/*
* Copyright 2018 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
*/
#include <linux/io-64-nonatomic-lo-hi.h>
#ifdef CONFIG_X86
#include <asm/hypervisor.h>
#endif
#include "amdgpu.h"
#include "amdgpu_gmc.h"
#include "amdgpu_ras.h"
#include "amdgpu_reset.h"
#include "amdgpu_xgmi.h"
#include <drm/drm_drv.h>
#include <drm/ttm/ttm_tt.h>
/**
* amdgpu_gmc_pdb0_alloc - allocate vram for pdb0
*
* @adev: amdgpu_device pointer
*
* Allocate video memory for pdb0 and map it for CPU access
* Returns 0 for success, error for failure.
*/
int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev)
{
int r;
struct amdgpu_bo_param bp;
u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21;
uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) - 1) >> pde0_page_shift;
memset(&bp, 0, sizeof(bp));
bp.size = PAGE_ALIGN((npdes + 1) * 8);
bp.byte_align = PAGE_SIZE;
bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
bp.type = ttm_bo_type_kernel;
bp.resv = NULL;
bp.bo_ptr_size = sizeof(struct amdgpu_bo);
r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo);
if (r)
return r;
r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false);
if (unlikely(r != 0))
goto bo_reserve_failure;
r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM);
if (r)
goto bo_pin_failure;
r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0);
if (r)
goto bo_kmap_failure;
amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
return 0;
bo_kmap_failure:
amdgpu_bo_unpin(adev->gmc.pdb0_bo);
bo_pin_failure:
amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
bo_reserve_failure:
amdgpu_bo_unref(&adev->gmc.pdb0_bo);
return r;
}
/**
* amdgpu_gmc_get_pde_for_bo - get the PDE for a BO
*
* @bo: the BO to get the PDE for
* @level: the level in the PD hirarchy
* @addr: resulting addr
* @flags: resulting flags
*
* Get the address and flags to be used for a PDE (Page Directory Entry).
*/
void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level,
uint64_t *addr, uint64_t *flags)
{
struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
switch (bo->tbo.resource->mem_type) {
case TTM_PL_TT:
*addr = bo->tbo.ttm->dma_address[0];
break;
case TTM_PL_VRAM:
*addr = amdgpu_bo_gpu_offset(bo);
break;
default:
*addr = 0;
break;
}
*flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource);
amdgpu_gmc_get_vm_pde(adev, level, addr, flags);
}
/*
* amdgpu_gmc_pd_addr - return the address of the root directory
*/
uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo)
{
struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
uint64_t pd_addr;
/* TODO: move that into ASIC specific code */
if (adev->asic_type >= CHIP_VEGA10) {
uint64_t flags = AMDGPU_PTE_VALID;
amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags);
pd_addr |= flags;
} else {
pd_addr = amdgpu_bo_gpu_offset(bo);
}
return pd_addr;
}
/**
* amdgpu_gmc_set_pte_pde - update the page tables using CPU
*
* @adev: amdgpu_device pointer
* @cpu_pt_addr: cpu address of the page table
* @gpu_page_idx: entry in the page table to update
* @addr: dst addr to write into pte/pde
* @flags: access flags
*
* Update the page tables using CPU.
*/
int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr,
uint32_t gpu_page_idx, uint64_t addr,
uint64_t flags)
{
void __iomem *ptr = (void *)cpu_pt_addr;
uint64_t value;
/*
* The following is for PTE only. GART does not have PDEs.
*/
value = addr & 0x0000FFFFFFFFF000ULL;
value |= flags;
writeq(value, ptr + (gpu_page_idx * 8));
return 0;
}
/**
* amdgpu_gmc_agp_addr - return the address in the AGP address space
*
* @bo: TTM BO which needs the address, must be in GTT domain
*
* Tries to figure out how to access the BO through the AGP aperture. Returns
* AMDGPU_BO_INVALID_OFFSET if that is not possible.
*/
uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo)
{
struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
if (!bo->ttm)
return AMDGPU_BO_INVALID_OFFSET;
if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached)
return AMDGPU_BO_INVALID_OFFSET;
if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size)
return AMDGPU_BO_INVALID_OFFSET;
return adev->gmc.agp_start + bo->ttm->dma_address[0];
}
/**
* amdgpu_gmc_vram_location - try to find VRAM location
*
* @adev: amdgpu device structure holding all necessary information
* @mc: memory controller structure holding memory information
* @base: base address at which to put VRAM
*
* Function will try to place VRAM at base address provided
* as parameter.
*/
void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
u64 base)
{
uint64_t vis_limit = (uint64_t)amdgpu_vis_vram_limit << 20;
uint64_t limit = (uint64_t)amdgpu_vram_limit << 20;
mc->vram_start = base;
mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
if (limit < mc->real_vram_size)
mc->real_vram_size = limit;
if (vis_limit && vis_limit < mc->visible_vram_size)
mc->visible_vram_size = vis_limit;
if (mc->real_vram_size < mc->visible_vram_size)
mc->visible_vram_size = mc->real_vram_size;
if (mc->xgmi.num_physical_nodes == 0) {
mc->fb_start = mc->vram_start;
mc->fb_end = mc->vram_end;
}
dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
mc->mc_vram_size >> 20, mc->vram_start,
mc->vram_end, mc->real_vram_size >> 20);
}
/** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture
*
* @adev: amdgpu device structure holding all necessary information
* @mc: memory controller structure holding memory information
*
* This function is only used if use GART for FB translation. In such
* case, we use sysvm aperture (vmid0 page tables) for both vram
* and gart (aka system memory) access.
*
* GPUVM (and our organization of vmid0 page tables) require sysvm
* aperture to be placed at a location aligned with 8 times of native
* page size. For example, if vm_context0_cntl.page_table_block_size
* is 12, then native page size is 8G (2M*2^12), sysvm should start
* with a 64G aligned address. For simplicity, we just put sysvm at
* address 0. So vram start at address 0 and gart is right after vram.
*/
void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
{
u64 hive_vram_start = 0;
u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1;
mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id;
mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1;
mc->gart_start = hive_vram_end + 1;
mc->gart_end = mc->gart_start + mc->gart_size - 1;
mc->fb_start = hive_vram_start;
mc->fb_end = hive_vram_end;
dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
mc->mc_vram_size >> 20, mc->vram_start,
mc->vram_end, mc->real_vram_size >> 20);
dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
mc->gart_size >> 20, mc->gart_start, mc->gart_end);
}
/**
* amdgpu_gmc_gart_location - try to find GART location
*
* @adev: amdgpu device structure holding all necessary information
* @mc: memory controller structure holding memory information
* @gart_placement: GART placement policy with respect to VRAM
*
* Function will place try to place GART before or after VRAM.
* If GART size is bigger than space left then we ajust GART size.
* Thus function will never fails.
*/
void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
enum amdgpu_gart_placement gart_placement)
{
const uint64_t four_gb = 0x100000000ULL;
u64 size_af, size_bf;
/*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/
u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1);
/* VCE doesn't like it when BOs cross a 4GB segment, so align
* the GART base on a 4GB boundary as well.
*/
size_bf = mc->fb_start;
size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb);
if (mc->gart_size > max(size_bf, size_af)) {
dev_warn(adev->dev, "limiting GART\n");
mc->gart_size = max(size_bf, size_af);
}
switch (gart_placement) {
case AMDGPU_GART_PLACEMENT_HIGH:
mc->gart_start = max_mc_address - mc->gart_size + 1;
break;
case AMDGPU_GART_PLACEMENT_LOW:
mc->gart_start = 0;
break;
case AMDGPU_GART_PLACEMENT_BEST_FIT:
default:
if ((size_bf >= mc->gart_size && size_bf < size_af) ||
(size_af < mc->gart_size))
mc->gart_start = 0;
else
mc->gart_start = max_mc_address - mc->gart_size + 1;
break;
}
mc->gart_start &= ~(four_gb - 1);
mc->gart_end = mc->gart_start + mc->gart_size - 1;
dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
mc->gart_size >> 20, mc->gart_start, mc->gart_end);
}
/**
* amdgpu_gmc_agp_location - try to find AGP location
* @adev: amdgpu device structure holding all necessary information
* @mc: memory controller structure holding memory information
*
* Function will place try to find a place for the AGP BAR in the MC address
* space.
*
* AGP BAR will be assigned the largest available hole in the address space.
* Should be called after VRAM and GART locations are setup.
*/
void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
{
const uint64_t sixteen_gb = 1ULL << 34;
const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1);
u64 size_af, size_bf;
if (mc->fb_start > mc->gart_start) {
size_bf = (mc->fb_start & sixteen_gb_mask) -
ALIGN(mc->gart_end + 1, sixteen_gb);
size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb);
} else {
size_bf = mc->fb_start & sixteen_gb_mask;
size_af = (mc->gart_start & sixteen_gb_mask) -
ALIGN(mc->fb_end + 1, sixteen_gb);
}
if (size_bf > size_af) {
mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask;
mc->agp_size = size_bf;
} else {
mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb);
mc->agp_size = size_af;
}
mc->agp_end = mc->agp_start + mc->agp_size - 1;
dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n",
mc->agp_size >> 20, mc->agp_start, mc->agp_end);
}
/**
* amdgpu_gmc_set_agp_default - Set the default AGP aperture value.
* @adev: amdgpu device structure holding all necessary information
* @mc: memory controller structure holding memory information
*
* To disable the AGP aperture, you need to set the start to a larger
* value than the end. This function sets the default value which
* can then be overridden using amdgpu_gmc_agp_location() if you want
* to enable the AGP aperture on a specific chip.
*
*/
void amdgpu_gmc_set_agp_default(struct amdgpu_device *adev,
struct amdgpu_gmc *mc)
{
mc->agp_start = 0xffffffffffff;
mc->agp_end = 0;
mc->agp_size = 0;
}
/**
* amdgpu_gmc_fault_key - get hask key from vm fault address and pasid
*
* @addr: 48 bit physical address, page aligned (36 significant bits)
* @pasid: 16 bit process address space identifier
*/
static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid)
{
return addr << 4 | pasid;
}
/**
* amdgpu_gmc_filter_faults - filter VM faults
*
* @adev: amdgpu device structure
* @ih: interrupt ring that the fault received from
* @addr: address of the VM fault
* @pasid: PASID of the process causing the fault
* @timestamp: timestamp of the fault
*
* Returns:
* True if the fault was filtered and should not be processed further.
* False if the fault is a new one and needs to be handled.
*/
bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev,
struct amdgpu_ih_ring *ih, uint64_t addr,
uint16_t pasid, uint64_t timestamp)
{
struct amdgpu_gmc *gmc = &adev->gmc;
uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid);
struct amdgpu_gmc_fault *fault;
uint32_t hash;
/* Stale retry fault if timestamp goes backward */
if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp))
return true;
/* If we don't have space left in the ring buffer return immediately */
stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) -
AMDGPU_GMC_FAULT_TIMEOUT;
if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp)
return true;
/* Try to find the fault in the hash */
hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
while (fault->timestamp >= stamp) {
uint64_t tmp;
if (atomic64_read(&fault->key) == key) {
/*
* if we get a fault which is already present in
* the fault_ring and the timestamp of
* the fault is after the expired timestamp,
* then this is a new fault that needs to be added
* into the fault ring.
*/
if (fault->timestamp_expiry != 0 &&
amdgpu_ih_ts_after(fault->timestamp_expiry,
timestamp))
break;
else
return true;
}
tmp = fault->timestamp;
fault = &gmc->fault_ring[fault->next];
/* Check if the entry was reused */
if (fault->timestamp >= tmp)
break;
}
/* Add the fault to the ring */
fault = &gmc->fault_ring[gmc->last_fault];
atomic64_set(&fault->key, key);
fault->timestamp = timestamp;
/* And update the hash */
fault->next = gmc->fault_hash[hash].idx;
gmc->fault_hash[hash].idx = gmc->last_fault++;
return false;
}
/**
* amdgpu_gmc_filter_faults_remove - remove address from VM faults filter
*
* @adev: amdgpu device structure
* @addr: address of the VM fault
* @pasid: PASID of the process causing the fault
*
* Remove the address from fault filter, then future vm fault on this address
* will pass to retry fault handler to recover.
*/
void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr,
uint16_t pasid)
{
struct amdgpu_gmc *gmc = &adev->gmc;
uint64_t key = amdgpu_gmc_fault_key(addr, pasid);
struct amdgpu_ih_ring *ih;
struct amdgpu_gmc_fault *fault;
uint32_t last_wptr;
uint64_t last_ts;
uint32_t hash;
uint64_t tmp;
if (adev->irq.retry_cam_enabled)
return;
ih = &adev->irq.ih1;
/* Get the WPTR of the last entry in IH ring */
last_wptr = amdgpu_ih_get_wptr(adev, ih);
/* Order wptr with ring data. */
rmb();
/* Get the timetamp of the last entry in IH ring */
last_ts = amdgpu_ih_decode_iv_ts(adev, ih, last_wptr, -1);
hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
do {
if (atomic64_read(&fault->key) == key) {
/*
* Update the timestamp when this fault
* expired.
*/
fault->timestamp_expiry = last_ts;
break;
}
tmp = fault->timestamp;
fault = &gmc->fault_ring[fault->next];
} while (fault->timestamp < tmp);
}
int amdgpu_gmc_ras_sw_init(struct amdgpu_device *adev)
{
int r;
/* umc ras block */
r = amdgpu_umc_ras_sw_init(adev);
if (r)
return r;
/* mmhub ras block */
r = amdgpu_mmhub_ras_sw_init(adev);
if (r)
return r;
/* hdp ras block */
r = amdgpu_hdp_ras_sw_init(adev);
if (r)
return r;
/* mca.x ras block */
r = amdgpu_mca_mp0_ras_sw_init(adev);
if (r)
return r;
r = amdgpu_mca_mp1_ras_sw_init(adev);
if (r)
return r;
r = amdgpu_mca_mpio_ras_sw_init(adev);
if (r)
return r;
/* xgmi ras block */
r = amdgpu_xgmi_ras_sw_init(adev);
if (r)
return r;
return 0;
}
int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev)
{
return 0;
}
void amdgpu_gmc_ras_fini(struct amdgpu_device *adev)
{
}
/*
* The latest engine allocation on gfx9/10 is:
* Engine 2, 3: firmware
* Engine 0, 1, 4~16: amdgpu ring,
* subject to change when ring number changes
* Engine 17: Gart flushes
*/
#define AMDGPU_VMHUB_INV_ENG_BITMAP 0x1FFF3
int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev)
{
struct amdgpu_ring *ring;
unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] = {0};
unsigned i;
unsigned vmhub, inv_eng;
/* init the vm inv eng for all vmhubs */
for_each_set_bit(i, adev->vmhubs_mask, AMDGPU_MAX_VMHUBS) {
vm_inv_engs[i] = AMDGPU_VMHUB_INV_ENG_BITMAP;
/* reserve engine 5 for firmware */
if (adev->enable_mes)
vm_inv_engs[i] &= ~(1 << 5);
/* reserve mmhub engine 3 for firmware */
if (adev->enable_umsch_mm)
vm_inv_engs[i] &= ~(1 << 3);
}
for (i = 0; i < adev->num_rings; ++i) {
ring = adev->rings[i];
vmhub = ring->vm_hub;
if (ring == &adev->mes.ring ||
ring == &adev->umsch_mm.ring)
continue;
inv_eng = ffs(vm_inv_engs[vmhub]);
if (!inv_eng) {
dev_err(adev->dev, "no VM inv eng for ring %s\n",
ring->name);
return -EINVAL;
}
ring->vm_inv_eng = inv_eng - 1;
vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng);
dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n",
ring->name, ring->vm_inv_eng, ring->vm_hub);
}
return 0;
}
void amdgpu_gmc_flush_gpu_tlb(struct amdgpu_device *adev, uint32_t vmid,
uint32_t vmhub, uint32_t flush_type)
{
struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
struct amdgpu_vmhub *hub = &adev->vmhub[vmhub];
struct dma_fence *fence;
struct amdgpu_job *job;
int r;
if (!hub->sdma_invalidation_workaround || vmid ||
!adev->mman.buffer_funcs_enabled ||
!adev->ib_pool_ready || amdgpu_in_reset(adev) ||
!ring->sched.ready) {
/*
* A GPU reset should flush all TLBs anyway, so no need to do
* this while one is ongoing.
*/
if (!down_read_trylock(&adev->reset_domain->sem))
return;
if (adev->gmc.flush_tlb_needs_extra_type_2)
adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
vmhub, 2);
if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
vmhub, 0);
adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, vmhub,
flush_type);
up_read(&adev->reset_domain->sem);
return;
}
/* The SDMA on Navi 1x has a bug which can theoretically result in memory
* corruption if an invalidation happens at the same time as an VA
* translation. Avoid this by doing the invalidation from the SDMA
* itself at least for GART.
*/
mutex_lock(&adev->mman.gtt_window_lock);
r = amdgpu_job_alloc_with_ib(ring->adev, &adev->mman.high_pr,
AMDGPU_FENCE_OWNER_UNDEFINED,
16 * 4, AMDGPU_IB_POOL_IMMEDIATE,
&job);
if (r)
goto error_alloc;
job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
job->vm_needs_flush = true;
job->ibs->ptr[job->ibs->length_dw++] = ring->funcs->nop;
amdgpu_ring_pad_ib(ring, &job->ibs[0]);
fence = amdgpu_job_submit(job);
mutex_unlock(&adev->mman.gtt_window_lock);
dma_fence_wait(fence, false);
dma_fence_put(fence);
return;
error_alloc:
mutex_unlock(&adev->mman.gtt_window_lock);
dev_err(adev->dev, "Error flushing GPU TLB using the SDMA (%d)!\n", r);
}
int amdgpu_gmc_flush_gpu_tlb_pasid(struct amdgpu_device *adev, uint16_t pasid,
uint32_t flush_type, bool all_hub,
uint32_t inst)
{
u32 usec_timeout = amdgpu_sriov_vf(adev) ? SRIOV_USEC_TIMEOUT :
adev->usec_timeout;
struct amdgpu_ring *ring = &adev->gfx.kiq[inst].ring;
struct amdgpu_kiq *kiq = &adev->gfx.kiq[inst];
unsigned int ndw;
signed long r;
uint32_t seq;
if (!adev->gmc.flush_pasid_uses_kiq || !ring->sched.ready ||
!down_read_trylock(&adev->reset_domain->sem)) {
if (adev->gmc.flush_tlb_needs_extra_type_2)
adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
2, all_hub,
inst);
if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
0, all_hub,
inst);
adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
flush_type, all_hub,
inst);
return 0;
}
/* 2 dwords flush + 8 dwords fence */
ndw = kiq->pmf->invalidate_tlbs_size + 8;
if (adev->gmc.flush_tlb_needs_extra_type_2)
ndw += kiq->pmf->invalidate_tlbs_size;
if (adev->gmc.flush_tlb_needs_extra_type_0)
ndw += kiq->pmf->invalidate_tlbs_size;
spin_lock(&adev->gfx.kiq[inst].ring_lock);
amdgpu_ring_alloc(ring, ndw);
if (adev->gmc.flush_tlb_needs_extra_type_2)
kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 2, all_hub);
if (flush_type == 2 && adev->gmc.flush_tlb_needs_extra_type_0)
kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 0, all_hub);
kiq->pmf->kiq_invalidate_tlbs(ring, pasid, flush_type, all_hub);
r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
if (r) {
amdgpu_ring_undo(ring);
spin_unlock(&adev->gfx.kiq[inst].ring_lock);
goto error_unlock_reset;
}
amdgpu_ring_commit(ring);
spin_unlock(&adev->gfx.kiq[inst].ring_lock);
r = amdgpu_fence_wait_polling(ring, seq, usec_timeout);
if (r < 1) {
dev_err(adev->dev, "wait for kiq fence error: %ld.\n", r);
r = -ETIME;
goto error_unlock_reset;
}
r = 0;
error_unlock_reset:
up_read(&adev->reset_domain->sem);
return r;
}
void amdgpu_gmc_fw_reg_write_reg_wait(struct amdgpu_device *adev,
uint32_t reg0, uint32_t reg1,
uint32_t ref, uint32_t mask,
uint32_t xcc_inst)
{
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_inst];
struct amdgpu_ring *ring = &kiq->ring;
signed long r, cnt = 0;
unsigned long flags;
uint32_t seq;
if (adev->mes.ring.sched.ready) {
amdgpu_mes_reg_write_reg_wait(adev, reg0, reg1,
ref, mask);
return;
}
spin_lock_irqsave(&kiq->ring_lock, flags);
amdgpu_ring_alloc(ring, 32);
amdgpu_ring_emit_reg_write_reg_wait(ring, reg0, reg1,
ref, mask);
r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
if (r)
goto failed_undo;
amdgpu_ring_commit(ring);
spin_unlock_irqrestore(&kiq->ring_lock, flags);
r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
/* don't wait anymore for IRQ context */
if (r < 1 && in_interrupt())
goto failed_kiq;
might_sleep();
while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
}
if (cnt > MAX_KIQ_REG_TRY)
goto failed_kiq;
return;
failed_undo:
amdgpu_ring_undo(ring);
spin_unlock_irqrestore(&kiq->ring_lock, flags);
failed_kiq:
dev_err(adev->dev, "failed to write reg %x wait reg %x\n", reg0, reg1);
}
/**
* amdgpu_gmc_tmz_set -- check and set if a device supports TMZ
* @adev: amdgpu_device pointer
*
* Check and set if an the device @adev supports Trusted Memory
* Zones (TMZ).
*/
void amdgpu_gmc_tmz_set(struct amdgpu_device *adev)
{
switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
/* RAVEN */
case IP_VERSION(9, 2, 2):
case IP_VERSION(9, 1, 0):
/* RENOIR looks like RAVEN */
case IP_VERSION(9, 3, 0):
/* GC 10.3.7 */
case IP_VERSION(10, 3, 7):
/* GC 11.0.1 */
case IP_VERSION(11, 0, 1):
if (amdgpu_tmz == 0) {
adev->gmc.tmz_enabled = false;
dev_info(adev->dev,
"Trusted Memory Zone (TMZ) feature disabled (cmd line)\n");
} else {
adev->gmc.tmz_enabled = true;
dev_info(adev->dev,
"Trusted Memory Zone (TMZ) feature enabled\n");
}
break;
case IP_VERSION(10, 1, 10):
case IP_VERSION(10, 1, 1):
case IP_VERSION(10, 1, 2):
case IP_VERSION(10, 1, 3):
case IP_VERSION(10, 3, 0):
case IP_VERSION(10, 3, 2):
case IP_VERSION(10, 3, 4):
case IP_VERSION(10, 3, 5):
case IP_VERSION(10, 3, 6):
/* VANGOGH */
case IP_VERSION(10, 3, 1):
/* YELLOW_CARP*/
case IP_VERSION(10, 3, 3):
case IP_VERSION(11, 0, 4):
case IP_VERSION(11, 5, 0):
case IP_VERSION(11, 5, 1):
/* Don't enable it by default yet.
*/
if (amdgpu_tmz < 1) {
adev->gmc.tmz_enabled = false;
dev_info(adev->dev,
"Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n");
} else {
adev->gmc.tmz_enabled = true;
dev_info(adev->dev,
"Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n");
}
break;
default:
adev->gmc.tmz_enabled = false;
dev_info(adev->dev,
"Trusted Memory Zone (TMZ) feature not supported\n");
break;
}
}
/**
* amdgpu_gmc_noretry_set -- set per asic noretry defaults
* @adev: amdgpu_device pointer
*
* Set a per asic default for the no-retry parameter.
*
*/
void amdgpu_gmc_noretry_set(struct amdgpu_device *adev)
{
struct amdgpu_gmc *gmc = &adev->gmc;
uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0);
bool noretry_default = (gc_ver == IP_VERSION(9, 0, 1) ||
gc_ver == IP_VERSION(9, 3, 0) ||
gc_ver == IP_VERSION(9, 4, 0) ||
gc_ver == IP_VERSION(9, 4, 1) ||
gc_ver == IP_VERSION(9, 4, 2) ||
gc_ver == IP_VERSION(9, 4, 3) ||
gc_ver >= IP_VERSION(10, 3, 0));
if (!amdgpu_sriov_xnack_support(adev))
gmc->noretry = 1;
else
gmc->noretry = (amdgpu_noretry == -1) ? noretry_default : amdgpu_noretry;
}
void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type,
bool enable)
{
struct amdgpu_vmhub *hub;
u32 tmp, reg, i;
hub = &adev->vmhub[hub_type];
for (i = 0; i < 16; i++) {
reg = hub->vm_context0_cntl + hub->ctx_distance * i;
tmp = (hub_type == AMDGPU_GFXHUB(0)) ?
RREG32_SOC15_IP(GC, reg) :
RREG32_SOC15_IP(MMHUB, reg);
if (enable)
tmp |= hub->vm_cntx_cntl_vm_fault;
else
tmp &= ~hub->vm_cntx_cntl_vm_fault;
(hub_type == AMDGPU_GFXHUB(0)) ?
WREG32_SOC15_IP(GC, reg, tmp) :
WREG32_SOC15_IP(MMHUB, reg, tmp);
}
}
void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev)
{
unsigned size;
/*
* Some ASICs need to reserve a region of video memory to avoid access
* from driver
*/
adev->mman.stolen_reserved_offset = 0;
adev->mman.stolen_reserved_size = 0;
/*
* TODO:
* Currently there is a bug where some memory client outside
* of the driver writes to first 8M of VRAM on S3 resume,
* this overrides GART which by default gets placed in first 8M and
* causes VM_FAULTS once GTT is accessed.
* Keep the stolen memory reservation until the while this is not solved.
*/
switch (adev->asic_type) {
case CHIP_VEGA10:
adev->mman.keep_stolen_vga_memory = true;
/*
* VEGA10 SRIOV VF with MS_HYPERV host needs some firmware reserved area.
*/
#ifdef CONFIG_X86
if (amdgpu_sriov_vf(adev) && hypervisor_is_type(X86_HYPER_MS_HYPERV)) {
adev->mman.stolen_reserved_offset = 0x500000;
adev->mman.stolen_reserved_size = 0x200000;
}
#endif
break;
case CHIP_RAVEN:
case CHIP_RENOIR:
adev->mman.keep_stolen_vga_memory = true;
break;
default:
adev->mman.keep_stolen_vga_memory = false;
break;
}
if (amdgpu_sriov_vf(adev) ||
!amdgpu_device_has_display_hardware(adev)) {
size = 0;
} else {
size = amdgpu_gmc_get_vbios_fb_size(adev);
if (adev->mman.keep_stolen_vga_memory)
size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION);
}
/* set to 0 if the pre-OS buffer uses up most of vram */
if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024))
size = 0;
if (size > AMDGPU_VBIOS_VGA_ALLOCATION) {
adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION;
adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size;
} else {
adev->mman.stolen_vga_size = size;
adev->mman.stolen_extended_size = 0;
}
}
/**
* amdgpu_gmc_init_pdb0 - initialize PDB0
*
* @adev: amdgpu_device pointer
*
* This function is only used when GART page table is used
* for FB address translatioin. In such a case, we construct
* a 2-level system VM page table: PDB0->PTB, to cover both
* VRAM of the hive and system memory.
*
* PDB0 is static, initialized once on driver initialization.
* The first n entries of PDB0 are used as PTE by setting
* P bit to 1, pointing to VRAM. The n+1'th entry points
* to a big PTB covering system memory.
*
*/
void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev)
{
int i;
uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW?
/* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M
*/
u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21;
u64 vram_addr = adev->vm_manager.vram_base_offset -
adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size;
u64 vram_end = vram_addr + vram_size;
u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo);
int idx;
if (!drm_dev_enter(adev_to_drm(adev), &idx))
return;
flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
flags |= AMDGPU_PTE_WRITEABLE;
flags |= AMDGPU_PTE_SNOOPED;
flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1));
flags |= AMDGPU_PDE_PTE;
/* The first n PDE0 entries are used as PTE,
* pointing to vram
*/
for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size)
amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags);
/* The n+1'th PDE0 entry points to a huge
* PTB who has more than 512 entries each
* pointing to a 4K system page
*/
flags = AMDGPU_PTE_VALID;
flags |= AMDGPU_PDE_BFS(0) | AMDGPU_PTE_SNOOPED;
/* Requires gart_ptb_gpu_pa to be 4K aligned */
amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags);
drm_dev_exit(idx);
}
/**
* amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC
* address
*
* @adev: amdgpu_device pointer
* @mc_addr: MC address of buffer
*/
uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr)
{
return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset;
}
/**
* amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from
* GPU's view
*
* @adev: amdgpu_device pointer
* @bo: amdgpu buffer object
*/
uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
{
return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo));
}
/**
* amdgpu_gmc_vram_cpu_pa - calculate vram buffer object's physical address
* from CPU's view
*
* @adev: amdgpu_device pointer
* @bo: amdgpu buffer object
*/
uint64_t amdgpu_gmc_vram_cpu_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
{
return amdgpu_bo_gpu_offset(bo) - adev->gmc.vram_start + adev->gmc.aper_base;
}
int amdgpu_gmc_vram_checking(struct amdgpu_device *adev)
{
struct amdgpu_bo *vram_bo = NULL;
uint64_t vram_gpu = 0;
void *vram_ptr = NULL;
int ret, size = 0x100000;
uint8_t cptr[10];
ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE,
AMDGPU_GEM_DOMAIN_VRAM,
&vram_bo,
&vram_gpu,
&vram_ptr);
if (ret)
return ret;
memset(vram_ptr, 0x86, size);
memset(cptr, 0x86, 10);
/**
* Check the start, the mid, and the end of the memory if the content of
* each byte is the pattern "0x86". If yes, we suppose the vram bo is
* workable.
*
* Note: If check the each byte of whole 1M bo, it will cost too many
* seconds, so here, we just pick up three parts for emulation.
*/
ret = memcmp(vram_ptr, cptr, 10);
if (ret) {
ret = -EIO;
goto release_buffer;
}
ret = memcmp(vram_ptr + (size / 2), cptr, 10);
if (ret) {
ret = -EIO;
goto release_buffer;
}
ret = memcmp(vram_ptr + size - 10, cptr, 10);
if (ret) {
ret = -EIO;
goto release_buffer;
}
release_buffer:
amdgpu_bo_free_kernel(&vram_bo, &vram_gpu,
&vram_ptr);
return ret;
}
static ssize_t current_memory_partition_show(
struct device *dev, struct device_attribute *addr, char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
enum amdgpu_memory_partition mode;
mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
switch (mode) {
case AMDGPU_NPS1_PARTITION_MODE:
return sysfs_emit(buf, "NPS1\n");
case AMDGPU_NPS2_PARTITION_MODE:
return sysfs_emit(buf, "NPS2\n");
case AMDGPU_NPS3_PARTITION_MODE:
return sysfs_emit(buf, "NPS3\n");
case AMDGPU_NPS4_PARTITION_MODE:
return sysfs_emit(buf, "NPS4\n");
case AMDGPU_NPS6_PARTITION_MODE:
return sysfs_emit(buf, "NPS6\n");
case AMDGPU_NPS8_PARTITION_MODE:
return sysfs_emit(buf, "NPS8\n");
default:
return sysfs_emit(buf, "UNKNOWN\n");
}
return sysfs_emit(buf, "UNKNOWN\n");
}
static DEVICE_ATTR_RO(current_memory_partition);
int amdgpu_gmc_sysfs_init(struct amdgpu_device *adev)
{
if (!adev->gmc.gmc_funcs->query_mem_partition_mode)
return 0;
return device_create_file(adev->dev,
&dev_attr_current_memory_partition);
}
void amdgpu_gmc_sysfs_fini(struct amdgpu_device *adev)
{
device_remove_file(adev->dev, &dev_attr_current_memory_partition);
}