diff options
Diffstat (limited to 'kernel/sched/ext_idle.c')
-rw-r--r-- | kernel/sched/ext_idle.c | 1171 |
1 files changed, 1171 insertions, 0 deletions
diff --git a/kernel/sched/ext_idle.c b/kernel/sched/ext_idle.c new file mode 100644 index 000000000000..52c36a70a3d0 --- /dev/null +++ b/kernel/sched/ext_idle.c @@ -0,0 +1,1171 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst + * + * Built-in idle CPU tracking policy. + * + * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2022 Tejun Heo <tj@kernel.org> + * Copyright (c) 2022 David Vernet <dvernet@meta.com> + * Copyright (c) 2024 Andrea Righi <arighi@nvidia.com> + */ +#include "ext_idle.h" + +/* Enable/disable built-in idle CPU selection policy */ +static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled); + +/* Enable/disable per-node idle cpumasks */ +static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_per_node); + +#ifdef CONFIG_SMP +/* Enable/disable LLC aware optimizations */ +static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_llc); + +/* Enable/disable NUMA aware optimizations */ +static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_numa); + +/* + * cpumasks to track idle CPUs within each NUMA node. + * + * If SCX_OPS_BUILTIN_IDLE_PER_NODE is not enabled, a single global cpumask + * from is used to track all the idle CPUs in the system. + */ +struct scx_idle_cpus { + cpumask_var_t cpu; + cpumask_var_t smt; +}; + +/* + * Global host-wide idle cpumasks (used when SCX_OPS_BUILTIN_IDLE_PER_NODE + * is not enabled). + */ +static struct scx_idle_cpus scx_idle_global_masks; + +/* + * Per-node idle cpumasks. + */ +static struct scx_idle_cpus **scx_idle_node_masks; + +/* + * Return the idle masks associated to a target @node. + * + * NUMA_NO_NODE identifies the global idle cpumask. + */ +static struct scx_idle_cpus *idle_cpumask(int node) +{ + return node == NUMA_NO_NODE ? &scx_idle_global_masks : scx_idle_node_masks[node]; +} + +/* + * Returns the NUMA node ID associated with a @cpu, or NUMA_NO_NODE if + * per-node idle cpumasks are disabled. + */ +static int scx_cpu_node_if_enabled(int cpu) +{ + if (!static_branch_maybe(CONFIG_NUMA, &scx_builtin_idle_per_node)) + return NUMA_NO_NODE; + + return cpu_to_node(cpu); +} + +bool scx_idle_test_and_clear_cpu(int cpu) +{ + int node = scx_cpu_node_if_enabled(cpu); + struct cpumask *idle_cpus = idle_cpumask(node)->cpu; + +#ifdef CONFIG_SCHED_SMT + /* + * SMT mask should be cleared whether we can claim @cpu or not. The SMT + * cluster is not wholly idle either way. This also prevents + * scx_pick_idle_cpu() from getting caught in an infinite loop. + */ + if (sched_smt_active()) { + const struct cpumask *smt = cpu_smt_mask(cpu); + struct cpumask *idle_smts = idle_cpumask(node)->smt; + + /* + * If offline, @cpu is not its own sibling and + * scx_pick_idle_cpu() can get caught in an infinite loop as + * @cpu is never cleared from the idle SMT mask. Ensure that + * @cpu is eventually cleared. + * + * NOTE: Use cpumask_intersects() and cpumask_test_cpu() to + * reduce memory writes, which may help alleviate cache + * coherence pressure. + */ + if (cpumask_intersects(smt, idle_smts)) + cpumask_andnot(idle_smts, idle_smts, smt); + else if (cpumask_test_cpu(cpu, idle_smts)) + __cpumask_clear_cpu(cpu, idle_smts); + } +#endif + + return cpumask_test_and_clear_cpu(cpu, idle_cpus); +} + +/* + * Pick an idle CPU in a specific NUMA node. + */ +static s32 pick_idle_cpu_in_node(const struct cpumask *cpus_allowed, int node, u64 flags) +{ + int cpu; + +retry: + if (sched_smt_active()) { + cpu = cpumask_any_and_distribute(idle_cpumask(node)->smt, cpus_allowed); + if (cpu < nr_cpu_ids) + goto found; + + if (flags & SCX_PICK_IDLE_CORE) + return -EBUSY; + } + + cpu = cpumask_any_and_distribute(idle_cpumask(node)->cpu, cpus_allowed); + if (cpu >= nr_cpu_ids) + return -EBUSY; + +found: + if (scx_idle_test_and_clear_cpu(cpu)) + return cpu; + else + goto retry; +} + +/* + * Tracks nodes that have not yet been visited when searching for an idle + * CPU across all available nodes. + */ +static DEFINE_PER_CPU(nodemask_t, per_cpu_unvisited); + +/* + * Search for an idle CPU across all nodes, excluding @node. + */ +static s32 pick_idle_cpu_from_online_nodes(const struct cpumask *cpus_allowed, int node, u64 flags) +{ + nodemask_t *unvisited; + s32 cpu = -EBUSY; + + preempt_disable(); + unvisited = this_cpu_ptr(&per_cpu_unvisited); + + /* + * Restrict the search to the online nodes (excluding the current + * node that has been visited already). + */ + nodes_copy(*unvisited, node_states[N_ONLINE]); + node_clear(node, *unvisited); + + /* + * Traverse all nodes in order of increasing distance, starting + * from @node. + * + * This loop is O(N^2), with N being the amount of NUMA nodes, + * which might be quite expensive in large NUMA systems. However, + * this complexity comes into play only when a scheduler enables + * SCX_OPS_BUILTIN_IDLE_PER_NODE and it's requesting an idle CPU + * without specifying a target NUMA node, so it shouldn't be a + * bottleneck is most cases. + * + * As a future optimization we may want to cache the list of nodes + * in a per-node array, instead of actually traversing them every + * time. + */ + for_each_node_numadist(node, *unvisited) { + cpu = pick_idle_cpu_in_node(cpus_allowed, node, flags); + if (cpu >= 0) + break; + } + preempt_enable(); + + return cpu; +} + +/* + * Find an idle CPU in the system, starting from @node. + */ +s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, int node, u64 flags) +{ + s32 cpu; + + /* + * Always search in the starting node first (this is an + * optimization that can save some cycles even when the search is + * not limited to a single node). + */ + cpu = pick_idle_cpu_in_node(cpus_allowed, node, flags); + if (cpu >= 0) + return cpu; + + /* + * Stop the search if we are using only a single global cpumask + * (NUMA_NO_NODE) or if the search is restricted to the first node + * only. + */ + if (node == NUMA_NO_NODE || flags & SCX_PICK_IDLE_IN_NODE) + return -EBUSY; + + /* + * Extend the search to the other online nodes. + */ + return pick_idle_cpu_from_online_nodes(cpus_allowed, node, flags); +} + +/* + * Return the amount of CPUs in the same LLC domain of @cpu (or zero if the LLC + * domain is not defined). + */ +static unsigned int llc_weight(s32 cpu) +{ + struct sched_domain *sd; + + sd = rcu_dereference(per_cpu(sd_llc, cpu)); + if (!sd) + return 0; + + return sd->span_weight; +} + +/* + * Return the cpumask representing the LLC domain of @cpu (or NULL if the LLC + * domain is not defined). + */ +static struct cpumask *llc_span(s32 cpu) +{ + struct sched_domain *sd; + + sd = rcu_dereference(per_cpu(sd_llc, cpu)); + if (!sd) + return 0; + + return sched_domain_span(sd); +} + +/* + * Return the amount of CPUs in the same NUMA domain of @cpu (or zero if the + * NUMA domain is not defined). + */ +static unsigned int numa_weight(s32 cpu) +{ + struct sched_domain *sd; + struct sched_group *sg; + + sd = rcu_dereference(per_cpu(sd_numa, cpu)); + if (!sd) + return 0; + sg = sd->groups; + if (!sg) + return 0; + + return sg->group_weight; +} + +/* + * Return the cpumask representing the NUMA domain of @cpu (or NULL if the NUMA + * domain is not defined). + */ +static struct cpumask *numa_span(s32 cpu) +{ + struct sched_domain *sd; + struct sched_group *sg; + + sd = rcu_dereference(per_cpu(sd_numa, cpu)); + if (!sd) + return NULL; + sg = sd->groups; + if (!sg) + return NULL; + + return sched_group_span(sg); +} + +/* + * Return true if the LLC domains do not perfectly overlap with the NUMA + * domains, false otherwise. + */ +static bool llc_numa_mismatch(void) +{ + int cpu; + + /* + * We need to scan all online CPUs to verify whether their scheduling + * domains overlap. + * + * While it is rare to encounter architectures with asymmetric NUMA + * topologies, CPU hotplugging or virtualized environments can result + * in asymmetric configurations. + * + * For example: + * + * NUMA 0: + * - LLC 0: cpu0..cpu7 + * - LLC 1: cpu8..cpu15 [offline] + * + * NUMA 1: + * - LLC 0: cpu16..cpu23 + * - LLC 1: cpu24..cpu31 + * + * In this case, if we only check the first online CPU (cpu0), we might + * incorrectly assume that the LLC and NUMA domains are fully + * overlapping, which is incorrect (as NUMA 1 has two distinct LLC + * domains). + */ + for_each_online_cpu(cpu) + if (llc_weight(cpu) != numa_weight(cpu)) + return true; + + return false; +} + +/* + * Initialize topology-aware scheduling. + * + * Detect if the system has multiple LLC or multiple NUMA domains and enable + * cache-aware / NUMA-aware scheduling optimizations in the default CPU idle + * selection policy. + * + * Assumption: the kernel's internal topology representation assumes that each + * CPU belongs to a single LLC domain, and that each LLC domain is entirely + * contained within a single NUMA node. + */ +void scx_idle_update_selcpu_topology(struct sched_ext_ops *ops) +{ + bool enable_llc = false, enable_numa = false; + unsigned int nr_cpus; + s32 cpu = cpumask_first(cpu_online_mask); + + /* + * Enable LLC domain optimization only when there are multiple LLC + * domains among the online CPUs. If all online CPUs are part of a + * single LLC domain, the idle CPU selection logic can choose any + * online CPU without bias. + * + * Note that it is sufficient to check the LLC domain of the first + * online CPU to determine whether a single LLC domain includes all + * CPUs. + */ + rcu_read_lock(); + nr_cpus = llc_weight(cpu); + if (nr_cpus > 0) { + if (nr_cpus < num_online_cpus()) + enable_llc = true; + pr_debug("sched_ext: LLC=%*pb weight=%u\n", + cpumask_pr_args(llc_span(cpu)), llc_weight(cpu)); + } + + /* + * Enable NUMA optimization only when there are multiple NUMA domains + * among the online CPUs and the NUMA domains don't perfectly overlaps + * with the LLC domains. + * + * If all CPUs belong to the same NUMA node and the same LLC domain, + * enabling both NUMA and LLC optimizations is unnecessary, as checking + * for an idle CPU in the same domain twice is redundant. + * + * If SCX_OPS_BUILTIN_IDLE_PER_NODE is enabled ignore the NUMA + * optimization, as we would naturally select idle CPUs within + * specific NUMA nodes querying the corresponding per-node cpumask. + */ + if (!(ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE)) { + nr_cpus = numa_weight(cpu); + if (nr_cpus > 0) { + if (nr_cpus < num_online_cpus() && llc_numa_mismatch()) + enable_numa = true; + pr_debug("sched_ext: NUMA=%*pb weight=%u\n", + cpumask_pr_args(numa_span(cpu)), nr_cpus); + } + } + rcu_read_unlock(); + + pr_debug("sched_ext: LLC idle selection %s\n", + str_enabled_disabled(enable_llc)); + pr_debug("sched_ext: NUMA idle selection %s\n", + str_enabled_disabled(enable_numa)); + + if (enable_llc) + static_branch_enable_cpuslocked(&scx_selcpu_topo_llc); + else + static_branch_disable_cpuslocked(&scx_selcpu_topo_llc); + if (enable_numa) + static_branch_enable_cpuslocked(&scx_selcpu_topo_numa); + else + static_branch_disable_cpuslocked(&scx_selcpu_topo_numa); +} + +/* + * Built-in CPU idle selection policy: + * + * 1. Prioritize full-idle cores: + * - always prioritize CPUs from fully idle cores (both logical CPUs are + * idle) to avoid interference caused by SMT. + * + * 2. Reuse the same CPU: + * - prefer the last used CPU to take advantage of cached data (L1, L2) and + * branch prediction optimizations. + * + * 3. Pick a CPU within the same LLC (Last-Level Cache): + * - if the above conditions aren't met, pick a CPU that shares the same LLC + * to maintain cache locality. + * + * 4. Pick a CPU within the same NUMA node, if enabled: + * - choose a CPU from the same NUMA node to reduce memory access latency. + * + * 5. Pick any idle CPU usable by the task. + * + * Step 3 and 4 are performed only if the system has, respectively, + * multiple LLCs / multiple NUMA nodes (see scx_selcpu_topo_llc and + * scx_selcpu_topo_numa) and they don't contain the same subset of CPUs. + * + * If %SCX_OPS_BUILTIN_IDLE_PER_NODE is enabled, the search will always + * begin in @prev_cpu's node and proceed to other nodes in order of + * increasing distance. + * + * Return the picked CPU if idle, or a negative value otherwise. + * + * NOTE: tasks that can only run on 1 CPU are excluded by this logic, because + * we never call ops.select_cpu() for them, see select_task_rq(). + */ +s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, u64 wake_flags, u64 flags) +{ + const struct cpumask *llc_cpus = NULL; + const struct cpumask *numa_cpus = NULL; + int node = scx_cpu_node_if_enabled(prev_cpu); + s32 cpu; + + /* + * This is necessary to protect llc_cpus. + */ + rcu_read_lock(); + + /* + * Determine the scheduling domain only if the task is allowed to run + * on all CPUs. + * + * This is done primarily for efficiency, as it avoids the overhead of + * updating a cpumask every time we need to select an idle CPU (which + * can be costly in large SMP systems), but it also aligns logically: + * if a task's scheduling domain is restricted by user-space (through + * CPU affinity), the task will simply use the flat scheduling domain + * defined by user-space. + */ + if (p->nr_cpus_allowed >= num_possible_cpus()) { + if (static_branch_maybe(CONFIG_NUMA, &scx_selcpu_topo_numa)) + numa_cpus = numa_span(prev_cpu); + + if (static_branch_maybe(CONFIG_SCHED_MC, &scx_selcpu_topo_llc)) + llc_cpus = llc_span(prev_cpu); + } + + /* + * If WAKE_SYNC, try to migrate the wakee to the waker's CPU. + */ + if (wake_flags & SCX_WAKE_SYNC) { + int waker_node; + + /* + * If the waker's CPU is cache affine and prev_cpu is idle, + * then avoid a migration. + */ + cpu = smp_processor_id(); + if (cpus_share_cache(cpu, prev_cpu) && + scx_idle_test_and_clear_cpu(prev_cpu)) { + cpu = prev_cpu; + goto out_unlock; + } + + /* + * If the waker's local DSQ is empty, and the system is under + * utilized, try to wake up @p to the local DSQ of the waker. + * + * Checking only for an empty local DSQ is insufficient as it + * could give the wakee an unfair advantage when the system is + * oversaturated. + * + * Checking only for the presence of idle CPUs is also + * insufficient as the local DSQ of the waker could have tasks + * piled up on it even if there is an idle core elsewhere on + * the system. + */ + waker_node = cpu_to_node(cpu); + if (!(current->flags & PF_EXITING) && + cpu_rq(cpu)->scx.local_dsq.nr == 0 && + (!(flags & SCX_PICK_IDLE_IN_NODE) || (waker_node == node)) && + !cpumask_empty(idle_cpumask(waker_node)->cpu)) { + if (cpumask_test_cpu(cpu, p->cpus_ptr)) + goto out_unlock; + } + } + + /* + * If CPU has SMT, any wholly idle CPU is likely a better pick than + * partially idle @prev_cpu. + */ + if (sched_smt_active()) { + /* + * Keep using @prev_cpu if it's part of a fully idle core. + */ + if (cpumask_test_cpu(prev_cpu, idle_cpumask(node)->smt) && + scx_idle_test_and_clear_cpu(prev_cpu)) { + cpu = prev_cpu; + goto out_unlock; + } + + /* + * Search for any fully idle core in the same LLC domain. + */ + if (llc_cpus) { + cpu = pick_idle_cpu_in_node(llc_cpus, node, SCX_PICK_IDLE_CORE); + if (cpu >= 0) + goto out_unlock; + } + + /* + * Search for any fully idle core in the same NUMA node. + */ + if (numa_cpus) { + cpu = pick_idle_cpu_in_node(numa_cpus, node, SCX_PICK_IDLE_CORE); + if (cpu >= 0) + goto out_unlock; + } + + /* + * Search for any full-idle core usable by the task. + * + * If the node-aware idle CPU selection policy is enabled + * (%SCX_OPS_BUILTIN_IDLE_PER_NODE), the search will always + * begin in prev_cpu's node and proceed to other nodes in + * order of increasing distance. + */ + cpu = scx_pick_idle_cpu(p->cpus_ptr, node, flags | SCX_PICK_IDLE_CORE); + if (cpu >= 0) + goto out_unlock; + + /* + * Give up if we're strictly looking for a full-idle SMT + * core. + */ + if (flags & SCX_PICK_IDLE_CORE) { + cpu = prev_cpu; + goto out_unlock; + } + } + + /* + * Use @prev_cpu if it's idle. + */ + if (scx_idle_test_and_clear_cpu(prev_cpu)) { + cpu = prev_cpu; + goto out_unlock; + } + + /* + * Search for any idle CPU in the same LLC domain. + */ + if (llc_cpus) { + cpu = pick_idle_cpu_in_node(llc_cpus, node, 0); + if (cpu >= 0) + goto out_unlock; + } + + /* + * Search for any idle CPU in the same NUMA node. + */ + if (numa_cpus) { + cpu = pick_idle_cpu_in_node(numa_cpus, node, 0); + if (cpu >= 0) + goto out_unlock; + } + + /* + * Search for any idle CPU usable by the task. + * + * If the node-aware idle CPU selection policy is enabled + * (%SCX_OPS_BUILTIN_IDLE_PER_NODE), the search will always begin + * in prev_cpu's node and proceed to other nodes in order of + * increasing distance. + */ + cpu = scx_pick_idle_cpu(p->cpus_ptr, node, flags); + if (cpu >= 0) + goto out_unlock; + +out_unlock: + rcu_read_unlock(); + + return cpu; +} + +/* + * Initialize global and per-node idle cpumasks. + */ +void scx_idle_init_masks(void) +{ + int node; + + /* Allocate global idle cpumasks */ + BUG_ON(!alloc_cpumask_var(&scx_idle_global_masks.cpu, GFP_KERNEL)); + BUG_ON(!alloc_cpumask_var(&scx_idle_global_masks.smt, GFP_KERNEL)); + + /* Allocate per-node idle cpumasks */ + scx_idle_node_masks = kcalloc(num_possible_nodes(), + sizeof(*scx_idle_node_masks), GFP_KERNEL); + BUG_ON(!scx_idle_node_masks); + + for_each_node(node) { + scx_idle_node_masks[node] = kzalloc_node(sizeof(**scx_idle_node_masks), + GFP_KERNEL, node); + BUG_ON(!scx_idle_node_masks[node]); + + BUG_ON(!alloc_cpumask_var_node(&scx_idle_node_masks[node]->cpu, GFP_KERNEL, node)); + BUG_ON(!alloc_cpumask_var_node(&scx_idle_node_masks[node]->smt, GFP_KERNEL, node)); + } +} + +static void update_builtin_idle(int cpu, bool idle) +{ + int node = scx_cpu_node_if_enabled(cpu); + struct cpumask *idle_cpus = idle_cpumask(node)->cpu; + + assign_cpu(cpu, idle_cpus, idle); + +#ifdef CONFIG_SCHED_SMT + if (sched_smt_active()) { + const struct cpumask *smt = cpu_smt_mask(cpu); + struct cpumask *idle_smts = idle_cpumask(node)->smt; + + if (idle) { + /* + * idle_smt handling is racy but that's fine as it's + * only for optimization and self-correcting. + */ + if (!cpumask_subset(smt, idle_cpus)) + return; + cpumask_or(idle_smts, idle_smts, smt); + } else { + cpumask_andnot(idle_smts, idle_smts, smt); + } + } +#endif +} + +/* + * Update the idle state of a CPU to @idle. + * + * If @do_notify is true, ops.update_idle() is invoked to notify the scx + * scheduler of an actual idle state transition (idle to busy or vice + * versa). If @do_notify is false, only the idle state in the idle masks is + * refreshed without invoking ops.update_idle(). + * + * This distinction is necessary, because an idle CPU can be "reserved" and + * awakened via scx_bpf_pick_idle_cpu() + scx_bpf_kick_cpu(), marking it as + * busy even if no tasks are dispatched. In this case, the CPU may return + * to idle without a true state transition. Refreshing the idle masks + * without invoking ops.update_idle() ensures accurate idle state tracking + * while avoiding unnecessary updates and maintaining balanced state + * transitions. + */ +void __scx_update_idle(struct rq *rq, bool idle, bool do_notify) +{ + int cpu = cpu_of(rq); + + lockdep_assert_rq_held(rq); + + /* + * Trigger ops.update_idle() only when transitioning from a task to + * the idle thread and vice versa. + * + * Idle transitions are indicated by do_notify being set to true, + * managed by put_prev_task_idle()/set_next_task_idle(). + */ + if (SCX_HAS_OP(update_idle) && do_notify && !scx_rq_bypassing(rq)) + SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle); + + /* + * Update the idle masks: + * - for real idle transitions (do_notify == true) + * - for idle-to-idle transitions (indicated by the previous task + * being the idle thread, managed by pick_task_idle()) + * + * Skip updating idle masks if the previous task is not the idle + * thread, since set_next_task_idle() has already handled it when + * transitioning from a task to the idle thread (calling this + * function with do_notify == true). + * + * In this way we can avoid updating the idle masks twice, + * unnecessarily. + */ + if (static_branch_likely(&scx_builtin_idle_enabled)) + if (do_notify || is_idle_task(rq->curr)) + update_builtin_idle(cpu, idle); +} + +static void reset_idle_masks(struct sched_ext_ops *ops) +{ + int node; + + /* + * Consider all online cpus idle. Should converge to the actual state + * quickly. + */ + if (!(ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE)) { + cpumask_copy(idle_cpumask(NUMA_NO_NODE)->cpu, cpu_online_mask); + cpumask_copy(idle_cpumask(NUMA_NO_NODE)->smt, cpu_online_mask); + return; + } + + for_each_node(node) { + const struct cpumask *node_mask = cpumask_of_node(node); + + cpumask_and(idle_cpumask(node)->cpu, cpu_online_mask, node_mask); + cpumask_and(idle_cpumask(node)->smt, cpu_online_mask, node_mask); + } +} +#endif /* CONFIG_SMP */ + +void scx_idle_enable(struct sched_ext_ops *ops) +{ + if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) + static_branch_enable(&scx_builtin_idle_enabled); + else + static_branch_disable(&scx_builtin_idle_enabled); + + if (ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE) + static_branch_enable(&scx_builtin_idle_per_node); + else + static_branch_disable(&scx_builtin_idle_per_node); + +#ifdef CONFIG_SMP + reset_idle_masks(ops); +#endif +} + +void scx_idle_disable(void) +{ + static_branch_disable(&scx_builtin_idle_enabled); + static_branch_disable(&scx_builtin_idle_per_node); +} + +/******************************************************************************** + * Helpers that can be called from the BPF scheduler. + */ + +static int validate_node(int node) +{ + if (!static_branch_likely(&scx_builtin_idle_per_node)) { + scx_ops_error("per-node idle tracking is disabled"); + return -EOPNOTSUPP; + } + + /* Return no entry for NUMA_NO_NODE (not a critical scx error) */ + if (node == NUMA_NO_NODE) + return -ENOENT; + + /* Make sure node is in a valid range */ + if (node < 0 || node >= nr_node_ids) { + scx_ops_error("invalid node %d", node); + return -EINVAL; + } + + /* Make sure the node is part of the set of possible nodes */ + if (!node_possible(node)) { + scx_ops_error("unavailable node %d", node); + return -EINVAL; + } + + return node; +} + +__bpf_kfunc_start_defs(); + +static bool check_builtin_idle_enabled(void) +{ + if (static_branch_likely(&scx_builtin_idle_enabled)) + return true; + + scx_ops_error("built-in idle tracking is disabled"); + return false; +} + +/** + * scx_bpf_cpu_node - Return the NUMA node the given @cpu belongs to, or + * trigger an error if @cpu is invalid + * @cpu: target CPU + */ +__bpf_kfunc int scx_bpf_cpu_node(s32 cpu) +{ +#ifdef CONFIG_NUMA + if (!ops_cpu_valid(cpu, NULL)) + return NUMA_NO_NODE; + + return cpu_to_node(cpu); +#else + return 0; +#endif +} + +/** + * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu() + * @p: task_struct to select a CPU for + * @prev_cpu: CPU @p was on previously + * @wake_flags: %SCX_WAKE_* flags + * @is_idle: out parameter indicating whether the returned CPU is idle + * + * Can only be called from ops.select_cpu() if the built-in CPU selection is + * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set. + * @p, @prev_cpu and @wake_flags match ops.select_cpu(). + * + * Returns the picked CPU with *@is_idle indicating whether the picked CPU is + * currently idle and thus a good candidate for direct dispatching. + */ +__bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, + u64 wake_flags, bool *is_idle) +{ +#ifdef CONFIG_SMP + s32 cpu; +#endif + if (!ops_cpu_valid(prev_cpu, NULL)) + goto prev_cpu; + + if (!check_builtin_idle_enabled()) + goto prev_cpu; + + if (!scx_kf_allowed(SCX_KF_SELECT_CPU)) + goto prev_cpu; + +#ifdef CONFIG_SMP + cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, 0); + if (cpu >= 0) { + *is_idle = true; + return cpu; + } +#endif + +prev_cpu: + *is_idle = false; + return prev_cpu; +} + +/** + * scx_bpf_get_idle_cpumask_node - Get a referenced kptr to the + * idle-tracking per-CPU cpumask of a target NUMA node. + * @node: target NUMA node + * + * Returns an empty cpumask if idle tracking is not enabled, if @node is + * not valid, or running on a UP kernel. In this case the actual error will + * be reported to the BPF scheduler via scx_ops_error(). + */ +__bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask_node(int node) +{ + node = validate_node(node); + if (node < 0) + return cpu_none_mask; + +#ifdef CONFIG_SMP + return idle_cpumask(node)->cpu; +#else + return cpu_none_mask; +#endif +} + +/** + * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking + * per-CPU cpumask. + * + * Returns an empty mask if idle tracking is not enabled, or running on a + * UP kernel. + */ +__bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void) +{ + if (static_branch_unlikely(&scx_builtin_idle_per_node)) { + scx_ops_error("SCX_OPS_BUILTIN_IDLE_PER_NODE enabled"); + return cpu_none_mask; + } + + if (!check_builtin_idle_enabled()) + return cpu_none_mask; + +#ifdef CONFIG_SMP + return idle_cpumask(NUMA_NO_NODE)->cpu; +#else + return cpu_none_mask; +#endif +} + +/** + * scx_bpf_get_idle_smtmask_node - Get a referenced kptr to the + * idle-tracking, per-physical-core cpumask of a target NUMA node. Can be + * used to determine if an entire physical core is free. + * @node: target NUMA node + * + * Returns an empty cpumask if idle tracking is not enabled, if @node is + * not valid, or running on a UP kernel. In this case the actual error will + * be reported to the BPF scheduler via scx_ops_error(). + */ +__bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask_node(int node) +{ + node = validate_node(node); + if (node < 0) + return cpu_none_mask; + +#ifdef CONFIG_SMP + if (sched_smt_active()) + return idle_cpumask(node)->smt; + else + return idle_cpumask(node)->cpu; +#else + return cpu_none_mask; +#endif +} + +/** + * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking, + * per-physical-core cpumask. Can be used to determine if an entire physical + * core is free. + * + * Returns an empty mask if idle tracking is not enabled, or running on a + * UP kernel. + */ +__bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void) +{ + if (static_branch_unlikely(&scx_builtin_idle_per_node)) { + scx_ops_error("SCX_OPS_BUILTIN_IDLE_PER_NODE enabled"); + return cpu_none_mask; + } + + if (!check_builtin_idle_enabled()) + return cpu_none_mask; + +#ifdef CONFIG_SMP + if (sched_smt_active()) + return idle_cpumask(NUMA_NO_NODE)->smt; + else + return idle_cpumask(NUMA_NO_NODE)->cpu; +#else + return cpu_none_mask; +#endif +} + +/** + * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to + * either the percpu, or SMT idle-tracking cpumask. + * @idle_mask: &cpumask to use + */ +__bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask) +{ + /* + * Empty function body because we aren't actually acquiring or releasing + * a reference to a global idle cpumask, which is read-only in the + * caller and is never released. The acquire / release semantics here + * are just used to make the cpumask a trusted pointer in the caller. + */ +} + +/** + * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state + * @cpu: cpu to test and clear idle for + * + * Returns %true if @cpu was idle and its idle state was successfully cleared. + * %false otherwise. + * + * Unavailable if ops.update_idle() is implemented and + * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. + */ +__bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu) +{ + if (!check_builtin_idle_enabled()) + return false; + + if (ops_cpu_valid(cpu, NULL)) + return scx_idle_test_and_clear_cpu(cpu); + else + return false; +} + +/** + * scx_bpf_pick_idle_cpu_node - Pick and claim an idle cpu from @node + * @cpus_allowed: Allowed cpumask + * @node: target NUMA node + * @flags: %SCX_PICK_IDLE_* flags + * + * Pick and claim an idle cpu in @cpus_allowed from the NUMA node @node. + * + * Returns the picked idle cpu number on success, or -%EBUSY if no matching + * cpu was found. + * + * The search starts from @node and proceeds to other online NUMA nodes in + * order of increasing distance (unless SCX_PICK_IDLE_IN_NODE is specified, + * in which case the search is limited to the target @node). + * + * Always returns an error if ops.update_idle() is implemented and + * %SCX_OPS_KEEP_BUILTIN_IDLE is not set, or if + * %SCX_OPS_BUILTIN_IDLE_PER_NODE is not set. + */ +__bpf_kfunc s32 scx_bpf_pick_idle_cpu_node(const struct cpumask *cpus_allowed, + int node, u64 flags) +{ + node = validate_node(node); + if (node < 0) + return node; + + return scx_pick_idle_cpu(cpus_allowed, node, flags); +} + +/** + * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu + * @cpus_allowed: Allowed cpumask + * @flags: %SCX_PICK_IDLE_CPU_* flags + * + * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu + * number on success. -%EBUSY if no matching cpu was found. + * + * Idle CPU tracking may race against CPU scheduling state transitions. For + * example, this function may return -%EBUSY as CPUs are transitioning into the + * idle state. If the caller then assumes that there will be dispatch events on + * the CPUs as they were all busy, the scheduler may end up stalling with CPUs + * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and + * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch + * event in the near future. + * + * Unavailable if ops.update_idle() is implemented and + * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. + * + * Always returns an error if %SCX_OPS_BUILTIN_IDLE_PER_NODE is set, use + * scx_bpf_pick_idle_cpu_node() instead. + */ +__bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed, + u64 flags) +{ + if (static_branch_maybe(CONFIG_NUMA, &scx_builtin_idle_per_node)) { + scx_ops_error("per-node idle tracking is enabled"); + return -EBUSY; + } + + if (!check_builtin_idle_enabled()) + return -EBUSY; + + return scx_pick_idle_cpu(cpus_allowed, NUMA_NO_NODE, flags); +} + +/** + * scx_bpf_pick_any_cpu_node - Pick and claim an idle cpu if available + * or pick any CPU from @node + * @cpus_allowed: Allowed cpumask + * @node: target NUMA node + * @flags: %SCX_PICK_IDLE_CPU_* flags + * + * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any + * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu + * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is + * empty. + * + * The search starts from @node and proceeds to other online NUMA nodes in + * order of increasing distance (unless %SCX_PICK_IDLE_IN_NODE is specified, + * in which case the search is limited to the target @node, regardless of + * the CPU idle state). + * + * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not + * set, this function can't tell which CPUs are idle and will always pick any + * CPU. + */ +__bpf_kfunc s32 scx_bpf_pick_any_cpu_node(const struct cpumask *cpus_allowed, + int node, u64 flags) +{ + s32 cpu; + + node = validate_node(node); + if (node < 0) + return node; + + cpu = scx_pick_idle_cpu(cpus_allowed, node, flags); + if (cpu >= 0) + return cpu; + + if (flags & SCX_PICK_IDLE_IN_NODE) + cpu = cpumask_any_and_distribute(cpumask_of_node(node), cpus_allowed); + else + cpu = cpumask_any_distribute(cpus_allowed); + if (cpu < nr_cpu_ids) + return cpu; + else + return -EBUSY; +} + +/** + * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU + * @cpus_allowed: Allowed cpumask + * @flags: %SCX_PICK_IDLE_CPU_* flags + * + * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any + * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu + * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is + * empty. + * + * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not + * set, this function can't tell which CPUs are idle and will always pick any + * CPU. + * + * Always returns an error if %SCX_OPS_BUILTIN_IDLE_PER_NODE is set, use + * scx_bpf_pick_any_cpu_node() instead. + */ +__bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed, + u64 flags) +{ + s32 cpu; + + if (static_branch_maybe(CONFIG_NUMA, &scx_builtin_idle_per_node)) { + scx_ops_error("per-node idle tracking is enabled"); + return -EBUSY; + } + + if (static_branch_likely(&scx_builtin_idle_enabled)) { + cpu = scx_pick_idle_cpu(cpus_allowed, NUMA_NO_NODE, flags); + if (cpu >= 0) + return cpu; + } + + cpu = cpumask_any_distribute(cpus_allowed); + if (cpu < nr_cpu_ids) + return cpu; + else + return -EBUSY; +} + +__bpf_kfunc_end_defs(); + +BTF_KFUNCS_START(scx_kfunc_ids_idle) +BTF_ID_FLAGS(func, scx_bpf_cpu_node) +BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask_node, KF_ACQUIRE) +BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE) +BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask_node, KF_ACQUIRE) +BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE) +BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE) +BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle) +BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu_node, KF_RCU) +BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU) +BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu_node, KF_RCU) +BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU) +BTF_KFUNCS_END(scx_kfunc_ids_idle) + +static const struct btf_kfunc_id_set scx_kfunc_set_idle = { + .owner = THIS_MODULE, + .set = &scx_kfunc_ids_idle, +}; + +BTF_KFUNCS_START(scx_kfunc_ids_select_cpu) +BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU) +BTF_KFUNCS_END(scx_kfunc_ids_select_cpu) + +static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = { + .owner = THIS_MODULE, + .set = &scx_kfunc_ids_select_cpu, +}; + +int scx_idle_init(void) +{ + int ret; + + ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &scx_kfunc_set_select_cpu) || + register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &scx_kfunc_set_idle) || + register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &scx_kfunc_set_idle) || + register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &scx_kfunc_set_idle); + + return ret; +} |