1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
|
// SPDX-License-Identifier: GPL-2.0
/*
* BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
*
* Built-in idle CPU tracking policy.
*
* Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
* Copyright (c) 2022 Tejun Heo <tj@kernel.org>
* Copyright (c) 2022 David Vernet <dvernet@meta.com>
* Copyright (c) 2024 Andrea Righi <arighi@nvidia.com>
*/
#include "ext_idle.h"
/* Enable/disable built-in idle CPU selection policy */
static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled);
/* Enable/disable per-node idle cpumasks */
static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_per_node);
#ifdef CONFIG_SMP
/* Enable/disable LLC aware optimizations */
static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_llc);
/* Enable/disable NUMA aware optimizations */
static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_numa);
/*
* cpumasks to track idle CPUs within each NUMA node.
*
* If SCX_OPS_BUILTIN_IDLE_PER_NODE is not enabled, a single global cpumask
* from is used to track all the idle CPUs in the system.
*/
struct scx_idle_cpus {
cpumask_var_t cpu;
cpumask_var_t smt;
};
/*
* Global host-wide idle cpumasks (used when SCX_OPS_BUILTIN_IDLE_PER_NODE
* is not enabled).
*/
static struct scx_idle_cpus scx_idle_global_masks;
/*
* Per-node idle cpumasks.
*/
static struct scx_idle_cpus **scx_idle_node_masks;
/*
* Return the idle masks associated to a target @node.
*
* NUMA_NO_NODE identifies the global idle cpumask.
*/
static struct scx_idle_cpus *idle_cpumask(int node)
{
return node == NUMA_NO_NODE ? &scx_idle_global_masks : scx_idle_node_masks[node];
}
/*
* Returns the NUMA node ID associated with a @cpu, or NUMA_NO_NODE if
* per-node idle cpumasks are disabled.
*/
static int scx_cpu_node_if_enabled(int cpu)
{
if (!static_branch_maybe(CONFIG_NUMA, &scx_builtin_idle_per_node))
return NUMA_NO_NODE;
return cpu_to_node(cpu);
}
bool scx_idle_test_and_clear_cpu(int cpu)
{
int node = scx_cpu_node_if_enabled(cpu);
struct cpumask *idle_cpus = idle_cpumask(node)->cpu;
#ifdef CONFIG_SCHED_SMT
/*
* SMT mask should be cleared whether we can claim @cpu or not. The SMT
* cluster is not wholly idle either way. This also prevents
* scx_pick_idle_cpu() from getting caught in an infinite loop.
*/
if (sched_smt_active()) {
const struct cpumask *smt = cpu_smt_mask(cpu);
struct cpumask *idle_smts = idle_cpumask(node)->smt;
/*
* If offline, @cpu is not its own sibling and
* scx_pick_idle_cpu() can get caught in an infinite loop as
* @cpu is never cleared from the idle SMT mask. Ensure that
* @cpu is eventually cleared.
*
* NOTE: Use cpumask_intersects() and cpumask_test_cpu() to
* reduce memory writes, which may help alleviate cache
* coherence pressure.
*/
if (cpumask_intersects(smt, idle_smts))
cpumask_andnot(idle_smts, idle_smts, smt);
else if (cpumask_test_cpu(cpu, idle_smts))
__cpumask_clear_cpu(cpu, idle_smts);
}
#endif
return cpumask_test_and_clear_cpu(cpu, idle_cpus);
}
/*
* Pick an idle CPU in a specific NUMA node.
*/
static s32 pick_idle_cpu_in_node(const struct cpumask *cpus_allowed, int node, u64 flags)
{
int cpu;
retry:
if (sched_smt_active()) {
cpu = cpumask_any_and_distribute(idle_cpumask(node)->smt, cpus_allowed);
if (cpu < nr_cpu_ids)
goto found;
if (flags & SCX_PICK_IDLE_CORE)
return -EBUSY;
}
cpu = cpumask_any_and_distribute(idle_cpumask(node)->cpu, cpus_allowed);
if (cpu >= nr_cpu_ids)
return -EBUSY;
found:
if (scx_idle_test_and_clear_cpu(cpu))
return cpu;
else
goto retry;
}
/*
* Tracks nodes that have not yet been visited when searching for an idle
* CPU across all available nodes.
*/
static DEFINE_PER_CPU(nodemask_t, per_cpu_unvisited);
/*
* Search for an idle CPU across all nodes, excluding @node.
*/
static s32 pick_idle_cpu_from_online_nodes(const struct cpumask *cpus_allowed, int node, u64 flags)
{
nodemask_t *unvisited;
s32 cpu = -EBUSY;
preempt_disable();
unvisited = this_cpu_ptr(&per_cpu_unvisited);
/*
* Restrict the search to the online nodes (excluding the current
* node that has been visited already).
*/
nodes_copy(*unvisited, node_states[N_ONLINE]);
node_clear(node, *unvisited);
/*
* Traverse all nodes in order of increasing distance, starting
* from @node.
*
* This loop is O(N^2), with N being the amount of NUMA nodes,
* which might be quite expensive in large NUMA systems. However,
* this complexity comes into play only when a scheduler enables
* SCX_OPS_BUILTIN_IDLE_PER_NODE and it's requesting an idle CPU
* without specifying a target NUMA node, so it shouldn't be a
* bottleneck is most cases.
*
* As a future optimization we may want to cache the list of nodes
* in a per-node array, instead of actually traversing them every
* time.
*/
for_each_node_numadist(node, *unvisited) {
cpu = pick_idle_cpu_in_node(cpus_allowed, node, flags);
if (cpu >= 0)
break;
}
preempt_enable();
return cpu;
}
/*
* Find an idle CPU in the system, starting from @node.
*/
s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, int node, u64 flags)
{
s32 cpu;
/*
* Always search in the starting node first (this is an
* optimization that can save some cycles even when the search is
* not limited to a single node).
*/
cpu = pick_idle_cpu_in_node(cpus_allowed, node, flags);
if (cpu >= 0)
return cpu;
/*
* Stop the search if we are using only a single global cpumask
* (NUMA_NO_NODE) or if the search is restricted to the first node
* only.
*/
if (node == NUMA_NO_NODE || flags & SCX_PICK_IDLE_IN_NODE)
return -EBUSY;
/*
* Extend the search to the other online nodes.
*/
return pick_idle_cpu_from_online_nodes(cpus_allowed, node, flags);
}
/*
* Return the amount of CPUs in the same LLC domain of @cpu (or zero if the LLC
* domain is not defined).
*/
static unsigned int llc_weight(s32 cpu)
{
struct sched_domain *sd;
sd = rcu_dereference(per_cpu(sd_llc, cpu));
if (!sd)
return 0;
return sd->span_weight;
}
/*
* Return the cpumask representing the LLC domain of @cpu (or NULL if the LLC
* domain is not defined).
*/
static struct cpumask *llc_span(s32 cpu)
{
struct sched_domain *sd;
sd = rcu_dereference(per_cpu(sd_llc, cpu));
if (!sd)
return 0;
return sched_domain_span(sd);
}
/*
* Return the amount of CPUs in the same NUMA domain of @cpu (or zero if the
* NUMA domain is not defined).
*/
static unsigned int numa_weight(s32 cpu)
{
struct sched_domain *sd;
struct sched_group *sg;
sd = rcu_dereference(per_cpu(sd_numa, cpu));
if (!sd)
return 0;
sg = sd->groups;
if (!sg)
return 0;
return sg->group_weight;
}
/*
* Return the cpumask representing the NUMA domain of @cpu (or NULL if the NUMA
* domain is not defined).
*/
static struct cpumask *numa_span(s32 cpu)
{
struct sched_domain *sd;
struct sched_group *sg;
sd = rcu_dereference(per_cpu(sd_numa, cpu));
if (!sd)
return NULL;
sg = sd->groups;
if (!sg)
return NULL;
return sched_group_span(sg);
}
/*
* Return true if the LLC domains do not perfectly overlap with the NUMA
* domains, false otherwise.
*/
static bool llc_numa_mismatch(void)
{
int cpu;
/*
* We need to scan all online CPUs to verify whether their scheduling
* domains overlap.
*
* While it is rare to encounter architectures with asymmetric NUMA
* topologies, CPU hotplugging or virtualized environments can result
* in asymmetric configurations.
*
* For example:
*
* NUMA 0:
* - LLC 0: cpu0..cpu7
* - LLC 1: cpu8..cpu15 [offline]
*
* NUMA 1:
* - LLC 0: cpu16..cpu23
* - LLC 1: cpu24..cpu31
*
* In this case, if we only check the first online CPU (cpu0), we might
* incorrectly assume that the LLC and NUMA domains are fully
* overlapping, which is incorrect (as NUMA 1 has two distinct LLC
* domains).
*/
for_each_online_cpu(cpu)
if (llc_weight(cpu) != numa_weight(cpu))
return true;
return false;
}
/*
* Initialize topology-aware scheduling.
*
* Detect if the system has multiple LLC or multiple NUMA domains and enable
* cache-aware / NUMA-aware scheduling optimizations in the default CPU idle
* selection policy.
*
* Assumption: the kernel's internal topology representation assumes that each
* CPU belongs to a single LLC domain, and that each LLC domain is entirely
* contained within a single NUMA node.
*/
void scx_idle_update_selcpu_topology(struct sched_ext_ops *ops)
{
bool enable_llc = false, enable_numa = false;
unsigned int nr_cpus;
s32 cpu = cpumask_first(cpu_online_mask);
/*
* Enable LLC domain optimization only when there are multiple LLC
* domains among the online CPUs. If all online CPUs are part of a
* single LLC domain, the idle CPU selection logic can choose any
* online CPU without bias.
*
* Note that it is sufficient to check the LLC domain of the first
* online CPU to determine whether a single LLC domain includes all
* CPUs.
*/
rcu_read_lock();
nr_cpus = llc_weight(cpu);
if (nr_cpus > 0) {
if (nr_cpus < num_online_cpus())
enable_llc = true;
pr_debug("sched_ext: LLC=%*pb weight=%u\n",
cpumask_pr_args(llc_span(cpu)), llc_weight(cpu));
}
/*
* Enable NUMA optimization only when there are multiple NUMA domains
* among the online CPUs and the NUMA domains don't perfectly overlaps
* with the LLC domains.
*
* If all CPUs belong to the same NUMA node and the same LLC domain,
* enabling both NUMA and LLC optimizations is unnecessary, as checking
* for an idle CPU in the same domain twice is redundant.
*
* If SCX_OPS_BUILTIN_IDLE_PER_NODE is enabled ignore the NUMA
* optimization, as we would naturally select idle CPUs within
* specific NUMA nodes querying the corresponding per-node cpumask.
*/
if (!(ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE)) {
nr_cpus = numa_weight(cpu);
if (nr_cpus > 0) {
if (nr_cpus < num_online_cpus() && llc_numa_mismatch())
enable_numa = true;
pr_debug("sched_ext: NUMA=%*pb weight=%u\n",
cpumask_pr_args(numa_span(cpu)), nr_cpus);
}
}
rcu_read_unlock();
pr_debug("sched_ext: LLC idle selection %s\n",
str_enabled_disabled(enable_llc));
pr_debug("sched_ext: NUMA idle selection %s\n",
str_enabled_disabled(enable_numa));
if (enable_llc)
static_branch_enable_cpuslocked(&scx_selcpu_topo_llc);
else
static_branch_disable_cpuslocked(&scx_selcpu_topo_llc);
if (enable_numa)
static_branch_enable_cpuslocked(&scx_selcpu_topo_numa);
else
static_branch_disable_cpuslocked(&scx_selcpu_topo_numa);
}
/*
* Built-in CPU idle selection policy:
*
* 1. Prioritize full-idle cores:
* - always prioritize CPUs from fully idle cores (both logical CPUs are
* idle) to avoid interference caused by SMT.
*
* 2. Reuse the same CPU:
* - prefer the last used CPU to take advantage of cached data (L1, L2) and
* branch prediction optimizations.
*
* 3. Pick a CPU within the same LLC (Last-Level Cache):
* - if the above conditions aren't met, pick a CPU that shares the same LLC
* to maintain cache locality.
*
* 4. Pick a CPU within the same NUMA node, if enabled:
* - choose a CPU from the same NUMA node to reduce memory access latency.
*
* 5. Pick any idle CPU usable by the task.
*
* Step 3 and 4 are performed only if the system has, respectively,
* multiple LLCs / multiple NUMA nodes (see scx_selcpu_topo_llc and
* scx_selcpu_topo_numa) and they don't contain the same subset of CPUs.
*
* If %SCX_OPS_BUILTIN_IDLE_PER_NODE is enabled, the search will always
* begin in @prev_cpu's node and proceed to other nodes in order of
* increasing distance.
*
* Return the picked CPU if idle, or a negative value otherwise.
*
* NOTE: tasks that can only run on 1 CPU are excluded by this logic, because
* we never call ops.select_cpu() for them, see select_task_rq().
*/
s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, u64 wake_flags, u64 flags)
{
const struct cpumask *llc_cpus = NULL;
const struct cpumask *numa_cpus = NULL;
int node = scx_cpu_node_if_enabled(prev_cpu);
s32 cpu;
/*
* This is necessary to protect llc_cpus.
*/
rcu_read_lock();
/*
* Determine the scheduling domain only if the task is allowed to run
* on all CPUs.
*
* This is done primarily for efficiency, as it avoids the overhead of
* updating a cpumask every time we need to select an idle CPU (which
* can be costly in large SMP systems), but it also aligns logically:
* if a task's scheduling domain is restricted by user-space (through
* CPU affinity), the task will simply use the flat scheduling domain
* defined by user-space.
*/
if (p->nr_cpus_allowed >= num_possible_cpus()) {
if (static_branch_maybe(CONFIG_NUMA, &scx_selcpu_topo_numa))
numa_cpus = numa_span(prev_cpu);
if (static_branch_maybe(CONFIG_SCHED_MC, &scx_selcpu_topo_llc))
llc_cpus = llc_span(prev_cpu);
}
/*
* If WAKE_SYNC, try to migrate the wakee to the waker's CPU.
*/
if (wake_flags & SCX_WAKE_SYNC) {
int waker_node;
/*
* If the waker's CPU is cache affine and prev_cpu is idle,
* then avoid a migration.
*/
cpu = smp_processor_id();
if (cpus_share_cache(cpu, prev_cpu) &&
scx_idle_test_and_clear_cpu(prev_cpu)) {
cpu = prev_cpu;
goto out_unlock;
}
/*
* If the waker's local DSQ is empty, and the system is under
* utilized, try to wake up @p to the local DSQ of the waker.
*
* Checking only for an empty local DSQ is insufficient as it
* could give the wakee an unfair advantage when the system is
* oversaturated.
*
* Checking only for the presence of idle CPUs is also
* insufficient as the local DSQ of the waker could have tasks
* piled up on it even if there is an idle core elsewhere on
* the system.
*/
waker_node = cpu_to_node(cpu);
if (!(current->flags & PF_EXITING) &&
cpu_rq(cpu)->scx.local_dsq.nr == 0 &&
(!(flags & SCX_PICK_IDLE_IN_NODE) || (waker_node == node)) &&
!cpumask_empty(idle_cpumask(waker_node)->cpu)) {
if (cpumask_test_cpu(cpu, p->cpus_ptr))
goto out_unlock;
}
}
/*
* If CPU has SMT, any wholly idle CPU is likely a better pick than
* partially idle @prev_cpu.
*/
if (sched_smt_active()) {
/*
* Keep using @prev_cpu if it's part of a fully idle core.
*/
if (cpumask_test_cpu(prev_cpu, idle_cpumask(node)->smt) &&
scx_idle_test_and_clear_cpu(prev_cpu)) {
cpu = prev_cpu;
goto out_unlock;
}
/*
* Search for any fully idle core in the same LLC domain.
*/
if (llc_cpus) {
cpu = pick_idle_cpu_in_node(llc_cpus, node, SCX_PICK_IDLE_CORE);
if (cpu >= 0)
goto out_unlock;
}
/*
* Search for any fully idle core in the same NUMA node.
*/
if (numa_cpus) {
cpu = pick_idle_cpu_in_node(numa_cpus, node, SCX_PICK_IDLE_CORE);
if (cpu >= 0)
goto out_unlock;
}
/*
* Search for any full-idle core usable by the task.
*
* If the node-aware idle CPU selection policy is enabled
* (%SCX_OPS_BUILTIN_IDLE_PER_NODE), the search will always
* begin in prev_cpu's node and proceed to other nodes in
* order of increasing distance.
*/
cpu = scx_pick_idle_cpu(p->cpus_ptr, node, flags | SCX_PICK_IDLE_CORE);
if (cpu >= 0)
goto out_unlock;
/*
* Give up if we're strictly looking for a full-idle SMT
* core.
*/
if (flags & SCX_PICK_IDLE_CORE) {
cpu = prev_cpu;
goto out_unlock;
}
}
/*
* Use @prev_cpu if it's idle.
*/
if (scx_idle_test_and_clear_cpu(prev_cpu)) {
cpu = prev_cpu;
goto out_unlock;
}
/*
* Search for any idle CPU in the same LLC domain.
*/
if (llc_cpus) {
cpu = pick_idle_cpu_in_node(llc_cpus, node, 0);
if (cpu >= 0)
goto out_unlock;
}
/*
* Search for any idle CPU in the same NUMA node.
*/
if (numa_cpus) {
cpu = pick_idle_cpu_in_node(numa_cpus, node, 0);
if (cpu >= 0)
goto out_unlock;
}
/*
* Search for any idle CPU usable by the task.
*
* If the node-aware idle CPU selection policy is enabled
* (%SCX_OPS_BUILTIN_IDLE_PER_NODE), the search will always begin
* in prev_cpu's node and proceed to other nodes in order of
* increasing distance.
*/
cpu = scx_pick_idle_cpu(p->cpus_ptr, node, flags);
if (cpu >= 0)
goto out_unlock;
out_unlock:
rcu_read_unlock();
return cpu;
}
/*
* Initialize global and per-node idle cpumasks.
*/
void scx_idle_init_masks(void)
{
int node;
/* Allocate global idle cpumasks */
BUG_ON(!alloc_cpumask_var(&scx_idle_global_masks.cpu, GFP_KERNEL));
BUG_ON(!alloc_cpumask_var(&scx_idle_global_masks.smt, GFP_KERNEL));
/* Allocate per-node idle cpumasks */
scx_idle_node_masks = kcalloc(num_possible_nodes(),
sizeof(*scx_idle_node_masks), GFP_KERNEL);
BUG_ON(!scx_idle_node_masks);
for_each_node(node) {
scx_idle_node_masks[node] = kzalloc_node(sizeof(**scx_idle_node_masks),
GFP_KERNEL, node);
BUG_ON(!scx_idle_node_masks[node]);
BUG_ON(!alloc_cpumask_var_node(&scx_idle_node_masks[node]->cpu, GFP_KERNEL, node));
BUG_ON(!alloc_cpumask_var_node(&scx_idle_node_masks[node]->smt, GFP_KERNEL, node));
}
}
static void update_builtin_idle(int cpu, bool idle)
{
int node = scx_cpu_node_if_enabled(cpu);
struct cpumask *idle_cpus = idle_cpumask(node)->cpu;
assign_cpu(cpu, idle_cpus, idle);
#ifdef CONFIG_SCHED_SMT
if (sched_smt_active()) {
const struct cpumask *smt = cpu_smt_mask(cpu);
struct cpumask *idle_smts = idle_cpumask(node)->smt;
if (idle) {
/*
* idle_smt handling is racy but that's fine as it's
* only for optimization and self-correcting.
*/
if (!cpumask_subset(smt, idle_cpus))
return;
cpumask_or(idle_smts, idle_smts, smt);
} else {
cpumask_andnot(idle_smts, idle_smts, smt);
}
}
#endif
}
/*
* Update the idle state of a CPU to @idle.
*
* If @do_notify is true, ops.update_idle() is invoked to notify the scx
* scheduler of an actual idle state transition (idle to busy or vice
* versa). If @do_notify is false, only the idle state in the idle masks is
* refreshed without invoking ops.update_idle().
*
* This distinction is necessary, because an idle CPU can be "reserved" and
* awakened via scx_bpf_pick_idle_cpu() + scx_bpf_kick_cpu(), marking it as
* busy even if no tasks are dispatched. In this case, the CPU may return
* to idle without a true state transition. Refreshing the idle masks
* without invoking ops.update_idle() ensures accurate idle state tracking
* while avoiding unnecessary updates and maintaining balanced state
* transitions.
*/
void __scx_update_idle(struct rq *rq, bool idle, bool do_notify)
{
int cpu = cpu_of(rq);
lockdep_assert_rq_held(rq);
/*
* Trigger ops.update_idle() only when transitioning from a task to
* the idle thread and vice versa.
*
* Idle transitions are indicated by do_notify being set to true,
* managed by put_prev_task_idle()/set_next_task_idle().
*/
if (SCX_HAS_OP(update_idle) && do_notify && !scx_rq_bypassing(rq))
SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle);
/*
* Update the idle masks:
* - for real idle transitions (do_notify == true)
* - for idle-to-idle transitions (indicated by the previous task
* being the idle thread, managed by pick_task_idle())
*
* Skip updating idle masks if the previous task is not the idle
* thread, since set_next_task_idle() has already handled it when
* transitioning from a task to the idle thread (calling this
* function with do_notify == true).
*
* In this way we can avoid updating the idle masks twice,
* unnecessarily.
*/
if (static_branch_likely(&scx_builtin_idle_enabled))
if (do_notify || is_idle_task(rq->curr))
update_builtin_idle(cpu, idle);
}
static void reset_idle_masks(struct sched_ext_ops *ops)
{
int node;
/*
* Consider all online cpus idle. Should converge to the actual state
* quickly.
*/
if (!(ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE)) {
cpumask_copy(idle_cpumask(NUMA_NO_NODE)->cpu, cpu_online_mask);
cpumask_copy(idle_cpumask(NUMA_NO_NODE)->smt, cpu_online_mask);
return;
}
for_each_node(node) {
const struct cpumask *node_mask = cpumask_of_node(node);
cpumask_and(idle_cpumask(node)->cpu, cpu_online_mask, node_mask);
cpumask_and(idle_cpumask(node)->smt, cpu_online_mask, node_mask);
}
}
#endif /* CONFIG_SMP */
void scx_idle_enable(struct sched_ext_ops *ops)
{
if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE))
static_branch_enable(&scx_builtin_idle_enabled);
else
static_branch_disable(&scx_builtin_idle_enabled);
if (ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE)
static_branch_enable(&scx_builtin_idle_per_node);
else
static_branch_disable(&scx_builtin_idle_per_node);
#ifdef CONFIG_SMP
reset_idle_masks(ops);
#endif
}
void scx_idle_disable(void)
{
static_branch_disable(&scx_builtin_idle_enabled);
static_branch_disable(&scx_builtin_idle_per_node);
}
/********************************************************************************
* Helpers that can be called from the BPF scheduler.
*/
static int validate_node(int node)
{
if (!static_branch_likely(&scx_builtin_idle_per_node)) {
scx_ops_error("per-node idle tracking is disabled");
return -EOPNOTSUPP;
}
/* Return no entry for NUMA_NO_NODE (not a critical scx error) */
if (node == NUMA_NO_NODE)
return -ENOENT;
/* Make sure node is in a valid range */
if (node < 0 || node >= nr_node_ids) {
scx_ops_error("invalid node %d", node);
return -EINVAL;
}
/* Make sure the node is part of the set of possible nodes */
if (!node_possible(node)) {
scx_ops_error("unavailable node %d", node);
return -EINVAL;
}
return node;
}
__bpf_kfunc_start_defs();
static bool check_builtin_idle_enabled(void)
{
if (static_branch_likely(&scx_builtin_idle_enabled))
return true;
scx_ops_error("built-in idle tracking is disabled");
return false;
}
/**
* scx_bpf_cpu_node - Return the NUMA node the given @cpu belongs to, or
* trigger an error if @cpu is invalid
* @cpu: target CPU
*/
__bpf_kfunc int scx_bpf_cpu_node(s32 cpu)
{
#ifdef CONFIG_NUMA
if (!ops_cpu_valid(cpu, NULL))
return NUMA_NO_NODE;
return cpu_to_node(cpu);
#else
return 0;
#endif
}
/**
* scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu()
* @p: task_struct to select a CPU for
* @prev_cpu: CPU @p was on previously
* @wake_flags: %SCX_WAKE_* flags
* @is_idle: out parameter indicating whether the returned CPU is idle
*
* Can only be called from ops.select_cpu() if the built-in CPU selection is
* enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set.
* @p, @prev_cpu and @wake_flags match ops.select_cpu().
*
* Returns the picked CPU with *@is_idle indicating whether the picked CPU is
* currently idle and thus a good candidate for direct dispatching.
*/
__bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
u64 wake_flags, bool *is_idle)
{
#ifdef CONFIG_SMP
s32 cpu;
#endif
if (!ops_cpu_valid(prev_cpu, NULL))
goto prev_cpu;
if (!check_builtin_idle_enabled())
goto prev_cpu;
if (!scx_kf_allowed(SCX_KF_SELECT_CPU))
goto prev_cpu;
#ifdef CONFIG_SMP
cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, 0);
if (cpu >= 0) {
*is_idle = true;
return cpu;
}
#endif
prev_cpu:
*is_idle = false;
return prev_cpu;
}
/**
* scx_bpf_get_idle_cpumask_node - Get a referenced kptr to the
* idle-tracking per-CPU cpumask of a target NUMA node.
* @node: target NUMA node
*
* Returns an empty cpumask if idle tracking is not enabled, if @node is
* not valid, or running on a UP kernel. In this case the actual error will
* be reported to the BPF scheduler via scx_ops_error().
*/
__bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask_node(int node)
{
node = validate_node(node);
if (node < 0)
return cpu_none_mask;
#ifdef CONFIG_SMP
return idle_cpumask(node)->cpu;
#else
return cpu_none_mask;
#endif
}
/**
* scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking
* per-CPU cpumask.
*
* Returns an empty mask if idle tracking is not enabled, or running on a
* UP kernel.
*/
__bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void)
{
if (static_branch_unlikely(&scx_builtin_idle_per_node)) {
scx_ops_error("SCX_OPS_BUILTIN_IDLE_PER_NODE enabled");
return cpu_none_mask;
}
if (!check_builtin_idle_enabled())
return cpu_none_mask;
#ifdef CONFIG_SMP
return idle_cpumask(NUMA_NO_NODE)->cpu;
#else
return cpu_none_mask;
#endif
}
/**
* scx_bpf_get_idle_smtmask_node - Get a referenced kptr to the
* idle-tracking, per-physical-core cpumask of a target NUMA node. Can be
* used to determine if an entire physical core is free.
* @node: target NUMA node
*
* Returns an empty cpumask if idle tracking is not enabled, if @node is
* not valid, or running on a UP kernel. In this case the actual error will
* be reported to the BPF scheduler via scx_ops_error().
*/
__bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask_node(int node)
{
node = validate_node(node);
if (node < 0)
return cpu_none_mask;
#ifdef CONFIG_SMP
if (sched_smt_active())
return idle_cpumask(node)->smt;
else
return idle_cpumask(node)->cpu;
#else
return cpu_none_mask;
#endif
}
/**
* scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking,
* per-physical-core cpumask. Can be used to determine if an entire physical
* core is free.
*
* Returns an empty mask if idle tracking is not enabled, or running on a
* UP kernel.
*/
__bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void)
{
if (static_branch_unlikely(&scx_builtin_idle_per_node)) {
scx_ops_error("SCX_OPS_BUILTIN_IDLE_PER_NODE enabled");
return cpu_none_mask;
}
if (!check_builtin_idle_enabled())
return cpu_none_mask;
#ifdef CONFIG_SMP
if (sched_smt_active())
return idle_cpumask(NUMA_NO_NODE)->smt;
else
return idle_cpumask(NUMA_NO_NODE)->cpu;
#else
return cpu_none_mask;
#endif
}
/**
* scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to
* either the percpu, or SMT idle-tracking cpumask.
* @idle_mask: &cpumask to use
*/
__bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask)
{
/*
* Empty function body because we aren't actually acquiring or releasing
* a reference to a global idle cpumask, which is read-only in the
* caller and is never released. The acquire / release semantics here
* are just used to make the cpumask a trusted pointer in the caller.
*/
}
/**
* scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state
* @cpu: cpu to test and clear idle for
*
* Returns %true if @cpu was idle and its idle state was successfully cleared.
* %false otherwise.
*
* Unavailable if ops.update_idle() is implemented and
* %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
*/
__bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu)
{
if (!check_builtin_idle_enabled())
return false;
if (ops_cpu_valid(cpu, NULL))
return scx_idle_test_and_clear_cpu(cpu);
else
return false;
}
/**
* scx_bpf_pick_idle_cpu_node - Pick and claim an idle cpu from @node
* @cpus_allowed: Allowed cpumask
* @node: target NUMA node
* @flags: %SCX_PICK_IDLE_* flags
*
* Pick and claim an idle cpu in @cpus_allowed from the NUMA node @node.
*
* Returns the picked idle cpu number on success, or -%EBUSY if no matching
* cpu was found.
*
* The search starts from @node and proceeds to other online NUMA nodes in
* order of increasing distance (unless SCX_PICK_IDLE_IN_NODE is specified,
* in which case the search is limited to the target @node).
*
* Always returns an error if ops.update_idle() is implemented and
* %SCX_OPS_KEEP_BUILTIN_IDLE is not set, or if
* %SCX_OPS_BUILTIN_IDLE_PER_NODE is not set.
*/
__bpf_kfunc s32 scx_bpf_pick_idle_cpu_node(const struct cpumask *cpus_allowed,
int node, u64 flags)
{
node = validate_node(node);
if (node < 0)
return node;
return scx_pick_idle_cpu(cpus_allowed, node, flags);
}
/**
* scx_bpf_pick_idle_cpu - Pick and claim an idle cpu
* @cpus_allowed: Allowed cpumask
* @flags: %SCX_PICK_IDLE_CPU_* flags
*
* Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu
* number on success. -%EBUSY if no matching cpu was found.
*
* Idle CPU tracking may race against CPU scheduling state transitions. For
* example, this function may return -%EBUSY as CPUs are transitioning into the
* idle state. If the caller then assumes that there will be dispatch events on
* the CPUs as they were all busy, the scheduler may end up stalling with CPUs
* idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and
* scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch
* event in the near future.
*
* Unavailable if ops.update_idle() is implemented and
* %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
*
* Always returns an error if %SCX_OPS_BUILTIN_IDLE_PER_NODE is set, use
* scx_bpf_pick_idle_cpu_node() instead.
*/
__bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed,
u64 flags)
{
if (static_branch_maybe(CONFIG_NUMA, &scx_builtin_idle_per_node)) {
scx_ops_error("per-node idle tracking is enabled");
return -EBUSY;
}
if (!check_builtin_idle_enabled())
return -EBUSY;
return scx_pick_idle_cpu(cpus_allowed, NUMA_NO_NODE, flags);
}
/**
* scx_bpf_pick_any_cpu_node - Pick and claim an idle cpu if available
* or pick any CPU from @node
* @cpus_allowed: Allowed cpumask
* @node: target NUMA node
* @flags: %SCX_PICK_IDLE_CPU_* flags
*
* Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
* CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
* number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
* empty.
*
* The search starts from @node and proceeds to other online NUMA nodes in
* order of increasing distance (unless %SCX_PICK_IDLE_IN_NODE is specified,
* in which case the search is limited to the target @node, regardless of
* the CPU idle state).
*
* If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
* set, this function can't tell which CPUs are idle and will always pick any
* CPU.
*/
__bpf_kfunc s32 scx_bpf_pick_any_cpu_node(const struct cpumask *cpus_allowed,
int node, u64 flags)
{
s32 cpu;
node = validate_node(node);
if (node < 0)
return node;
cpu = scx_pick_idle_cpu(cpus_allowed, node, flags);
if (cpu >= 0)
return cpu;
if (flags & SCX_PICK_IDLE_IN_NODE)
cpu = cpumask_any_and_distribute(cpumask_of_node(node), cpus_allowed);
else
cpu = cpumask_any_distribute(cpus_allowed);
if (cpu < nr_cpu_ids)
return cpu;
else
return -EBUSY;
}
/**
* scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU
* @cpus_allowed: Allowed cpumask
* @flags: %SCX_PICK_IDLE_CPU_* flags
*
* Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
* CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
* number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
* empty.
*
* If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
* set, this function can't tell which CPUs are idle and will always pick any
* CPU.
*
* Always returns an error if %SCX_OPS_BUILTIN_IDLE_PER_NODE is set, use
* scx_bpf_pick_any_cpu_node() instead.
*/
__bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed,
u64 flags)
{
s32 cpu;
if (static_branch_maybe(CONFIG_NUMA, &scx_builtin_idle_per_node)) {
scx_ops_error("per-node idle tracking is enabled");
return -EBUSY;
}
if (static_branch_likely(&scx_builtin_idle_enabled)) {
cpu = scx_pick_idle_cpu(cpus_allowed, NUMA_NO_NODE, flags);
if (cpu >= 0)
return cpu;
}
cpu = cpumask_any_distribute(cpus_allowed);
if (cpu < nr_cpu_ids)
return cpu;
else
return -EBUSY;
}
__bpf_kfunc_end_defs();
BTF_KFUNCS_START(scx_kfunc_ids_idle)
BTF_ID_FLAGS(func, scx_bpf_cpu_node)
BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask_node, KF_ACQUIRE)
BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE)
BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask_node, KF_ACQUIRE)
BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE)
BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE)
BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle)
BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu_node, KF_RCU)
BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU)
BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu_node, KF_RCU)
BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU)
BTF_KFUNCS_END(scx_kfunc_ids_idle)
static const struct btf_kfunc_id_set scx_kfunc_set_idle = {
.owner = THIS_MODULE,
.set = &scx_kfunc_ids_idle,
};
BTF_KFUNCS_START(scx_kfunc_ids_select_cpu)
BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU)
BTF_KFUNCS_END(scx_kfunc_ids_select_cpu)
static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = {
.owner = THIS_MODULE,
.set = &scx_kfunc_ids_select_cpu,
};
int scx_idle_init(void)
{
int ret;
ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &scx_kfunc_set_select_cpu) ||
register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &scx_kfunc_set_idle) ||
register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &scx_kfunc_set_idle) ||
register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &scx_kfunc_set_idle);
return ret;
}
|