// SPDX-License-Identifier: GPL-2.0-only
/*
* Samsung MIPI DSIM bridge driver.
*
* Copyright (C) 2021 Amarula Solutions(India)
* Copyright (c) 2014 Samsung Electronics Co., Ltd
* Author: Jagan Teki <jagan@amarulasolutions.com>
*
* Based on exynos_drm_dsi from
* Tomasz Figa <t.figa@samsung.com>
*/
#include <asm/unaligned.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/media-bus-format.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <video/mipi_display.h>
#include <drm/bridge/samsung-dsim.h>
#include <drm/drm_panel.h>
#include <drm/drm_print.h>
/* returns true iff both arguments logically differs */
#define NEQV(a, b) (!(a) ^ !(b))
/* DSIM_STATUS */
#define DSIM_STOP_STATE_DAT(x) (((x) & 0xf) << 0)
#define DSIM_STOP_STATE_CLK BIT(8)
#define DSIM_TX_READY_HS_CLK BIT(10)
#define DSIM_PLL_STABLE BIT(31)
/* DSIM_SWRST */
#define DSIM_FUNCRST BIT(16)
#define DSIM_SWRST BIT(0)
/* DSIM_TIMEOUT */
#define DSIM_LPDR_TIMEOUT(x) ((x) << 0)
#define DSIM_BTA_TIMEOUT(x) ((x) << 16)
/* DSIM_CLKCTRL */
#define DSIM_ESC_PRESCALER(x) (((x) & 0xffff) << 0)
#define DSIM_ESC_PRESCALER_MASK (0xffff << 0)
#define DSIM_LANE_ESC_CLK_EN_CLK BIT(19)
#define DSIM_LANE_ESC_CLK_EN_DATA(x) (((x) & 0xf) << 20)
#define DSIM_LANE_ESC_CLK_EN_DATA_MASK (0xf << 20)
#define DSIM_BYTE_CLKEN BIT(24)
#define DSIM_BYTE_CLK_SRC(x) (((x) & 0x3) << 25)
#define DSIM_BYTE_CLK_SRC_MASK (0x3 << 25)
#define DSIM_PLL_BYPASS BIT(27)
#define DSIM_ESC_CLKEN BIT(28)
#define DSIM_TX_REQUEST_HSCLK BIT(31)
/* DSIM_CONFIG */
#define DSIM_LANE_EN_CLK BIT(0)
#define DSIM_LANE_EN(x) (((x) & 0xf) << 1)
#define DSIM_NUM_OF_DATA_LANE(x) (((x) & 0x3) << 5)
#define DSIM_SUB_PIX_FORMAT(x) (((x) & 0x7) << 8)
#define DSIM_MAIN_PIX_FORMAT_MASK (0x7 << 12)
#define DSIM_MAIN_PIX_FORMAT_RGB888 (0x7 << 12)
#define DSIM_MAIN_PIX_FORMAT_RGB666 (0x6 << 12)
#define DSIM_MAIN_PIX_FORMAT_RGB666_P (0x5 << 12)
#define DSIM_MAIN_PIX_FORMAT_RGB565 (0x4 << 12)
#define DSIM_SUB_VC (((x) & 0x3) << 16)
#define DSIM_MAIN_VC (((x) & 0x3) << 18)
#define DSIM_HSA_DISABLE_MODE BIT(20)
#define DSIM_HBP_DISABLE_MODE BIT(21)
#define DSIM_HFP_DISABLE_MODE BIT(22)
/*
* The i.MX 8M Mini Applications Processor Reference Manual,
* Rev. 3, 11/2020 Page 4091
* The i.MX 8M Nano Applications Processor Reference Manual,
* Rev. 2, 07/2022 Page 3058
* The i.MX 8M Plus Applications Processor Reference Manual,
* Rev. 1, 06/2021 Page 5436
* all claims this bit is 'HseDisableMode' with the definition
* 0 = Disables transfer
* 1 = Enables transfer
*
* This clearly states that HSE is not a disabled bit.
*
* The naming convention follows as per the manual and the
* driver logic is based on the MIPI_DSI_MODE_VIDEO_HSE flag.
*/
#define DSIM_HSE_DISABLE_MODE BIT(23)
#define DSIM_AUTO_MODE BIT(24)
#define DSIM_VIDEO_MODE BIT(25)
#define DSIM_BURST_MODE BIT(26)
#define DSIM_SYNC_INFORM BIT(27)
#define DSIM_EOT_DISABLE BIT(28)
#define DSIM_MFLUSH_VS BIT(29)
/* This flag is valid only for exynos3250/3472/5260/5430 */
#define DSIM_CLKLANE_STOP BIT(30)
#define DSIM_NON_CONTINUOUS_CLKLANE BIT(31)
/* DSIM_ESCMODE */
#define DSIM_TX_TRIGGER_RST BIT(4)
#define DSIM_TX_LPDT_LP BIT(6)
#define DSIM_CMD_LPDT_LP BIT(7)
#define DSIM_FORCE_BTA BIT(16)
#define DSIM_FORCE_STOP_STATE BIT(20)
#define DSIM_STOP_STATE_CNT(x) (((x) & 0x7ff) << 21)
#define DSIM_STOP_STATE_CNT_MASK (0x7ff << 21)
/* DSIM_MDRESOL */
#define DSIM_MAIN_STAND_BY BIT(31)
#define DSIM_MAIN_VRESOL(x, num_bits) (((x) & ((1 << (num_bits)) - 1)) << 16)
#define DSIM_MAIN_HRESOL(x, num_bits) (((x) & ((1 << (num_bits)) - 1)) << 0)
/* DSIM_MVPORCH */
#define DSIM_CMD_ALLOW(x) ((x) << 28)
#define DSIM_STABLE_VFP(x) ((x) << 16)
#define DSIM_MAIN_VBP(x) ((x) << 0)
#define DSIM_CMD_ALLOW_MASK (0xf << 28)
#define DSIM_STABLE_VFP_MASK (0x7ff << 16)
#define DSIM_MAIN_VBP_MASK (0x7ff << 0)
/* DSIM_MHPORCH */
#define DSIM_MAIN_HFP(x) ((x) << 16)
#define DSIM_MAIN_HBP(x) ((x) << 0)
#define DSIM_MAIN_HFP_MASK ((0xffff) << 16)
#define DSIM_MAIN_HBP_MASK ((0xffff) << 0)
/* DSIM_MSYNC */
#define DSIM_MAIN_VSA(x) ((x) << 22)
#define DSIM_MAIN_HSA(x) ((x) << 0)
#define DSIM_MAIN_VSA_MASK ((0x3ff) << 22)
#define DSIM_MAIN_HSA_MASK ((0xffff) << 0)
/* DSIM_SDRESOL */
#define DSIM_SUB_STANDY(x) ((x) << 31)
#define DSIM_SUB_VRESOL(x) ((x) << 16)
#define DSIM_SUB_HRESOL(x) ((x) << 0)
#define DSIM_SUB_STANDY_MASK ((0x1) << 31)
#define DSIM_SUB_VRESOL_MASK ((0x7ff) << 16)
#define DSIM_SUB_HRESOL_MASK ((0x7ff) << 0)
/* DSIM_INTSRC */
#define DSIM_INT_PLL_STABLE BIT(31)
#define DSIM_INT_SW_RST_RELEASE BIT(30)
#define DSIM_INT_SFR_FIFO_EMPTY BIT(29)
#define DSIM_INT_SFR_HDR_FIFO_EMPTY BIT(28)
#define DSIM_INT_BTA BIT(25)
#define DSIM_INT_FRAME_DONE BIT(24)
#define DSIM_INT_RX_TIMEOUT BIT(21)
#define DSIM_INT_BTA_TIMEOUT BIT(20)
#define DSIM_INT_RX_DONE BIT(18)
#define DSIM_INT_RX_TE BIT(17)
#define DSIM_INT_RX_ACK BIT(16)
#define DSIM_INT_RX_ECC_ERR BIT(15)
#define DSIM_INT_RX_CRC_ERR BIT(14)
/* DSIM_FIFOCTRL */
#define DSIM_RX_DATA_FULL BIT(25)
#define DSIM_RX_DATA_EMPTY BIT(24)
#define DSIM_SFR_HEADER_FULL BIT(23)
#define DSIM_SFR_HEADER_EMPTY BIT(22)
#define DSIM_SFR_PAYLOAD_FULL BIT(21)
#define DSIM_SFR_PAYLOAD_EMPTY BIT(20)
#define DSIM_I80_HEADER_FULL BIT(19)
#define DSIM_I80_HEADER_EMPTY BIT(18)
#define DSIM_I80_PAYLOAD_FULL BIT(17)
#define DSIM_I80_PAYLOAD_EMPTY BIT(16)
#define DSIM_SD_HEADER_FULL BIT(15)
#define DSIM_SD_HEADER_EMPTY BIT(14)
#define DSIM_SD_PAYLOAD_FULL BIT(13)
#define DSIM_SD_PAYLOAD_EMPTY BIT(12)
#define DSIM_MD_HEADER_FULL BIT(11)
#define DSIM_MD_HEADER_EMPTY BIT(10)
#define DSIM_MD_PAYLOAD_FULL BIT(9)
#define DSIM_MD_PAYLOAD_EMPTY BIT(8)
#define DSIM_RX_FIFO BIT(4)
#define DSIM_SFR_FIFO BIT(3)
#define DSIM_I80_FIFO BIT(2)
#define DSIM_SD_FIFO BIT(1)
#define DSIM_MD_FIFO BIT(0)
/* DSIM_PHYACCHR */
#define DSIM_AFC_EN BIT(14)
#define DSIM_AFC_CTL(x) (((x) & 0x7) << 5)
/* DSIM_PLLCTRL */
#define DSIM_PLL_DPDNSWAP_CLK (1 << 25)
#define DSIM_PLL_DPDNSWAP_DAT (1 << 24)
#define DSIM_FREQ_BAND(x) ((x) << 24)
#define DSIM_PLL_EN BIT(23)
#define DSIM_PLL_P(x, offset) ((x) << (offset))
#define DSIM_PLL_M(x) ((x) << 4)
#define DSIM_PLL_S(x) ((x) << 1)
/* DSIM_PHYCTRL */
#define DSIM_PHYCTRL_ULPS_EXIT(x) (((x) & 0x1ff) << 0)
#define DSIM_PHYCTRL_B_DPHYCTL_VREG_LP BIT(30)
#define DSIM_PHYCTRL_B_DPHYCTL_SLEW_UP BIT(14)
/* DSIM_PHYTIMING */
#define DSIM_PHYTIMING_LPX(x) ((x) << 8)
#define DSIM_PHYTIMING_HS_EXIT(x) ((x) << 0)
/* DSIM_PHYTIMING1 */
#define DSIM_PHYTIMING1_CLK_PREPARE(x) ((x) << 24)
#define DSIM_PHYTIMING1_CLK_ZERO(x) ((x) << 16)
#define DSIM_PHYTIMING1_CLK_POST(x) ((x) << 8)
#define DSIM_PHYTIMING1_CLK_TRAIL(x) ((x) << 0)
/* DSIM_PHYTIMING2 */
#define DSIM_PHYTIMING2_HS_PREPARE(x) ((x) << 16)
#define DSIM_PHYTIMING2_HS_ZERO(x) ((x) << 8)
#define DSIM_PHYTIMING2_HS_TRAIL(x) ((x) << 0)
#define DSI_MAX_BUS_WIDTH 4
#define DSI_NUM_VIRTUAL_CHANNELS 4
#define DSI_TX_FIFO_SIZE 2048
#define DSI_RX_FIFO_SIZE 256
#define DSI_XFER_TIMEOUT_MS 100
#define DSI_RX_FIFO_EMPTY 0x30800002
#define OLD_SCLK_MIPI_CLK_NAME "pll_clk"
#define PS_TO_CYCLE(ps, hz) DIV64_U64_ROUND_CLOSEST(((ps) * (hz)), 1000000000000ULL)
static const char *const clk_names[5] = {
"bus_clk",
"sclk_mipi",
"phyclk_mipidphy0_bitclkdiv8",
"phyclk_mipidphy0_rxclkesc0",
"sclk_rgb_vclk_to_dsim0"
};
enum samsung_dsim_transfer_type {
EXYNOS_DSI_TX,
EXYNOS_DSI_RX,
};
enum reg_idx {
DSIM_STATUS_REG, /* Status register */
DSIM_SWRST_REG, /* Software reset register */
DSIM_CLKCTRL_REG, /* Clock control register */
DSIM_TIMEOUT_REG, /* Time out register */
DSIM_CONFIG_REG, /* Configuration register */
DSIM_ESCMODE_REG, /* Escape mode register */
DSIM_MDRESOL_REG,
DSIM_MVPORCH_REG, /* Main display Vporch register */
DSIM_MHPORCH_REG, /* Main display Hporch register */
DSIM_MSYNC_REG, /* Main display sync area register */
DSIM_INTSRC_REG, /* Interrupt source register */
DSIM_INTMSK_REG, /* Interrupt mask register */
DSIM_PKTHDR_REG, /* Packet Header FIFO register */
DSIM_PAYLOAD_REG, /* Payload FIFO register */
DSIM_RXFIFO_REG, /* Read FIFO register */
DSIM_FIFOCTRL_REG, /* FIFO status and control register */
DSIM_PLLCTRL_REG, /* PLL control register */
DSIM_PHYCTRL_REG,
DSIM_PHYTIMING_REG,
DSIM_PHYTIMING1_REG,
DSIM_PHYTIMING2_REG,
NUM_REGS
};
static const unsigned int exynos_reg_ofs[] = {
[DSIM_STATUS_REG] = 0x00,
[DSIM_SWRST_REG] = 0x04,
[DSIM_CLKCTRL_REG] = 0x08,
[DSIM_TIMEOUT_REG] = 0x0c,
[DSIM_CONFIG_REG] = 0x10,
[DSIM_ESCMODE_REG] = 0x14,
[DSIM_MDRESOL_REG] = 0x18,
[DSIM_MVPORCH_REG] = 0x1c,
[DSIM_MHPORCH_REG] = 0x20,
[DSIM_MSYNC_REG] = 0x24,
[DSIM_INTSRC_REG] = 0x2c,
[DSIM_INTMSK_REG] = 0x30,
[DSIM_PKTHDR_REG] = 0x34,
[DSIM_PAYLOAD_REG] = 0x38,
[DSIM_RXFIFO_REG] = 0x3c,
[DSIM_FIFOCTRL_REG] = 0x44,
[DSIM_PLLCTRL_REG] = 0x4c,
[DSIM_PHYCTRL_REG] = 0x5c,
[DSIM_PHYTIMING_REG] = 0x64,
[DSIM_PHYTIMING1_REG] = 0x68,
[DSIM_PHYTIMING2_REG] = 0x6c,
};
static const unsigned int exynos5433_reg_ofs[] = {
[DSIM_STATUS_REG] = 0x04,
[DSIM_SWRST_REG] = 0x0C,
[DSIM_CLKCTRL_REG] = 0x10,
[DSIM_TIMEOUT_REG] = 0x14,
[DSIM_CONFIG_REG] = 0x18,
[DSIM_ESCMODE_REG] = 0x1C,
[DSIM_MDRESOL_REG] = 0x20,
[DSIM_MVPORCH_REG] = 0x24,
[DSIM_MHPORCH_REG] = 0x28,
[DSIM_MSYNC_REG] = 0x2C,
[DSIM_INTSRC_REG] = 0x34,
[DSIM_INTMSK_REG] = 0x38,
[DSIM_PKTHDR_REG] = 0x3C,
[DSIM_PAYLOAD_REG] = 0x40,
[DSIM_RXFIFO_REG] = 0x44,
[DSIM_FIFOCTRL_REG] = 0x4C,
[DSIM_PLLCTRL_REG] = 0x94,
[DSIM_PHYCTRL_REG] = 0xA4,
[DSIM_PHYTIMING_REG] = 0xB4,
[DSIM_PHYTIMING1_REG] = 0xB8,
[DSIM_PHYTIMING2_REG] = 0xBC,
};
enum reg_value_idx {
RESET_TYPE,
PLL_TIMER,
STOP_STATE_CNT,
PHYCTRL_ULPS_EXIT,
PHYCTRL_VREG_LP,
PHYCTRL_SLEW_UP,
PHYTIMING_LPX,
PHYTIMING_HS_EXIT,
PHYTIMING_CLK_PREPARE,
PHYTIMING_CLK_ZERO,
PHYTIMING_CLK_POST,
PHYTIMING_CLK_TRAIL,
PHYTIMING_HS_PREPARE,
PHYTIMING_HS_ZERO,
PHYTIMING_HS_TRAIL
};
static const unsigned int reg_values[] = {
[RESET_TYPE] = DSIM_SWRST,
[PLL_TIMER] = 500,
[STOP_STATE_CNT] = 0xf,
[PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0x0af),
[PHYCTRL_VREG_LP] = 0,
[PHYCTRL_SLEW_UP] = 0,
[PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x06),
[PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0b),
[PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x07),
[PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x27),
[PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0d),
[PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x08),
[PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x09),
[PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x0d),
[PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0b),
};
static const unsigned int exynos5422_reg_values[] = {
[RESET_TYPE] = DSIM_SWRST,
[PLL_TIMER] = 500,
[STOP_STATE_CNT] = 0xf,
[PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0xaf),
[PHYCTRL_VREG_LP] = 0,
[PHYCTRL_SLEW_UP] = 0,
[PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x08),
[PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0d),
[PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x09),
[PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x30),
[PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0e),
[PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x0a),
[PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x0c),
[PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x11),
[PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0d),
};
static const unsigned int exynos5433_reg_values[] = {
[RESET_TYPE] = DSIM_FUNCRST,
[PLL_TIMER] = 22200,
[STOP_STATE_CNT] = 0xa,
[PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0x190),
[PHYCTRL_VREG_LP] = DSIM_PHYCTRL_B_DPHYCTL_VREG_LP,
[PHYCTRL_SLEW_UP] = DSIM_PHYCTRL_B_DPHYCTL_SLEW_UP,
[PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x07),
[PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0c),
[PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x09),
[PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x2d),
[PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0e),
[PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x09),
[PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x0b),
[PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x10),
[PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0c),
};
static const unsigned int imx8mm_dsim_reg_values[] = {
[RESET_TYPE] = DSIM_SWRST,
[PLL_TIMER] = 500,
[STOP_STATE_CNT] = 0xf,
[PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0xaf),
[PHYCTRL_VREG_LP] = 0,
[PHYCTRL_SLEW_UP] = 0,
[PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x06),
[PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0b),
[PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x07),
[PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x26),
[PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0d),
[PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x08),
[PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x08),
[PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x0d),
[PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0b),
};
static const struct samsung_dsim_driver_data exynos3_dsi_driver_data = {
.reg_ofs = exynos_reg_ofs,
.plltmr_reg = 0x50,
.has_freqband = 1,
.has_clklane_stop = 1,
.num_clks = 2,
.max_freq = 1000,
.wait_for_reset = 1,
.num_bits_resol = 11,
.pll_p_offset = 13,
.reg_values = reg_values,
.pll_fin_min = 6,
.pll_fin_max = 12,
.m_min = 41,
.m_max = 125,
.min_freq = 500,
.has_broken_fifoctrl_emptyhdr = 1,
};
static const struct samsung_dsim_driver_data exynos4_dsi_driver_data = {
.reg_ofs = exynos_reg_ofs,
.plltmr_reg = 0x50,
.has_freqband = 1,
.has_clklane_stop = 1,
.num_clks = 2,
.max_freq = 1000,
.wait_for_reset = 1,
.num_bits_resol = 11,
.pll_p_offset = 13,
.reg_values = reg_values,
.pll_fin_min = 6,
.pll_fin_max = 12,
.m_min = 41,
.m_max = 125,
.min_freq = 500,
.has_broken_fifoctrl_emptyhdr = 1,
};
static const struct samsung_dsim_driver_data exynos5_dsi_driver_data = {
.reg_ofs = exynos_reg_ofs,
.plltmr_reg = 0x58,
.num_clks = 2,
.max_freq = 1000,
.wait_for_reset = 1,
.num_bits_resol = 11,
.pll_p_offset = 13,
.reg_values = reg_values,
.pll_fin_min = 6,
.pll_fin_max = 12,
.m_min = 41,
.m_max = 125,
.min_freq = 500,
};
static const struct samsung_dsim_driver_data exynos5433_dsi_driver_data = {
.reg_ofs = exynos5433_reg_ofs,
.plltmr_reg = 0xa0,
.has_clklane_stop = 1,
.num_clks = 5,
.max_freq = 1500,
.wait_for_reset = 0,
.num_bits_resol = 12,
.pll_p_offset = 13,
.reg_values = exynos5433_reg_values,
.pll_fin_min = 6,
.pll_fin_max = 12,
.m_min = 41,
.m_max = 125,
.min_freq = 500,
};
static const struct samsung_dsim_driver_data exynos5422_dsi_driver_data = {
.reg_ofs = exynos5433_reg_ofs,
.plltmr_reg = 0xa0,
.has_clklane_stop = 1,
.num_clks = 2,
.max_freq = 1500,
.wait_for_reset = 1,
.num_bits_resol = 12,
.pll_p_offset = 13,
.reg_values = exynos5422_reg_values,
.pll_fin_min = 6,
.pll_fin_max = 12,
.m_min = 41,
.m_max = 125,
.min_freq = 500,
};
static const struct samsung_dsim_driver_data imx8mm_dsi_driver_data = {
.reg_ofs = exynos5433_reg_ofs,
.plltmr_reg = 0xa0,
.has_clklane_stop = 1,
.num_clks = 2,
.max_freq = 2100,
.wait_for_reset = 0,
.num_bits_resol = 12,
/*
* Unlike Exynos, PLL_P(PMS_P) offset 14 is used in i.MX8M Mini/Nano/Plus
* downstream driver - drivers/gpu/drm/bridge/sec-dsim.c
*/
.pll_p_offset = 14,
.reg_values = imx8mm_dsim_reg_values,
.pll_fin_min = 2,
.pll_fin_max = 30,
.m_min = 64,
.m_max = 1023,
.min_freq = 1050,
};
static const struct samsung_dsim_driver_data *
samsung_dsim_types[DSIM_TYPE_COUNT] = {
[DSIM_TYPE_EXYNOS3250] = &exynos3_dsi_driver_data,
[DSIM_TYPE_EXYNOS4210] = &exynos4_dsi_driver_data,
[DSIM_TYPE_EXYNOS5410] = &exynos5_dsi_driver_data,
[DSIM_TYPE_EXYNOS5422] = &exynos5422_dsi_driver_data,
[DSIM_TYPE_EXYNOS5433] = &exynos5433_dsi_driver_data,
[DSIM_TYPE_IMX8MM] = &imx8mm_dsi_driver_data,
[DSIM_TYPE_IMX8MP] = &imx8mm_dsi_driver_data,
};
static inline struct samsung_dsim *host_to_dsi(struct mipi_dsi_host *h)
{
return container_of(h, struct samsung_dsim, dsi_host);
}
static inline struct samsung_dsim *bridge_to_dsi(struct drm_bridge *b)
{
return container_of(b, struct samsung_dsim, bridge);
}
static inline void samsung_dsim_write(struct samsung_dsim *dsi,
enum reg_idx idx, u32 val)
{
writel(val, dsi->reg_base + dsi->driver_data->reg_ofs[idx]);
}
static inline u32 samsung_dsim_read(struct samsung_dsim *dsi, enum reg_idx idx)
{
return readl(dsi->reg_base + dsi->driver_data->reg_ofs[idx]);
}
static void samsung_dsim_wait_for_reset(struct samsung_dsim *dsi)
{
if (wait_for_completion_timeout(&dsi->completed, msecs_to_jiffies(300)))
return;
dev_err(dsi->dev, "timeout waiting for reset\n");
}
static void samsung_dsim_reset(struct samsung_dsim *dsi)
{
u32 reset_val = dsi->driver_data->reg_values[RESET_TYPE];
reinit_completion(&dsi->completed);
samsung_dsim_write(dsi, DSIM_SWRST_REG, reset_val);
}
#ifndef MHZ
#define MHZ (1000 * 1000)
#endif
static unsigned long samsung_dsim_pll_find_pms(struct samsung_dsim *dsi,
unsigned long fin,
unsigned long fout,
u8 *p, u16 *m, u8 *s)
{
const struct samsung_dsim_driver_data *driver_data = dsi->driver_data;
unsigned long best_freq = 0;
u32 min_delta = 0xffffffff;
u8 p_min, p_max;
u8 _p, best_p;
u16 _m, best_m;
u8 _s, best_s;
p_min = DIV_ROUND_UP(fin, (driver_data->pll_fin_max * MHZ));
p_max = fin / (driver_data->pll_fin_min * MHZ);
for (_p = p_min; _p <= p_max; ++_p) {
for (_s = 0; _s <= 5; ++_s) {
u64 tmp;
u32 delta;
tmp = (u64)fout * (_p << _s);
do_div(tmp, fin);
_m = tmp;
if (_m < driver_data->m_min || _m > driver_data->m_max)
continue;
tmp = (u64)_m * fin;
do_div(tmp, _p);
if (tmp < driver_data->min_freq * MHZ ||
tmp > driver_data->max_freq * MHZ)
continue;
tmp = (u64)_m * fin;
do_div(tmp, _p << _s);
delta = abs(fout - tmp);
if (delta < min_delta) {
best_p = _p;
best_m = _m;
best_s = _s;
min_delta = delta;
best_freq = tmp;
}
}
}
if (best_freq) {
*p = best_p;
*m = best_m;
*s = best_s;
}
return best_freq;
}
static unsigned long samsung_dsim_set_pll(struct samsung_dsim *dsi,
unsigned long freq)
{
const struct samsung_dsim_driver_data *driver_data = dsi->driver_data;
unsigned long fin, fout;
int timeout;
u8 p, s;
u16 m;
u32 reg;
if (dsi->pll_clk) {
/*
* Ensure that the reference clock is generated with a power of
* two divider from its parent, but close to the PLLs upper
* limit.
*/
fin = clk_get_rate(clk_get_parent(dsi->pll_clk));
while (fin > driver_data->pll_fin_max * MHZ)
fin /= 2;
clk_set_rate(dsi->pll_clk, fin);
fin = clk_get_rate(dsi->pll_clk);
} else {
fin = dsi->pll_clk_rate;
}
dev_dbg(dsi->dev, "PLL ref clock freq %lu\n", fin);
fout = samsung_dsim_pll_find_pms(dsi, fin, freq, &p, &m, &s);
if (!fout) {
dev_err(dsi->dev,
"failed to find PLL PMS for requested frequency\n");
return 0;
}
dev_dbg(dsi->dev, "PLL freq %lu, (p %d, m %d, s %d)\n", fout, p, m, s);
writel(driver_data->reg_values[PLL_TIMER],
dsi->reg_base + driver_data->plltmr_reg);
reg = DSIM_PLL_EN | DSIM_PLL_P(p, driver_data->pll_p_offset) |
DSIM_PLL_M(m) | DSIM_PLL_S(s);
if (driver_data->has_freqband) {
static const unsigned long freq_bands[] = {
100 * MHZ, 120 * MHZ, 160 * MHZ, 200 * MHZ,
270 * MHZ, 320 * MHZ, 390 * MHZ, 450 * MHZ,
510 * MHZ, 560 * MHZ, 640 * MHZ, 690 * MHZ,
770 * MHZ, 870 * MHZ, 950 * MHZ,
};
int band;
for (band = 0; band < ARRAY_SIZE(freq_bands); ++band)
if (fout < freq_bands[band])
break;
dev_dbg(dsi->dev, "band %d\n", band);
reg |= DSIM_FREQ_BAND(band);
}
if (dsi->swap_dn_dp_clk)
reg |= DSIM_PLL_DPDNSWAP_CLK;
if (dsi->swap_dn_dp_data)
reg |= DSIM_PLL_DPDNSWAP_DAT;
samsung_dsim_write(dsi, DSIM_PLLCTRL_REG, reg);
timeout = 1000;
do {
if (timeout-- == 0) {
dev_err(dsi->dev, "PLL failed to stabilize\n");
return 0;
}
reg = samsung_dsim_read(dsi, DSIM_STATUS_REG);
} while ((reg & DSIM_PLL_STABLE) == 0);
dsi->hs_clock = fout;
return fout;
}
static int samsung_dsim_enable_clock(struct samsung_dsim *dsi)
{
unsigned long hs_clk, byte_clk, esc_clk, pix_clk;
unsigned long esc_div;
u32 reg;
struct drm_display_mode *m = &dsi->mode;
int bpp = mipi_dsi_pixel_format_to_bpp(dsi->format);
/* m->clock is in KHz */
pix_clk = m->clock * 1000;
/* Use burst_clk_rate if available, otherwise use the pix_clk */
if (dsi->burst_clk_rate)
hs_clk = samsung_dsim_set_pll(dsi, dsi->burst_clk_rate);
else
hs_clk = samsung_dsim_set_pll(dsi, DIV_ROUND_UP(pix_clk * bpp, dsi->lanes));
if (!hs_clk) {
dev_err(dsi->dev, "failed to configure DSI PLL\n");
return -EFAULT;
}
byte_clk = hs_clk / 8;
esc_div = DIV_ROUND_UP(byte_clk, dsi->esc_clk_rate);
esc_clk = byte_clk / esc_div;
if (esc_clk > 20 * MHZ) {
++esc_div;
esc_clk = byte_clk / esc_div;
}
dev_dbg(dsi->dev, "hs_clk = %lu, byte_clk = %lu, esc_clk = %lu\n",
hs_clk, byte_clk, esc_clk);
reg = samsung_dsim_read(dsi, DSIM_CLKCTRL_REG);
reg &= ~(DSIM_ESC_PRESCALER_MASK | DSIM_LANE_ESC_CLK_EN_CLK
| DSIM_LANE_ESC_CLK_EN_DATA_MASK | DSIM_PLL_BYPASS
| DSIM_BYTE_CLK_SRC_MASK);
reg |= DSIM_ESC_CLKEN | DSIM_BYTE_CLKEN
| DSIM_ESC_PRESCALER(esc_div)
| DSIM_LANE_ESC_CLK_EN_CLK
| DSIM_LANE_ESC_CLK_EN_DATA(BIT(dsi->lanes) - 1)
| DSIM_BYTE_CLK_SRC(0)
| DSIM_TX_REQUEST_HSCLK;
samsung_dsim_write(dsi, DSIM_CLKCTRL_REG, reg);
return 0;
}
static void samsung_dsim_set_phy_ctrl(struct samsung_dsim *dsi)
{
const struct samsung_dsim_driver_data *driver_data = dsi->driver_data;
const unsigned int *reg_values = driver_data->reg_values;
u32 reg;
struct phy_configure_opts_mipi_dphy cfg;
int clk_prepare, lpx, clk_zero, clk_post, clk_trail;
int hs_exit, hs_prepare, hs_zero, hs_trail;
unsigned long long byte_clock = dsi->hs_clock / 8;
if (driver_data->has_freqband)
return;
phy_mipi_dphy_get_default_config_for_hsclk(dsi->hs_clock,
dsi->lanes, &cfg);
/*
* TODO:
* The tech Applications Processor manuals for i.MX8M Mini, Nano,
* and Plus don't state what the definition of the PHYTIMING
* bits are beyond their address and bit position.
* After reviewing NXP's downstream code, it appears
* that the various PHYTIMING registers take the number
* of cycles and use various dividers on them. This
* calculation does not result in an exact match to the
* downstream code, but it is very close to the values
* generated by their lookup table, and it appears
* to sync at a variety of resolutions. If someone
* can get a more accurate mathematical equation needed
* for these registers, this should be updated.
*/
lpx = PS_TO_CYCLE(cfg.lpx, byte_clock);
hs_exit = PS_TO_CYCLE(cfg.hs_exit, byte_clock);
clk_prepare = PS_TO_CYCLE(cfg.clk_prepare, byte_clock);
clk_zero = PS_TO_CYCLE(cfg.clk_zero, byte_clock);
clk_post = PS_TO_CYCLE(cfg.clk_post, byte_clock);
clk_trail = PS_TO_CYCLE(cfg.clk_trail, byte_clock);
hs_prepare = PS_TO_CYCLE(cfg.hs_prepare, byte_clock);
hs_zero = PS_TO_CYCLE(cfg.hs_zero, byte_clock);
hs_trail = PS_TO_CYCLE(cfg.hs_trail, byte_clock);
/* B D-PHY: D-PHY Master & Slave Analog Block control */
reg = reg_values[PHYCTRL_ULPS_EXIT] | reg_values[PHYCTRL_VREG_LP] |
reg_values[PHYCTRL_SLEW_UP];
samsung_dsim_write(dsi, DSIM_PHYCTRL_REG, reg);
/*
* T LPX: Transmitted length of any Low-Power state period
* T HS-EXIT: Time that the transmitter drives LP-11 following a HS
* burst
*/
reg = DSIM_PHYTIMING_LPX(lpx) | DSIM_PHYTIMING_HS_EXIT(hs_exit);
samsung_dsim_write(dsi, DSIM_PHYTIMING_REG, reg);
/*
* T CLK-PREPARE: Time that the transmitter drives the Clock Lane LP-00
* Line state immediately before the HS-0 Line state starting the
* HS transmission
* T CLK-ZERO: Time that the transmitter drives the HS-0 state prior to
* transmitting the Clock.
* T CLK_POST: Time that the transmitter continues to send HS clock
* after the last associated Data Lane has transitioned to LP Mode
* Interval is defined as the period from the end of T HS-TRAIL to
* the beginning of T CLK-TRAIL
* T CLK-TRAIL: Time that the transmitter drives the HS-0 state after
* the last payload clock bit of a HS transmission burst
*/
reg = DSIM_PHYTIMING1_CLK_PREPARE(clk_prepare) |
DSIM_PHYTIMING1_CLK_ZERO(clk_zero) |
DSIM_PHYTIMING1_CLK_POST(clk_post) |
DSIM_PHYTIMING1_CLK_TRAIL(clk_trail);
samsung_dsim_write(dsi, DSIM_PHYTIMING1_REG, reg);
/*
* T HS-PREPARE: Time that the transmitter drives the Data Lane LP-00
* Line state immediately before the HS-0 Line state starting the
* HS transmission
* T HS-ZERO: Time that the transmitter drives the HS-0 state prior to
* transmitting the Sync sequence.
* T HS-TRAIL: Time that the transmitter drives the flipped differential
* state after last payload data bit of a HS transmission burst
*/
reg = DSIM_PHYTIMING2_HS_PREPARE(hs_prepare) |
DSIM_PHYTIMING2_HS_ZERO(hs_zero) |
DSIM_PHYTIMING2_HS_TRAIL(hs_trail);
samsung_dsim_write(dsi, DSIM_PHYTIMING2_REG, reg);
}
static void samsung_dsim_disable_clock(struct samsung_dsim *dsi)
{
u32 reg;
reg = samsung_dsim_read(dsi, DSIM_CLKCTRL_REG);
reg &= ~(DSIM_LANE_ESC_CLK_EN_CLK | DSIM_LANE_ESC_CLK_EN_DATA_MASK
| DSIM_ESC_CLKEN | DSIM_BYTE_CLKEN);
samsung_dsim_write(dsi, DSIM_CLKCTRL_REG, reg);
reg = samsung_dsim_read(dsi, DSIM_PLLCTRL_REG);
reg &= ~DSIM_PLL_EN;
samsung_dsim_write(dsi, DSIM_PLLCTRL_REG, reg);
}
static void samsung_dsim_enable_lane(struct samsung_dsim *dsi, u32 lane)
{
u32 reg = samsung_dsim_read(dsi, DSIM_CONFIG_REG);
reg |= (DSIM_NUM_OF_DATA_LANE(dsi->lanes - 1) | DSIM_LANE_EN_CLK |
DSIM_LANE_EN(lane));
samsung_dsim_write(dsi, DSIM_CONFIG_REG, reg);
}
static int samsung_dsim_init_link(struct samsung_dsim *dsi)
{
const struct samsung_dsim_driver_data *driver_data = dsi->driver_data;
int timeout;
u32 reg;
u32 lanes_mask;
/* Initialize FIFO pointers */
reg = samsung_dsim_read(dsi, DSIM_FIFOCTRL_REG);
reg &= ~0x1f;
samsung_dsim_write(dsi, DSIM_FIFOCTRL_REG, reg);
usleep_range(9000, 11000);
reg |= 0x1f;
samsung_dsim_write(dsi, DSIM_FIFOCTRL_REG, reg);
usleep_range(9000, 11000);
/* DSI configuration */
reg = 0;
/*
* The first bit of mode_flags specifies display configuration.
* If this bit is set[= MIPI_DSI_MODE_VIDEO], dsi will support video
* mode, otherwise it will support command mode.
*/
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
reg |= DSIM_VIDEO_MODE;
/*
* The user manual describes that following bits are ignored in
* command mode.
*/
if (!(dsi->mode_flags & MIPI_DSI_MODE_VSYNC_FLUSH))
reg |= DSIM_MFLUSH_VS;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
reg |= DSIM_SYNC_INFORM;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_BURST)
reg |= DSIM_BURST_MODE;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_AUTO_VERT)
reg |= DSIM_AUTO_MODE;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HSE)
reg |= DSIM_HSE_DISABLE_MODE;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_NO_HFP)
reg |= DSIM_HFP_DISABLE_MODE;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_NO_HBP)
reg |= DSIM_HBP_DISABLE_MODE;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_NO_HSA)
reg |= DSIM_HSA_DISABLE_MODE;
}
if (dsi->mode_flags & MIPI_DSI_MODE_NO_EOT_PACKET)
reg |= DSIM_EOT_DISABLE;
switch (dsi->format) {
case MIPI_DSI_FMT_RGB888:
reg |= DSIM_MAIN_PIX_FORMAT_RGB888;
break;
case MIPI_DSI_FMT_RGB666:
reg |= DSIM_MAIN_PIX_FORMAT_RGB666;
break;
case MIPI_DSI_FMT_RGB666_PACKED:
reg |= DSIM_MAIN_PIX_FORMAT_RGB666_P;
break;
case MIPI_DSI_FMT_RGB565:
reg |= DSIM_MAIN_PIX_FORMAT_RGB565;
break;
default:
dev_err(dsi->dev, "invalid pixel format\n");
return -EINVAL;
}
/*
* Use non-continuous clock mode if the periparal wants and
* host controller supports
*
* In non-continous clock mode, host controller will turn off
* the HS clock between high-speed transmissions to reduce
* power consumption.
*/
if (driver_data->has_clklane_stop &&
dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) {
if (!samsung_dsim_hw_is_exynos(dsi->plat_data->hw_type))
reg |= DSIM_NON_CONTINUOUS_CLKLANE;
reg |= DSIM_CLKLANE_STOP;
}
samsung_dsim_write(dsi, DSIM_CONFIG_REG, reg);
lanes_mask = BIT(dsi->lanes) - 1;
samsung_dsim_enable_lane(dsi, lanes_mask);
/* Check clock and data lane state are stop state */
timeout = 100;
do {
if (timeout-- == 0) {
dev_err(dsi->dev, "waiting for bus lanes timed out\n");
return -EFAULT;
}
reg = samsung_dsim_read(dsi, DSIM_STATUS_REG);
if ((reg & DSIM_STOP_STATE_DAT(lanes_mask))
!= DSIM_STOP_STATE_DAT(lanes_mask))
continue;
} while (!(reg & (DSIM_STOP_STATE_CLK | DSIM_TX_READY_HS_CLK)));
reg = samsung_dsim_read(dsi, DSIM_ESCMODE_REG);
reg &= ~DSIM_STOP_STATE_CNT_MASK;
reg |= DSIM_STOP_STATE_CNT(driver_data->reg_values[STOP_STATE_CNT]);
samsung_dsim_write(dsi, DSIM_ESCMODE_REG, reg);
reg = DSIM_BTA_TIMEOUT(0xff) | DSIM_LPDR_TIMEOUT(0xffff);
samsung_dsim_write(dsi, DSIM_TIMEOUT_REG, reg);
return 0;
}
static void samsung_dsim_set_display_mode(struct samsung_dsim *dsi)
{
struct drm_display_mode *m = &dsi->mode;
unsigned int num_bits_resol = dsi->driver_data->num_bits_resol;
u32 reg;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
u64 byte_clk = dsi->hs_clock / 8;
u64 pix_clk = m->clock * 1000;
int hfp = DIV64_U64_ROUND_UP((m->hsync_start - m->hdisplay) * byte_clk, pix_clk);
int hbp = DIV64_U64_ROUND_UP((m->htotal - m->hsync_end) * byte_clk, pix_clk);
int hsa = DIV64_U64_ROUND_UP((m->hsync_end - m->hsync_start) * byte_clk, pix_clk);
/* remove packet overhead when possible */
hfp = max(hfp - 6, 0);
hbp = max(hbp - 6, 0);
hsa = max(hsa - 6, 0);
dev_dbg(dsi->dev, "calculated hfp: %u, hbp: %u, hsa: %u",
hfp, hbp, hsa);
reg = DSIM_CMD_ALLOW(0xf)
| DSIM_STABLE_VFP(m->vsync_start - m->vdisplay)
| DSIM_MAIN_VBP(m->vtotal - m->vsync_end);
samsung_dsim_write(dsi, DSIM_MVPORCH_REG, reg);
reg = DSIM_MAIN_HFP(hfp) | DSIM_MAIN_HBP(hbp);
samsung_dsim_write(dsi, DSIM_MHPORCH_REG, reg);
reg = DSIM_MAIN_VSA(m->vsync_end - m->vsync_start)
| DSIM_MAIN_HSA(hsa);
samsung_dsim_write(dsi, DSIM_MSYNC_REG, reg);
}
reg = DSIM_MAIN_HRESOL(m->hdisplay, num_bits_resol) |
DSIM_MAIN_VRESOL(m->vdisplay, num_bits_resol);
samsung_dsim_write(dsi, DSIM_MDRESOL_REG, reg);
dev_dbg(dsi->dev, "LCD size = %dx%d\n", m->hdisplay, m->vdisplay);
}
static void samsung_dsim_set_display_enable(struct samsung_dsim *dsi, bool enable)
{
u32 reg;
reg = samsung_dsim_read(dsi, DSIM_MDRESOL_REG);
if (enable)
reg |= DSIM_MAIN_STAND_BY;
else
reg &= ~DSIM_MAIN_STAND_BY;
samsung_dsim_write(dsi, DSIM_MDRESOL_REG, reg);
}
static int samsung_dsim_wait_for_hdr_fifo(struct samsung_dsim *dsi)
{
int timeout = 2000;
do {
u32 reg = samsung_dsim_read(dsi, DSIM_FIFOCTRL_REG);
if (!dsi->driver_data->has_broken_fifoctrl_emptyhdr) {
if (reg & DSIM_SFR_HEADER_EMPTY)
return 0;
} else {
if (!(reg & DSIM_SFR_HEADER_FULL)) {
/*
* Wait a little bit, so the pending data can
* actually leave the FIFO to avoid overflow.
*/
if (!cond_resched())
usleep_range(950, 1050);
return 0;
}
}
if (!cond_resched())
usleep_range(950, 1050);
} while (--timeout);
return -ETIMEDOUT;
}
static void samsung_dsim_set_cmd_lpm(struct samsung_dsim *dsi, bool lpm)
{
u32 v = samsung_dsim_read(dsi, DSIM_ESCMODE_REG);
if (lpm)
v |= DSIM_CMD_LPDT_LP;
else
v &= ~DSIM_CMD_LPDT_LP;
samsung_dsim_write(dsi, DSIM_ESCMODE_REG, v);
}
static void samsung_dsim_force_bta(struct samsung_dsim *dsi)
{
u32 v = samsung_dsim_read(dsi, DSIM_ESCMODE_REG);
v |= DSIM_FORCE_BTA;
samsung_dsim_write(dsi, DSIM_ESCMODE_REG, v);
}
static void samsung_dsim_send_to_fifo(struct samsung_dsim *dsi,
struct samsung_dsim_transfer *xfer)
{
struct device *dev = dsi->dev;
struct mipi_dsi_packet *pkt = &xfer->packet;
const u8 *payload = pkt->payload + xfer->tx_done;
u16 length = pkt->payload_length - xfer->tx_done;
bool first = !xfer->tx_done;
u32 reg;
dev_dbg(dev, "< xfer %pK: tx len %u, done %u, rx len %u, done %u\n",
xfer, length, xfer->tx_done, xfer->rx_len, xfer->rx_done);
if (length > DSI_TX_FIFO_SIZE)
length = DSI_TX_FIFO_SIZE;
xfer->tx_done += length;
/* Send payload */
while (length >= 4) {
reg = get_unaligned_le32(payload);
samsung_dsim_write(dsi, DSIM_PAYLOAD_REG, reg);
payload += 4;
length -= 4;
}
reg = 0;
switch (length) {
case 3:
reg |= payload[2] << 16;
fallthrough;
case 2:
reg |= payload[1] << 8;
fallthrough;
case 1:
reg |= payload[0];
samsung_dsim_write(dsi, DSIM_PAYLOAD_REG, reg);
break;
}
/* Send packet header */
if (!first)
return;
reg = get_unaligned_le32(pkt->header);
if (samsung_dsim_wait_for_hdr_fifo(dsi)) {
dev_err(dev, "waiting for header FIFO timed out\n");
return;
}
if (NEQV(xfer->flags & MIPI_DSI_MSG_USE_LPM,
dsi->state & DSIM_STATE_CMD_LPM)) {
samsung_dsim_set_cmd_lpm(dsi, xfer->flags & MIPI_DSI_MSG_USE_LPM);
dsi->state ^= DSIM_STATE_CMD_LPM;
}
samsung_dsim_write(dsi, DSIM_PKTHDR_REG, reg);
if (xfer->flags & MIPI_DSI_MSG_REQ_ACK)
samsung_dsim_force_bta(dsi);
}
static void samsung_dsim_read_from_fifo(struct samsung_dsim *dsi,
struct samsung_dsim_transfer *xfer)
{
u8 *payload = xfer->rx_payload + xfer->rx_done;
bool first = !xfer->rx_done;
struct device *dev = dsi->dev;
u16 length;
u32 reg;
if (first) {
reg = samsung_dsim_read(dsi, DSIM_RXFIFO_REG);
switch (reg & 0x3f) {
case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE:
case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE:
if (xfer->rx_len >= 2) {
payload[1] = reg >> 16;
++xfer->rx_done;
}
fallthrough;
case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE:
case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE:
payload[0] = reg >> 8;
++xfer->rx_done;
xfer->rx_len = xfer->rx_done;
xfer->result = 0;
goto clear_fifo;
case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT:
dev_err(dev, "DSI Error Report: 0x%04x\n", (reg >> 8) & 0xffff);
xfer->result = 0;
goto clear_fifo;
}
length = (reg >> 8) & 0xffff;
if (length > xfer->rx_len) {
dev_err(dev,
"response too long (%u > %u bytes), stripping\n",
xfer->rx_len, length);
length = xfer->rx_len;
} else if (length < xfer->rx_len) {
xfer->rx_len = length;
}
}
length = xfer->rx_len - xfer->rx_done;
xfer->rx_done += length;
/* Receive payload */
while (length >= 4) {
reg = samsung_dsim_read(dsi, DSIM_RXFIFO_REG);
payload[0] = (reg >> 0) & 0xff;
payload[1] = (reg >> 8) & 0xff;
payload[2] = (reg >> 16) & 0xff;
payload[3] = (reg >> 24) & 0xff;
payload += 4;
length -= 4;
}
if (length) {
reg = samsung_dsim_read(dsi, DSIM_RXFIFO_REG);
switch (length) {
case 3:
payload[2] = (reg >> 16) & 0xff;
fallthrough;
case 2:
payload[1] = (reg >> 8) & 0xff;
fallthrough;
case 1:
payload[0] = reg & 0xff;
}
}
if (xfer->rx_done == xfer->rx_len)
xfer->result = 0;
clear_fifo:
length = DSI_RX_FIFO_SIZE / 4;
do {
reg = samsung_dsim_read(dsi, DSIM_RXFIFO_REG);
if (reg == DSI_RX_FIFO_EMPTY)
break;
} while (--length);
}
static void samsung_dsim_transfer_start(struct samsung_dsim *dsi)
{
unsigned long flags;
struct samsung_dsim_transfer *xfer;
bool start = false;
again:
spin_lock_irqsave(&dsi->transfer_lock, flags);
if (list_empty(&dsi->transfer_list)) {
spin_unlock_irqrestore(&dsi->transfer_lock, flags);
return;
}
xfer = list_first_entry(&dsi->transfer_list,
struct samsung_dsim_transfer, list);
spin_unlock_irqrestore(&dsi->transfer_lock, flags);
if (xfer->packet.payload_length &&
xfer->tx_done == xfer->packet.payload_length)
/* waiting for RX */
return;
samsung_dsim_send_to_fifo(dsi, xfer);
if (xfer->packet.payload_length || xfer->rx_len)
return;
xfer->result = 0;
complete(&xfer->completed);
spin_lock_irqsave(&dsi->transfer_lock, flags);
list_del_init(&xfer->list);
start = !list_empty(&dsi->transfer_list);
spin_unlock_irqrestore(&dsi->transfer_lock, flags);
if (start)
goto again;
}
static bool samsung_dsim_transfer_finish(struct samsung_dsim *dsi)
{
struct samsung_dsim_transfer *xfer;
unsigned long flags;
bool start = true;
spin_lock_irqsave(&dsi->transfer_lock, flags);
if (list_empty(&dsi->transfer_list)) {
spin_unlock_irqrestore(&dsi->transfer_lock, flags);
return false;
}
xfer = list_first_entry(&dsi->transfer_list,
struct samsung_dsim_transfer, list);
spin_unlock_irqrestore(&dsi->transfer_lock, flags);
dev_dbg(dsi->dev,
"> xfer %pK, tx_len %zu, tx_done %u, rx_len %u, rx_done %u\n",
xfer, xfer->packet.payload_length, xfer->tx_done, xfer->rx_len,
xfer->rx_done);
if (xfer->tx_done != xfer->packet.payload_length)
return true;
if (xfer->rx_done != xfer->rx_len)
samsung_dsim_read_from_fifo(dsi, xfer);
if (xfer->rx_done != xfer->rx_len)
return true;
spin_lock_irqsave(&dsi->transfer_lock, flags);
list_del_init(&xfer->list);
start = !list_empty(&dsi->transfer_list);
spin_unlock_irqrestore(&dsi->transfer_lock, flags);
if (!xfer->rx_len)
xfer->result = 0;
complete(&xfer->completed);
return start;
}
static void samsung_dsim_remove_transfer(struct samsung_dsim *dsi,
struct samsung_dsim_transfer *xfer)
{
unsigned long flags;
bool start;
spin_lock_irqsave(&dsi->transfer_lock, flags);
if (!list_empty(&dsi->transfer_list) &&
xfer == list_first_entry(&dsi->transfer_list,
struct samsung_dsim_transfer, list)) {
list_del_init(&xfer->list);
start = !list_empty(&dsi->transfer_list);
spin_unlock_irqrestore(&dsi->transfer_lock, flags);
if (start)
samsung_dsim_transfer_start(dsi);
return;
}
list_del_init(&xfer->list);
spin_unlock_irqrestore(&dsi->transfer_lock, flags);
}
static int samsung_dsim_transfer(struct samsung_dsim *dsi,
struct samsung_dsim_transfer *xfer)
{
unsigned long flags;
bool stopped;
xfer->tx_done = 0;
xfer->rx_done = 0;
xfer->result = -ETIMEDOUT;
init_completion(&xfer->completed);
spin_lock_irqsave(&dsi->transfer_lock, flags);
stopped = list_empty(&dsi->transfer_list);
list_add_tail(&xfer->list, &dsi->transfer_list);
spin_unlock_irqrestore(&dsi->transfer_lock, flags);
if (stopped)
samsung_dsim_transfer_start(dsi);
wait_for_completion_timeout(&xfer->completed,
msecs_to_jiffies(DSI_XFER_TIMEOUT_MS));
if (xfer->result == -ETIMEDOUT) {
struct mipi_dsi_packet *pkt = &xfer->packet;
samsung_dsim_remove_transfer(dsi, xfer);
dev_err(dsi->dev, "xfer timed out: %*ph %*ph\n", 4, pkt->header,
(int)pkt->payload_length, pkt->payload);
return -ETIMEDOUT;
}
/* Also covers hardware timeout condition */
return xfer->result;
}
static irqreturn_t samsung_dsim_irq(int irq, void *dev_id)
{
struct samsung_dsim *dsi = dev_id;
u32 status;
status = samsung_dsim_read(dsi, DSIM_INTSRC_REG);
if (!status) {
static unsigned long j;
if (printk_timed_ratelimit(&j, 500))
dev_warn(dsi->dev, "spurious interrupt\n");
return IRQ_HANDLED;
}
samsung_dsim_write(dsi, DSIM_INTSRC_REG, status);
if (status & DSIM_INT_SW_RST_RELEASE) {
unsigned long mask = ~(DSIM_INT_RX_DONE |
DSIM_INT_SFR_FIFO_EMPTY |
DSIM_INT_SFR_HDR_FIFO_EMPTY |
DSIM_INT_RX_ECC_ERR |
DSIM_INT_SW_RST_RELEASE);
samsung_dsim_write(dsi, DSIM_INTMSK_REG, mask);
complete(&dsi->completed);
return IRQ_HANDLED;
}
if (!(status & (DSIM_INT_RX_DONE | DSIM_INT_SFR_FIFO_EMPTY |
DSIM_INT_PLL_STABLE)))
return IRQ_HANDLED;
if (samsung_dsim_transfer_finish(dsi))
samsung_dsim_transfer_start(dsi);
return IRQ_HANDLED;
}
static void samsung_dsim_enable_irq(struct samsung_dsim *dsi)
{
enable_irq(dsi->irq);
if (dsi->te_gpio)
enable_irq(gpiod_to_irq(dsi->te_gpio));
}
static void samsung_dsim_disable_irq(struct samsung_dsim *dsi)
{
if (dsi->te_gpio)
disable_irq(gpiod_to_irq(dsi->te_gpio));
disable_irq(dsi->irq);
}
static int samsung_dsim_init(struct samsung_dsim *dsi)
{
const struct samsung_dsim_driver_data *driver_data = dsi->driver_data;
if (dsi->state & DSIM_STATE_INITIALIZED)
return 0;
samsung_dsim_reset(dsi);
samsung_dsim_enable_irq(dsi);
if (driver_data->reg_values[RESET_TYPE] == DSIM_FUNCRST)
samsung_dsim_enable_lane(dsi, BIT(dsi->lanes) - 1);
samsung_dsim_enable_clock(dsi);
if (driver_data->wait_for_reset)
samsung_dsim_wait_for_reset(dsi);
samsung_dsim_set_phy_ctrl(dsi);
samsung_dsim_init_link(dsi);
dsi->state |= DSIM_STATE_INITIALIZED;
return 0;
}
static void samsung_dsim_atomic_pre_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct samsung_dsim *dsi = bridge_to_dsi(bridge);
int ret;
if (dsi->state & DSIM_STATE_ENABLED)
return;
ret = pm_runtime_resume_and_get(dsi->dev);
if (ret < 0) {
dev_err(dsi->dev, "failed to enable DSI device.\n");
return;
}
dsi->state |= DSIM_STATE_ENABLED;
/*
* For Exynos-DSIM the downstream bridge, or panel are expecting
* the host initialization during DSI transfer.
*/
if (!samsung_dsim_hw_is_exynos(dsi->plat_data->hw_type)) {
ret = samsung_dsim_init(dsi);
if (ret)
return;
}
}
static void samsung_dsim_atomic_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct samsung_dsim *dsi = bridge_to_dsi(bridge);
samsung_dsim_set_display_mode(dsi);
samsung_dsim_set_display_enable(dsi, true);
dsi->state |= DSIM_STATE_VIDOUT_AVAILABLE;
}
static void samsung_dsim_atomic_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct samsung_dsim *dsi = bridge_to_dsi(bridge);
if (!(dsi->state & DSIM_STATE_ENABLED))
return;
samsung_dsim_set_display_enable(dsi, false);
dsi->state &= ~DSIM_STATE_VIDOUT_AVAILABLE;
}
static void samsung_dsim_atomic_post_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct samsung_dsim *dsi = bridge_to_dsi(bridge);
dsi->state &= ~DSIM_STATE_ENABLED;
pm_runtime_put_sync(dsi->dev);
}
/*
* This pixel output formats list referenced from,
* AN13573 i.MX 8/RT MIPI DSI/CSI-2, Rev. 0, 21 March 2022
* 3.7.4 Pixel formats
* Table 14. DSI pixel packing formats
*/
static const u32 samsung_dsim_pixel_output_fmts[] = {
MEDIA_BUS_FMT_YUYV10_1X20,
MEDIA_BUS_FMT_YUYV12_1X24,
MEDIA_BUS_FMT_UYVY8_1X16,
MEDIA_BUS_FMT_RGB101010_1X30,
MEDIA_BUS_FMT_RGB121212_1X36,
MEDIA_BUS_FMT_RGB565_1X16,
MEDIA_BUS_FMT_RGB666_1X18,
MEDIA_BUS_FMT_RGB888_1X24,
};
static bool samsung_dsim_pixel_output_fmt_supported(u32 fmt)
{
int i;
if (fmt == MEDIA_BUS_FMT_FIXED)
return false;
for (i = 0; i < ARRAY_SIZE(samsung_dsim_pixel_output_fmts); i++) {
if (samsung_dsim_pixel_output_fmts[i] == fmt)
return true;
}
return false;
}
static u32 *
samsung_dsim_atomic_get_input_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
u32 output_fmt,
unsigned int *num_input_fmts)
{
u32 *input_fmts;
input_fmts = kmalloc(sizeof(*input_fmts), GFP_KERNEL);
if (!input_fmts)
return NULL;
if (!samsung_dsim_pixel_output_fmt_supported(output_fmt))
/*
* Some bridge/display drivers are still not able to pass the
* correct format, so handle those pipelines by falling back
* to the default format till the supported formats finalized.
*/
output_fmt = MEDIA_BUS_FMT_RGB888_1X24;
input_fmts[0] = output_fmt;
*num_input_fmts = 1;
return input_fmts;
}
static int samsung_dsim_atomic_check(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct samsung_dsim *dsi = bridge_to_dsi(bridge);
struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
/*
* The i.MX8M Mini/Nano glue logic between LCDIF and DSIM
* inverts HS/VS/DE sync signals polarity, therefore, while
* i.MX 8M Mini Applications Processor Reference Manual Rev. 3, 11/2020
* 13.6.3.5.2 RGB interface
* i.MX 8M Nano Applications Processor Reference Manual Rev. 2, 07/2022
* 13.6.2.7.2 RGB interface
* both claim "Vsync, Hsync, and VDEN are active high signals.", the
* LCDIF must generate inverted HS/VS/DE signals, i.e. active LOW.
*
* The i.MX8M Plus glue logic between LCDIFv3 and DSIM does not
* implement the same behavior, therefore LCDIFv3 must generate
* HS/VS/DE signals active HIGH.
*/
if (dsi->plat_data->hw_type == DSIM_TYPE_IMX8MM) {
adjusted_mode->flags |= (DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC);
adjusted_mode->flags &= ~(DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC);
} else if (dsi->plat_data->hw_type == DSIM_TYPE_IMX8MP) {
adjusted_mode->flags &= ~(DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC);
adjusted_mode->flags |= (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC);
}
/*
* When using video sync pulses, the HFP, HBP, and HSA are divided between
* the available lanes if there is more than one lane. For certain
* timings and lane configurations, the HFP may not be evenly divisible.
* If the HFP is rounded down, it ends up being too small which can cause
* some monitors to not sync properly. In these instances, adjust htotal
* and hsync to round the HFP up, and recalculate the htotal. Through trial
* and error, it appears that the HBP and HSA do not appearto need the same
* correction that HFP does.
*/
if (dsi->lanes > 1) {
int hfp = adjusted_mode->hsync_start - adjusted_mode->hdisplay;
int remainder = hfp % dsi->lanes;
if (remainder) {
adjusted_mode->hsync_start += remainder;
adjusted_mode->hsync_end += remainder;
adjusted_mode->htotal += remainder;
}
}
return 0;
}
static void samsung_dsim_mode_set(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
const struct drm_display_mode *adjusted_mode)
{
struct samsung_dsim *dsi = bridge_to_dsi(bridge);
drm_mode_copy(&dsi->mode, adjusted_mode);
}
static int samsung_dsim_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct samsung_dsim *dsi = bridge_to_dsi(bridge);
return drm_bridge_attach(bridge->encoder, dsi->out_bridge, bridge,
flags);
}
static const struct drm_bridge_funcs samsung_dsim_bridge_funcs = {
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_reset = drm_atomic_helper_bridge_reset,
.atomic_get_input_bus_fmts = samsung_dsim_atomic_get_input_bus_fmts,
.atomic_check = samsung_dsim_atomic_check,
.atomic_pre_enable = samsung_dsim_atomic_pre_enable,
.atomic_enable = samsung_dsim_atomic_enable,
.atomic_disable = samsung_dsim_atomic_disable,
.atomic_post_disable = samsung_dsim_atomic_post_disable,
.mode_set = samsung_dsim_mode_set,
.attach = samsung_dsim_attach,
};
static irqreturn_t samsung_dsim_te_irq_handler(int irq, void *dev_id)
{
struct samsung_dsim *dsi = (struct samsung_dsim *)dev_id;
const struct samsung_dsim_plat_data *pdata = dsi->plat_data;
if (pdata->host_ops && pdata->host_ops->te_irq_handler)
return pdata->host_ops->te_irq_handler(dsi);
return IRQ_HANDLED;
}
static int samsung_dsim_register_te_irq(struct samsung_dsim *dsi, struct device *dev)
{
int te_gpio_irq;
int ret;
dsi->te_gpio = devm_gpiod_get_optional(dev, "te", GPIOD_IN);
if (!dsi->te_gpio)
return 0;
else if (IS_ERR(dsi->te_gpio))
return dev_err_probe(dev, PTR_ERR(dsi->te_gpio), "failed to get te GPIO\n");
te_gpio_irq = gpiod_to_irq(dsi->te_gpio);
ret = request_threaded_irq(te_gpio_irq, samsung_dsim_te_irq_handler, NULL,
IRQF_TRIGGER_RISING | IRQF_NO_AUTOEN, "TE", dsi);
if (ret) {
dev_err(dsi->dev, "request interrupt failed with %d\n", ret);
gpiod_put(dsi->te_gpio);
return ret;
}
return 0;
}
static int samsung_dsim_host_attach(struct mipi_dsi_host *host,
struct mipi_dsi_device *device)
{
struct samsung_dsim *dsi = host_to_dsi(host);
const struct samsung_dsim_plat_data *pdata = dsi->plat_data;
struct device *dev = dsi->dev;
struct device_node *np = dev->of_node;
struct device_node *remote;
struct drm_panel *panel;
int ret;
/*
* Devices can also be child nodes when we also control that device
* through the upstream device (ie, MIPI-DCS for a MIPI-DSI device).
*
* Lookup for a child node of the given parent that isn't either port
* or ports.
*/
for_each_available_child_of_node(np, remote) {
if (of_node_name_eq(remote, "port") ||
of_node_name_eq(remote, "ports"))
continue;
goto of_find_panel_or_bridge;
}
/*
* of_graph_get_remote_node() produces a noisy error message if port
* node isn't found and the absence of the port is a legit case here,
* so at first we silently check whether graph presents in the
* device-tree node.
*/
if (!of_graph_is_present(np))
return -ENODEV;
remote = of_graph_get_remote_node(np, 1, 0);
of_find_panel_or_bridge:
if (!remote)
return -ENODEV;
panel = of_drm_find_panel(remote);
if (!IS_ERR(panel)) {
dsi->out_bridge = devm_drm_panel_bridge_add(dev, panel);
} else {
dsi->out_bridge = of_drm_find_bridge(remote);
if (!dsi->out_bridge)
dsi->out_bridge = ERR_PTR(-EINVAL);
}
of_node_put(remote);
if (IS_ERR(dsi->out_bridge)) {
ret = PTR_ERR(dsi->out_bridge);
DRM_DEV_ERROR(dev, "failed to find the bridge: %d\n", ret);
return ret;
}
DRM_DEV_INFO(dev, "Attached %s device (lanes:%d bpp:%d mode-flags:0x%lx)\n",
device->name, device->lanes,
mipi_dsi_pixel_format_to_bpp(device->format),
device->mode_flags);
drm_bridge_add(&dsi->bridge);
/*
* This is a temporary solution and should be made by more generic way.
*
* If attached panel device is for command mode one, dsi should register
* TE interrupt handler.
*/
if (!(device->mode_flags & MIPI_DSI_MODE_VIDEO)) {
ret = samsung_dsim_register_te_irq(dsi, &device->dev);
if (ret)
return ret;
}
if (pdata->host_ops && pdata->host_ops->attach) {
ret = pdata->host_ops->attach(dsi, device);
if (ret)
return ret;
}
dsi->lanes = device->lanes;
dsi->format = device->format;
dsi->mode_flags = device->mode_flags;
return 0;
}
static void samsung_dsim_unregister_te_irq(struct samsung_dsim *dsi)
{
if (dsi->te_gpio) {
free_irq(gpiod_to_irq(dsi->te_gpio), dsi);
gpiod_put(dsi->te_gpio);
}
}
static int samsung_dsim_host_detach(struct mipi_dsi_host *host,
struct mipi_dsi_device *device)
{
struct samsung_dsim *dsi = host_to_dsi(host);
const struct samsung_dsim_plat_data *pdata = dsi->plat_data;
dsi->out_bridge = NULL;
if (pdata->host_ops && pdata->host_ops->detach)
pdata->host_ops->detach(dsi, device);
samsung_dsim_unregister_te_irq(dsi);
drm_bridge_remove(&dsi->bridge);
return 0;
}
static ssize_t samsung_dsim_host_transfer(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct samsung_dsim *dsi = host_to_dsi(host);
struct samsung_dsim_transfer xfer;
int ret;
if (!(dsi->state & DSIM_STATE_ENABLED))
return -EINVAL;
ret = samsung_dsim_init(dsi);
if (ret)
return ret;
ret = mipi_dsi_create_packet(&xfer.packet, msg);
if (ret < 0)
return ret;
xfer.rx_len = msg->rx_len;
xfer.rx_payload = msg->rx_buf;
xfer.flags = msg->flags;
ret = samsung_dsim_transfer(dsi, &xfer);
return (ret < 0) ? ret : xfer.rx_done;
}
static const struct mipi_dsi_host_ops samsung_dsim_ops = {
.attach = samsung_dsim_host_attach,
.detach = samsung_dsim_host_detach,
.transfer = samsung_dsim_host_transfer,
};
static int samsung_dsim_of_read_u32(const struct device_node *np,
const char *propname, u32 *out_value, bool optional)
{
int ret = of_property_read_u32(np, propname, out_value);
if (ret < 0 && !optional)
pr_err("%pOF: failed to get '%s' property\n", np, propname);
return ret;
}
static int samsung_dsim_parse_dt(struct samsung_dsim *dsi)
{
struct device *dev = dsi->dev;
struct device_node *node = dev->of_node;
u32 lane_polarities[5] = { 0 };
struct device_node *endpoint;
int i, nr_lanes, ret;
ret = samsung_dsim_of_read_u32(node, "samsung,pll-clock-frequency",
&dsi->pll_clk_rate, 1);
/* If it doesn't exist, read it from the clock instead of failing */
if (ret < 0) {
dev_dbg(dev, "Using sclk_mipi for pll clock frequency\n");
dsi->pll_clk = devm_clk_get(dev, "sclk_mipi");
if (IS_ERR(dsi->pll_clk))
return PTR_ERR(dsi->pll_clk);
}
/* If it doesn't exist, use pixel clock instead of failing */
ret = samsung_dsim_of_read_u32(node, "samsung,burst-clock-frequency",
&dsi->burst_clk_rate, 1);
if (ret < 0) {
dev_dbg(dev, "Using pixel clock for HS clock frequency\n");
dsi->burst_clk_rate = 0;
}
ret = samsung_dsim_of_read_u32(node, "samsung,esc-clock-frequency",
&dsi->esc_clk_rate, 0);
if (ret < 0)
return ret;
endpoint = of_graph_get_endpoint_by_regs(node, 1, -1);
nr_lanes = of_property_count_u32_elems(endpoint, "data-lanes");
if (nr_lanes > 0 && nr_lanes <= 4) {
/* Polarity 0 is clock lane, 1..4 are data lanes. */
of_property_read_u32_array(endpoint, "lane-polarities",
lane_polarities, nr_lanes + 1);
for (i = 1; i <= nr_lanes; i++) {
if (lane_polarities[1] != lane_polarities[i])
DRM_DEV_ERROR(dsi->dev, "Data lanes polarities do not match");
}
if (lane_polarities[0])
dsi->swap_dn_dp_clk = true;
if (lane_polarities[1])
dsi->swap_dn_dp_data = true;
}
return 0;
}
static int generic_dsim_register_host(struct samsung_dsim *dsi)
{
return mipi_dsi_host_register(&dsi->dsi_host);
}
static void generic_dsim_unregister_host(struct samsung_dsim *dsi)
{
mipi_dsi_host_unregister(&dsi->dsi_host);
}
static const struct samsung_dsim_host_ops generic_dsim_host_ops = {
.register_host = generic_dsim_register_host,
.unregister_host = generic_dsim_unregister_host,
};
static const struct drm_bridge_timings samsung_dsim_bridge_timings_de_high = {
.input_bus_flags = DRM_BUS_FLAG_DE_HIGH,
};
static const struct drm_bridge_timings samsung_dsim_bridge_timings_de_low = {
.input_bus_flags = DRM_BUS_FLAG_DE_LOW,
};
int samsung_dsim_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct samsung_dsim *dsi;
int ret, i;
dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
if (!dsi)
return -ENOMEM;
init_completion(&dsi->completed);
spin_lock_init(&dsi->transfer_lock);
INIT_LIST_HEAD(&dsi->transfer_list);
dsi->dsi_host.ops = &samsung_dsim_ops;
dsi->dsi_host.dev = dev;
dsi->dev = dev;
dsi->plat_data = of_device_get_match_data(dev);
dsi->driver_data = samsung_dsim_types[dsi->plat_data->hw_type];
dsi->supplies[0].supply = "vddcore";
dsi->supplies[1].supply = "vddio";
ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(dsi->supplies),
dsi->supplies);
if (ret)
return dev_err_probe(dev, ret, "failed to get regulators\n");
dsi->clks = devm_kcalloc(dev, dsi->driver_data->num_clks,
sizeof(*dsi->clks), GFP_KERNEL);
if (!dsi->clks)
return -ENOMEM;
for (i = 0; i < dsi->driver_data->num_clks; i++) {
dsi->clks[i] = devm_clk_get(dev, clk_names[i]);
if (IS_ERR(dsi->clks[i])) {
if (strcmp(clk_names[i], "sclk_mipi") == 0) {
dsi->clks[i] = devm_clk_get(dev, OLD_SCLK_MIPI_CLK_NAME);
if (!IS_ERR(dsi->clks[i]))
continue;
}
dev_info(dev, "failed to get the clock: %s\n", clk_names[i]);
return PTR_ERR(dsi->clks[i]);
}
}
dsi->reg_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(dsi->reg_base))
return PTR_ERR(dsi->reg_base);
dsi->phy = devm_phy_optional_get(dev, "dsim");
if (IS_ERR(dsi->phy)) {
dev_info(dev, "failed to get dsim phy\n");
return PTR_ERR(dsi->phy);
}
dsi->irq = platform_get_irq(pdev, 0);
if (dsi->irq < 0)
return dsi->irq;
ret = devm_request_threaded_irq(dev, dsi->irq, NULL,
samsung_dsim_irq,
IRQF_ONESHOT | IRQF_NO_AUTOEN,
dev_name(dev), dsi);
if (ret) {
dev_err(dev, "failed to request dsi irq\n");
return ret;
}
ret = samsung_dsim_parse_dt(dsi);
if (ret)
return ret;
platform_set_drvdata(pdev, dsi);
pm_runtime_enable(dev);
dsi->bridge.funcs = &samsung_dsim_bridge_funcs;
dsi->bridge.of_node = dev->of_node;
dsi->bridge.type = DRM_MODE_CONNECTOR_DSI;
/* DE_LOW: i.MX8M Mini/Nano LCDIF-DSIM glue logic inverts HS/VS/DE */
if (dsi->plat_data->hw_type == DSIM_TYPE_IMX8MM)
dsi->bridge.timings = &samsung_dsim_bridge_timings_de_low;
else
dsi->bridge.timings = &samsung_dsim_bridge_timings_de_high;
if (dsi->plat_data->host_ops && dsi->plat_data->host_ops->register_host) {
ret = dsi->plat_data->host_ops->register_host(dsi);
if (ret)
goto err_disable_runtime;
}
return 0;
err_disable_runtime:
pm_runtime_disable(dev);
return ret;
}
EXPORT_SYMBOL_GPL(samsung_dsim_probe);
void samsung_dsim_remove(struct platform_device *pdev)
{
struct samsung_dsim *dsi = platform_get_drvdata(pdev);
pm_runtime_disable(&pdev->dev);
if (dsi->plat_data->host_ops && dsi->plat_data->host_ops->unregister_host)
dsi->plat_data->host_ops->unregister_host(dsi);
}
EXPORT_SYMBOL_GPL(samsung_dsim_remove);
static int __maybe_unused samsung_dsim_suspend(struct device *dev)
{
struct samsung_dsim *dsi = dev_get_drvdata(dev);
const struct samsung_dsim_driver_data *driver_data = dsi->driver_data;
int ret, i;
usleep_range(10000, 20000);
if (dsi->state & DSIM_STATE_INITIALIZED) {
dsi->state &= ~DSIM_STATE_INITIALIZED;
samsung_dsim_disable_clock(dsi);
samsung_dsim_disable_irq(dsi);
}
dsi->state &= ~DSIM_STATE_CMD_LPM;
phy_power_off(dsi->phy);
for (i = driver_data->num_clks - 1; i > -1; i--)
clk_disable_unprepare(dsi->clks[i]);
ret = regulator_bulk_disable(ARRAY_SIZE(dsi->supplies), dsi->supplies);
if (ret < 0)
dev_err(dsi->dev, "cannot disable regulators %d\n", ret);
return 0;
}
static int __maybe_unused samsung_dsim_resume(struct device *dev)
{
struct samsung_dsim *dsi = dev_get_drvdata(dev);
const struct samsung_dsim_driver_data *driver_data = dsi->driver_data;
int ret, i;
ret = regulator_bulk_enable(ARRAY_SIZE(dsi->supplies), dsi->supplies);
if (ret < 0) {
dev_err(dsi->dev, "cannot enable regulators %d\n", ret);
return ret;
}
for (i = 0; i < driver_data->num_clks; i++) {
ret = clk_prepare_enable(dsi->clks[i]);
if (ret < 0)
goto err_clk;
}
ret = phy_power_on(dsi->phy);
if (ret < 0) {
dev_err(dsi->dev, "cannot enable phy %d\n", ret);
goto err_clk;
}
return 0;
err_clk:
while (--i > -1)
clk_disable_unprepare(dsi->clks[i]);
regulator_bulk_disable(ARRAY_SIZE(dsi->supplies), dsi->supplies);
return ret;
}
const struct dev_pm_ops samsung_dsim_pm_ops = {
SET_RUNTIME_PM_OPS(samsung_dsim_suspend, samsung_dsim_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
};
EXPORT_SYMBOL_GPL(samsung_dsim_pm_ops);
static const struct samsung_dsim_plat_data samsung_dsim_imx8mm_pdata = {
.hw_type = DSIM_TYPE_IMX8MM,
.host_ops = &generic_dsim_host_ops,
};
static const struct samsung_dsim_plat_data samsung_dsim_imx8mp_pdata = {
.hw_type = DSIM_TYPE_IMX8MP,
.host_ops = &generic_dsim_host_ops,
};
static const struct of_device_id samsung_dsim_of_match[] = {
{
.compatible = "fsl,imx8mm-mipi-dsim",
.data = &samsung_dsim_imx8mm_pdata,
},
{
.compatible = "fsl,imx8mp-mipi-dsim",
.data = &samsung_dsim_imx8mp_pdata,
},
{ /* sentinel. */ }
};
MODULE_DEVICE_TABLE(of, samsung_dsim_of_match);
static struct platform_driver samsung_dsim_driver = {
.probe = samsung_dsim_probe,
.remove_new = samsung_dsim_remove,
.driver = {
.name = "samsung-dsim",
.pm = &samsung_dsim_pm_ops,
.of_match_table = samsung_dsim_of_match,
},
};
module_platform_driver(samsung_dsim_driver);
MODULE_AUTHOR("Jagan Teki <jagan@amarulasolutions.com>");
MODULE_DESCRIPTION("Samsung MIPI DSIM controller bridge");
MODULE_LICENSE("GPL");