to a task whose most recent userland
* FPSIMD state is already in the registers of *this* cpu,
* we can skip loading the state from memory. Otherwise, set
* the TIF_FOREIGN_FPSTATE flag so the state will be loaded
* upon the next return to userland.
*/
struct fpsimd_state *st = &next->thread.fpsimd_state;
if (__this_cpu_read(fpsimd_last_state) == st
&& st->cpu == smp_processor_id())
clear_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE);
else
set_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE);
}
}
void fpsimd_flush_thread(void)
{
int vl;
if (!system_supports_fpsimd())
return;
local_bh_disable();
memset(¤t->thread.fpsimd_state, 0, sizeof(struct fpsimd_state));
fpsimd_flush_task_state(current);
if (system_supports_sve()) {
clear_thread_flag(TIF_SVE);
sve_free(current);
/*
* Reset the task vector length as required.
* This is where we ensure that all user tasks have a valid
* vector length configured: no kernel task can become a user
* task without an exec and hence a call to this function.
* If a bug causes this to go wrong, we make some noise and
* try to fudge thread.sve_vl to a safe value here.
*/
vl = current->thread.sve_vl;
if (vl == 0)
vl = SVE_VL_MIN;
if (WARN_ON(!sve_vl_valid(vl)))
vl = SVE_VL_MIN;
current->thread.sve_vl = vl;
}
set_thread_flag(TIF_FOREIGN_FPSTATE);
local_bh_enable();
}
/*
* Save the userland FPSIMD state of 'current' to memory, but only if the state
* currently held in the registers does in fact belong to 'current'
*
* Currently, SVE tasks can't exist, so just WARN in that case.
* Subsequent patches will add full SVE support here.
*/
void fpsimd_preserve_current_state(void)
{
if (!system_supports_fpsimd())
return;
local_bh_disable();
if (!test_thread_flag(TIF_FOREIGN_FPSTATE))
fpsimd_save_state(¤t->thread.fpsimd_state);
WARN_ON_ONCE(test_and_clear_thread_flag(TIF_SVE));
local_bh_enable();
}
/*
* Load the userland FPSIMD state of 'current' from memory, but only if the
* FPSIMD state already held in the registers is /not/ the most recent FPSIMD
* state of 'current'
*/
void fpsimd_restore_current_state(void)
{
if (!system_supports_fpsimd())
return;
local_bh_disable();
if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
struct fpsimd_state *st = ¤t->thread.fpsimd_state;
task_fpsimd_load();
__this_cpu_write(fpsimd_last_state, st);
st->cpu = smp_processor_id();
}
local_bh_enable();
}
/*
* Load an updated userland FPSIMD state for 'current' from memory and set the
* flag that indicates that the FPSIMD register contents are the most recent
* FPSIMD state of 'current'
*/
void fpsimd_update_current_state(struct fpsimd_state *state)
{
if (!system_supports_fpsimd())
return;
local_bh_disable();
fpsimd_load_state(state);
if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
struct fpsimd_state *st = ¤t->thread.fpsimd_state;
__this_cpu_write(fpsimd_last_state, st);
st->cpu = smp_processor_id();
}
local_bh_enable();
}
/*
* Invalidate live CPU copies of task t's FPSIMD state
*/
void fpsimd_flush_task_state(struct task_struct *t)
{
t->thread.fpsimd_state.cpu = NR_CPUS;
}
#ifdef CONFIG_KERNEL_MODE_NEON
DEFINE_PER_CPU(bool, kernel_neon_busy);
EXPORT_PER_CPU_SYMBOL(kernel_neon_busy);
/*
* Kernel-side NEON support functions
*/
/*
* kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
* context
*
* Must not be called unless may_use_simd() returns true.
* Task context in the FPSIMD registers is saved back to memory as necessary.
*
* A matching call to kernel_neon_end() must be made before returning from the
* calling context.
*
* The caller may freely use the FPSIMD registers until kernel_neon_end() is
* called.
*/
void kernel_neon_begin(void)
{
if (WARN_ON(!system_supports_fpsimd()))
return;
BUG_ON(!may_use_simd());
local_bh_disable();
__this_cpu_write(kernel_neon_busy, true);
/* Save unsaved task fpsimd state, if any: */
if (current->mm && !test_and_set_thread_flag(TIF_FOREIGN_FPSTATE))
fpsimd_save_state(¤t->thread.fpsimd_state);
/* Invalidate any task state remaining in the fpsimd regs: */
__this_cpu_write(fpsimd_last_state, NULL);
preempt_disable();
local_bh_enable();
}
EXPORT_SYMBOL(kernel_neon_begin);
/*
* kernel_neon_end(): give the CPU FPSIMD registers back to the current task
*
* Must be called from a context in which kernel_neon_begin() was previously
* called, with no call to kernel_neon_end() in the meantime.
*
* The caller must not use the FPSIMD registers after this function is called,
* unless kernel_neon_begin() is called again in the meantime.
*/
void kernel_neon_end(void)
{
bool busy;
if (!system_supports_fpsimd())
return;
busy = __this_cpu_xchg(kernel_neon_busy, false);
WARN_ON(!busy); /* No matching kernel_neon_begin()? */
preempt_enable();
}
EXPORT_SYMBOL(kernel_neon_end);
#ifdef CONFIG_EFI
static DEFINE_PER_CPU(struct fpsimd_state, efi_fpsimd_state);
static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
/*
* EFI runtime services support functions
*
* The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
* This means that for EFI (and only for EFI), we have to assume that FPSIMD
* is always used rather than being an optional accelerator.
*
* These functions provide the necessary support for ensuring FPSIMD
* save/restore in the contexts from which EFI is used.
*
* Do not use them for any other purpose -- if tempted to do so, you are
* either doing something wrong or you need to propose some refactoring.
*/
/*
* __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
*/
void __efi_fpsimd_begin(void)
{
if (!system_supports_fpsimd())
return;
WARN_ON(preemptible());
if (may_use_simd())
kernel_neon_begin();
else {
fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
__this_cpu_write(efi_fpsimd_state_used, true);
}
}
/*
* __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
*/
void __efi_fpsimd_end(void)
{
if (!system_supports_fpsimd())
return;
if (__this_cpu_xchg(efi_fpsimd_state_used, false))
fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
else
kernel_neon_end();
}
#endif /* CONFIG_EFI */
#endif /* CONFIG_KERNEL_MODE_NEON */
#ifdef CONFIG_CPU_PM
static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
unsigned long cmd, void *v)
{
switch (cmd) {
case CPU_PM_ENTER:
if (current->mm)
task_fpsimd_save();
this_cpu_write(fpsimd_last_state, NULL);
break;
case CPU_PM_EXIT:
if (current->mm)
set_thread_flag(TIF_FOREIGN_FPSTATE);
break;
case CPU_PM_ENTER_FAILED:
default:
return NOTIFY_DONE;
}
return NOTIFY_OK;
}
static struct notifier_block fpsimd_cpu_pm_notifier_block = {
.notifier_call = fpsimd_cpu_pm_notifier,
};
static void __init fpsimd_pm_init(void)
{
cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
}
#else
static inline void fpsimd_pm_init(void) { }
#endif /* CONFIG_CPU_PM */
#ifdef CONFIG_HOTPLUG_CPU
static int fpsimd_cpu_dead(unsigned int cpu)
{
per_cpu(fpsimd_last_state, cpu) = NULL;
return 0;
}
static inline void fpsimd_hotplug_init(void)
{
cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
NULL, fpsimd_cpu_dead);
}
#else
static inline void fpsimd_hotplug_init(void) { }
#endif
/*
* FP/SIMD support code initialisation.
*/
static int __init fpsimd_init(void)
{
if (elf_hwcap & HWCAP_FP) {
fpsimd_pm_init();
fpsimd_hotplug_init();
} else {
pr_notice("Floating-point is not implemented\n");
}
if (!(elf_hwcap & HWCAP_ASIMD))
pr_notice("Advanced SIMD is not implemented\n");
return 0;
}
late_initcall(fpsimd_init);
|