/* * FP/SIMD context switching and fault handling * * Copyright (C) 2012 ARM Ltd. * Author: Catalin Marinas * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define FPEXC_IOF (1 << 0) #define FPEXC_DZF (1 << 1) #define FPEXC_OFF (1 << 2) #define FPEXC_UFF (1 << 3) #define FPEXC_IXF (1 << 4) #define FPEXC_IDF (1 << 7) /* * (Note: in this discussion, statements about FPSIMD apply equally to SVE.) * * In order to reduce the number of times the FPSIMD state is needlessly saved * and restored, we need to keep track of two things: * (a) for each task, we need to remember which CPU was the last one to have * the task's FPSIMD state loaded into its FPSIMD registers; * (b) for each CPU, we need to remember which task's userland FPSIMD state has * been loaded into its FPSIMD registers most recently, or whether it has * been used to perform kernel mode NEON in the meantime. * * For (a), we add a 'cpu' field to struct fpsimd_state, which gets updated to * the id of the current CPU every time the state is loaded onto a CPU. For (b), * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the * address of the userland FPSIMD state of the task that was loaded onto the CPU * the most recently, or NULL if kernel mode NEON has been performed after that. * * With this in place, we no longer have to restore the next FPSIMD state right * when switching between tasks. Instead, we can defer this check to userland * resume, at which time we verify whether the CPU's fpsimd_last_state and the * task's fpsimd_state.cpu are still mutually in sync. If this is the case, we * can omit the FPSIMD restore. * * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to * indicate whether or not the userland FPSIMD state of the current task is * present in the registers. The flag is set unless the FPSIMD registers of this * CPU currently contain the most recent userland FPSIMD state of the current * task. * * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may * save the task's FPSIMD context back to task_struct from softirq context. * To prevent this from racing with the manipulation of the task's FPSIMD state * from task context and thereby corrupting the state, it is necessary to * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE * flag with local_bh_disable() unless softirqs are already masked. * * For a certain task, the sequence may look something like this: * - the task gets scheduled in; if both the task's fpsimd_state.cpu field * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is * cleared, otherwise it is set; * * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's * userland FPSIMD state is copied from memory to the registers, the task's * fpsimd_state.cpu field is set to the id of the current CPU, the current * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the * TIF_FOREIGN_FPSTATE flag is cleared; * * - the task executes an ordinary syscall; upon return to userland, the * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is * restored; * * - the task executes a syscall which executes some NEON instructions; this is * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD * register contents to memory, clears the fpsimd_last_state per-cpu variable * and sets the TIF_FOREIGN_FPSTATE flag; * * - the task gets preempted after kernel_neon_end() is called; as we have not * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so * whatever is in the FPSIMD registers is not saved to memory, but discarded. */ static DEFINE_PER_CPU(struct fpsimd_state *, fpsimd_last_state); /* * Call __sve_free() directly only if you know task can't be scheduled * or preempted. */ static void __sve_free(struct task_struct *task) { kfree(task->thread.sve_state); task->thread.sve_state = NULL; } static void sve_free(struct task_struct *task) { WARN_ON(test_tsk_thread_flag(task, TIF_SVE)); __sve_free(task); } /* Offset of FFR in the SVE register dump */ static size_t sve_ffr_offset(int vl) { return SVE_SIG_FFR_OFFSET(sve_vq_from_vl(vl)) - SVE_SIG_REGS_OFFSET; } static void *sve_pffr(struct task_struct *task) { return (char *)task->thread.sve_state + sve_ffr_offset(task->thread.sve_vl); } static void change_cpacr(u64 val, u64 mask) { u64 cpacr = read_sysreg(CPACR_EL1); u64 new = (cpacr & ~mask) | val; if (new != cpacr) write_sysreg(new, CPACR_EL1); } static void sve_user_disable(void) { change_cpacr(0, CPACR_EL1_ZEN_EL0EN); } static void sve_user_enable(void) { change_cpacr(CPACR_EL1_ZEN_EL0EN, CPACR_EL1_ZEN_EL0EN); } /* * TIF_SVE controls whether a task can use SVE without trapping while * in userspace, and also the way a task's FPSIMD/SVE state is stored * in thread_struct. * * The kernel uses this flag to track whether a user task is actively * using SVE, and therefore whether full SVE register state needs to * be tracked. If not, the cheaper FPSIMD context handling code can * be used instead of the more costly SVE equivalents. * * * TIF_SVE set: * * The task can execute SVE instructions while in userspace without * trapping to the kernel. * * When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the * corresponding Zn), P0-P15 and FFR are encoded in in * task->thread.sve_state, formatted appropriately for vector * length task->thread.sve_vl. * * task->thread.sve_state must point to a valid buffer at least * sve_state_size(task) bytes in size. * * During any syscall, the kernel may optionally clear TIF_SVE and * discard the vector state except for the FPSIMD subset. * * * TIF_SVE clear: * * An attempt by the user task to execute an SVE instruction causes * do_sve_acc() to be called, which does some preparation and then * sets TIF_SVE. * * When stored, FPSIMD registers V0-V31 are encoded in * task->fpsimd_state; bits [max : 128] for each of Z0-Z31 are * logically zero but not stored anywhere; P0-P15 and FFR are not * stored and have unspecified values from userspace's point of * view. For hygiene purposes, the kernel zeroes them on next use, * but userspace is discouraged from relying on this. * * task->thread.sve_state does not need to be non-NULL, valid or any * particular size: it must not be dereferenced. * * * FPSR and FPCR are always stored in task->fpsimd_state irrespctive of * whether TIF_SVE is clear or set, since these are not vector length * dependent. */ /* * Update current's FPSIMD/SVE registers from thread_struct. * * This function should be called only when the FPSIMD/SVE state in * thread_struct is known to be up to date, when preparing to enter * userspace. * * Softirqs (and preemption) must be disabled. */ static void task_fpsimd_load(void) { WARN_ON(!in_softirq() && !irqs_disabled()); if (system_supports_sve() && test_thread_flag(TIF_SVE)) sve_load_state(sve_pffr(current), ¤t->thread.fpsimd_state.fpsr, sve_vq_from_vl(current->thread.sve_vl) - 1); else fpsimd_load_state(¤t->thread.fpsimd_state); if (system_supports_sve()) { /* Toggle SVE trapping for userspace if needed */ if (test_thread_flag(TIF_SVE)) sve_user_enable(); else sve_user_disable(); /* Serialised by exception return to user */ } } /* * Ensure current's FPSIMD/SVE storage in thread_struct is up to date * with respect to the CPU registers. * * Softirqs (and preemption) must be disabled. */ static void task_fpsimd_save(void) { WARN_ON(!in_softirq() && !irqs_disabled()); if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) { if (system_supports_sve() && test_thread_flag(TIF_SVE)) { if (WARN_ON(sve_get_vl() != current->thread.sve_vl)) { /* * Can't save the user regs, so current would * re-enter user with corrupt state. * There's no way to recover, so kill it: */ force_signal_inject( SIGKILL, 0, current_pt_regs(), 0); return; } sve_save_state(sve_pffr(current), ¤t->thread.fpsimd_state.fpsr); } else fpsimd_save_state(¤t->thread.fpsimd_state); } } #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \ (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET)) /* * Transfer the FPSIMD state in task->thread.fpsimd_state to * task->thread.sve_state. * * Task can be a non-runnable task, or current. In the latter case, * softirqs (and preemption) must be disabled. * task->thread.sve_state must point to at least sve_state_size(task) * bytes of allocated kernel memory. * task->thread.fpsimd_state must be up to date before calling this function. */ static void fpsimd_to_sve(struct task_struct *task) { unsigned int vq; void *sst = task->thread.sve_state; struct fpsimd_state const *fst = &task->thread.fpsimd_state; unsigned int i; if (!system_supports_sve()) return; vq = sve_vq_from_vl(task->thread.sve_vl); for (i = 0; i < 32; ++i) memcpy(ZREG(sst, vq, i), &fst->vregs[i], sizeof(fst->vregs[i])); } #ifdef CONFIG_ARM64_SVE /* * Return how many bytes of memory are required to store the full SVE * state for task, given task's currently configured vector length. */ size_t sve_state_size(struct task_struct const *task) { return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task->thread.sve_vl)); } /* * Ensure that task->thread.sve_state is allocated and sufficiently large. * * This function should be used only in preparation for replacing * task->thread.sve_state with new data. The memory is always zeroed * here to prevent stale data from showing through: this is done in * the interest of testability and predictability: except in the * do_sve_acc() case, there is no ABI requirement to hide stale data * written previously be task. */ void sve_alloc(struct task_struct *task) { if (task->thread.sve_state) { memset(task->thread.sve_state, 0, sve_state_size(current)); return; } /* This is a small allocation (maximum ~8KB) and Should Not Fail. */ task->thread.sve_state = kzalloc(sve_state_size(task), GFP_KERNEL); /* * If future SVE revisions can have larger vectors though, * this may cease to be true: */ BUG_ON(!task->thread.sve_state); } /* * Called from the put_task_struct() path, which cannot get here * unless dead_task is really dead and not schedulable. */ void fpsimd_release_task(struct task_struct *dead_task) { __sve_free(dead_task); } #endif /* CONFIG_ARM64_SVE */ /* * Trapped SVE access * * Storage is allocated for the full SVE state, the current FPSIMD * register contents are migrated across, and TIF_SVE is set so that * the SVE access trap will be disabled the next time this task * reaches ret_to_user. * * TIF_SVE should be clear on entry: otherwise, task_fpsimd_load() * would have disabled the SVE access trap for userspace during * ret_to_user, making an SVE access trap impossible in that case. */ asmlinkage void do_sve_acc(unsigned int esr, struct pt_regs *regs) { /* Even if we chose not to use SVE, the hardware could still trap: */ if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) { force_signal_inject(SIGILL, ILL_ILLOPC, regs, 0); return; } sve_alloc(current); local_bh_disable(); task_fpsimd_save(); fpsimd_to_sve(current); /* Force ret_to_user to reload the registers: */ fpsimd_flush_task_state(current); set_thread_flag(TIF_FOREIGN_FPSTATE); if (test_and_set_thread_flag(TIF_SVE)) WARN_ON(1); /* SVE access shouldn't have trapped */ local_bh_enable(); } /* * Trapped FP/ASIMD access. */ asmlinkage void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs) { /* TODO: implement lazy context saving/restoring */ WARN_ON(1); } /* * Raise a SIGFPE for the current process. */ asmlinkage void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs) { siginfo_t info; unsigned int si_code = 0; if (esr & FPEXC_IOF) si_code = FPE_FLTINV; else if (esr & FPEXC_DZF) si_code = FPE_FLTDIV; else if (esr & FPEXC_OFF) si_code = FPE_FLTOVF; else if (esr & FPEXC_UFF) si_code = FPE_FLTUND; else if (esr & FPEXC_IXF) si_code = FPE_FLTRES; memset(&info, 0, sizeof(info)); info.si_signo = SIGFPE; info.si_code = si_code; info.si_addr = (void __user *)instruction_pointer(regs); send_sig_info(SIGFPE, &info, current); } void fpsimd_thread_switch(struct task_struct *next) { if (!system_supports_fpsimd()) return; /* * Save the current FPSIMD state to memory, but only if whatever is in * the registers is in fact the most recent userland FPSIMD state of * 'current'. */ if (current->mm) task_fpsimd_save(); if (next->mm) { /* * If we are switching to a task whose most recent userland * FPSIMD state is already in the registers of *this* cpu, * we can skip loading the state from memory. Otherwise, set * the TIF_FOREIGN_FPSTATE flag so the state will be loaded * upon the next return to userland. */ struct fpsimd_state *st = &next->thread.fpsimd_state; if (__this_cpu_read(fpsimd_last_state) == st && st->cpu == smp_processor_id()) clear_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE); else set_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE); } } void fpsimd_flush_thread(void) { int vl; if (!system_supports_fpsimd()) return; local_bh_disable(); memset(¤t->thread.fpsimd_state, 0, sizeof(struct fpsimd_state)); fpsimd_flush_task_state(current); if (system_supports_sve()) { clear_thread_flag(TIF_SVE); sve_free(current); /* * Reset the task vector length as required. * This is where we ensure that all user tasks have a valid * vector length configured: no kernel task can become a user * task without an exec and hence a call to this function. * If a bug causes this to go wrong, we make some noise and * try to fudge thread.sve_vl to a safe value here. */ vl = current->thread.sve_vl; if (vl == 0) vl = SVE_VL_MIN; if (WARN_ON(!sve_vl_valid(vl))) vl = SVE_VL_MIN; current->thread.sve_vl = vl; } set_thread_flag(TIF_FOREIGN_FPSTATE); local_bh_enable(); } /* * Save the userland FPSIMD state of 'current' to memory, but only if the state * currently held in the registers does in fact belong to 'current' * * Currently, SVE tasks can't exist, so just WARN in that case. * Subsequent patches will add full SVE support here. */ void fpsimd_preserve_current_state(void) { if (!system_supports_fpsimd()) return; local_bh_disable(); if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) fpsimd_save_state(¤t->thread.fpsimd_state); WARN_ON_ONCE(test_and_clear_thread_flag(TIF_SVE)); local_bh_enable(); } /* * Load the userland FPSIMD state of 'current' from memory, but only if the * FPSIMD state already held in the registers is /not/ the most recent FPSIMD * state of 'current' */ void fpsimd_restore_current_state(void) { if (!system_supports_fpsimd()) return; local_bh_disable(); if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) { struct fpsimd_state *st = ¤t->thread.fpsimd_state; task_fpsimd_load(); __this_cpu_write(fpsimd_last_state, st); st->cpu = smp_processor_id(); } local_bh_enable(); } /* * Load an updated userland FPSIMD state for 'current' from memory and set the * flag that indicates that the FPSIMD register contents are the most recent * FPSIMD state of 'current' */ void fpsimd_update_current_state(struct fpsimd_state *state) { if (!system_supports_fpsimd()) return; local_bh_disable(); fpsimd_load_state(state); if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) { struct fpsimd_state *st = ¤t->thread.fpsimd_state; __this_cpu_write(fpsimd_last_state, st); st->cpu = smp_processor_id(); } local_bh_enable(); } /* * Invalidate live CPU copies of task t's FPSIMD state */ void fpsimd_flush_task_state(struct task_struct *t) { t->thread.fpsimd_state.cpu = NR_CPUS; } #ifdef CONFIG_KERNEL_MODE_NEON DEFINE_PER_CPU(bool, kernel_neon_busy); EXPORT_PER_CPU_SYMBOL(kernel_neon_busy); /* * Kernel-side NEON support functions */ /* * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling * context * * Must not be called unless may_use_simd() returns true. * Task context in the FPSIMD registers is saved back to memory as necessary. * * A matching call to kernel_neon_end() must be made before returning from the * calling context. * * The caller may freely use the FPSIMD registers until kernel_neon_end() is * called. */ void kernel_neon_begin(void) { if (WARN_ON(!system_supports_fpsimd())) return; BUG_ON(!may_use_simd()); local_bh_disable(); __this_cpu_write(kernel_neon_busy, true); /* Save unsaved task fpsimd state, if any: */ if (current->mm && !test_and_set_thread_flag(TIF_FOREIGN_FPSTATE)) fpsimd_save_state(¤t->thread.fpsimd_state); /* Invalidate any task state remaining in the fpsimd regs: */ __this_cpu_write(fpsimd_last_state, NULL); preempt_disable(); local_bh_enable(); } EXPORT_SYMBOL(kernel_neon_begin); /* * kernel_neon_end(): give the CPU FPSIMD registers back to the current task * * Must be called from a context in which kernel_neon_begin() was previously * called, with no call to kernel_neon_end() in the meantime. * * The caller must not use the FPSIMD registers after this function is called, * unless kernel_neon_begin() is called again in the meantime. */ void kernel_neon_end(void) { bool busy; if (!system_supports_fpsimd()) return; busy = __this_cpu_xchg(kernel_neon_busy, false); WARN_ON(!busy); /* No matching kernel_neon_begin()? */ preempt_enable(); } EXPORT_SYMBOL(kernel_neon_end); #ifdef CONFIG_EFI static DEFINE_PER_CPU(struct fpsimd_state, efi_fpsimd_state); static DEFINE_PER_CPU(bool, efi_fpsimd_state_used); /* * EFI runtime services support functions * * The ABI for EFI runtime services allows EFI to use FPSIMD during the call. * This means that for EFI (and only for EFI), we have to assume that FPSIMD * is always used rather than being an optional accelerator. * * These functions provide the necessary support for ensuring FPSIMD * save/restore in the contexts from which EFI is used. * * Do not use them for any other purpose -- if tempted to do so, you are * either doing something wrong or you need to propose some refactoring. */ /* * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call */ void __efi_fpsimd_begin(void) { if (!system_supports_fpsimd()) return; WARN_ON(preemptible()); if (may_use_simd()) kernel_neon_begin(); else { fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state)); __this_cpu_write(efi_fpsimd_state_used, true); } } /* * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call */ void __efi_fpsimd_end(void) { if (!system_supports_fpsimd()) return; if (__this_cpu_xchg(efi_fpsimd_state_used, false)) fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state)); else kernel_neon_end(); } #endif /* CONFIG_EFI */ #endif /* CONFIG_KERNEL_MODE_NEON */ #ifdef CONFIG_CPU_PM static int fpsimd_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd, void *v) { switch (cmd) { case CPU_PM_ENTER: if (current->mm) task_fpsimd_save(); this_cpu_write(fpsimd_last_state, NULL); break; case CPU_PM_EXIT: if (current->mm) set_thread_flag(TIF_FOREIGN_FPSTATE); break; case CPU_PM_ENTER_FAILED: default: return NOTIFY_DONE; } return NOTIFY_OK; } static struct notifier_block fpsimd_cpu_pm_notifier_block = { .notifier_call = fpsimd_cpu_pm_notifier, }; static void __init fpsimd_pm_init(void) { cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block); } #else static inline void fpsimd_pm_init(void) { } #endif /* CONFIG_CPU_PM */ #ifdef CONFIG_HOTPLUG_CPU static int fpsimd_cpu_dead(unsigned int cpu) { per_cpu(fpsimd_last_state, cpu) = NULL; return 0; } static inline void fpsimd_hotplug_init(void) { cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead", NULL, fpsimd_cpu_dead); } #else static inline void fpsimd_hotplug_init(void) { } #endif /* * FP/SIMD support code initialisation. */ static int __init fpsimd_init(void) { if (elf_hwcap & HWCAP_FP) { fpsimd_pm_init(); fpsimd_hotplug_init(); } else { pr_notice("Floating-point is not implemented\n"); } if (!(elf_hwcap & HWCAP_ASIMD)) pr_notice("Advanced SIMD is not implemented\n"); return 0; } late_initcall(fpsimd_init);