summaryrefslogtreecommitdiff
path: root/kernel/bpf
AgeCommit message (Collapse)Author
2024-12-17bpf: Fix bpf_get_smp_processor_id() on !CONFIG_SMPAndrea Righi
On x86-64 calling bpf_get_smp_processor_id() in a kernel with CONFIG_SMP disabled can trigger the following bug, as pcpu_hot is unavailable: [ 8.471774] BUG: unable to handle page fault for address: 00000000936a290c [ 8.471849] #PF: supervisor read access in kernel mode [ 8.471881] #PF: error_code(0x0000) - not-present page Fix by inlining a return 0 in the !CONFIG_SMP case. Fixes: 1ae6921009e5 ("bpf: inline bpf_get_smp_processor_id() helper") Signed-off-by: Andrea Righi <arighi@nvidia.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20241217195813.622568-1-arighi@nvidia.com
2024-12-14bpf: Avoid deadlock caused by nested kprobe and fentry bpf programsPriya Bala Govindasamy
BPF program types like kprobe and fentry can cause deadlocks in certain situations. If a function takes a lock and one of these bpf programs is hooked to some point in the function's critical section, and if the bpf program tries to call the same function and take the same lock it will lead to deadlock. These situations have been reported in the following bug reports. In percpu_freelist - Link: https://lore.kernel.org/bpf/CAADnVQLAHwsa+2C6j9+UC6ScrDaN9Fjqv1WjB1pP9AzJLhKuLQ@mail.gmail.com/T/ Link: https://lore.kernel.org/bpf/CAPPBnEYm+9zduStsZaDnq93q1jPLqO-PiKX9jy0MuL8LCXmCrQ@mail.gmail.com/T/ In bpf_lru_list - Link: https://lore.kernel.org/bpf/CAPPBnEajj+DMfiR_WRWU5=6A7KKULdB5Rob_NJopFLWF+i9gCA@mail.gmail.com/T/ Link: https://lore.kernel.org/bpf/CAPPBnEZQDVN6VqnQXvVqGoB+ukOtHGZ9b9U0OLJJYvRoSsMY_g@mail.gmail.com/T/ Link: https://lore.kernel.org/bpf/CAPPBnEaCB1rFAYU7Wf8UxqcqOWKmRPU1Nuzk3_oLk6qXR7LBOA@mail.gmail.com/T/ Similar bugs have been reported by syzbot. In queue_stack_maps - Link: https://lore.kernel.org/lkml/0000000000004c3fc90615f37756@google.com/ Link: https://lore.kernel.org/all/20240418230932.2689-1-hdanton@sina.com/T/ In lpm_trie - Link: https://lore.kernel.org/linux-kernel/00000000000035168a061a47fa38@google.com/T/ In ringbuf - Link: https://lore.kernel.org/bpf/20240313121345.2292-1-hdanton@sina.com/T/ Prevent kprobe and fentry bpf programs from attaching to these critical sections by removing CC_FLAGS_FTRACE for percpu_freelist.o, bpf_lru_list.o, queue_stack_maps.o, lpm_trie.o, ringbuf.o files. The bugs reported by syzbot are due to tracepoint bpf programs being called in the critical sections. This patch does not aim to fix deadlocks caused by tracepoint programs. However, it does prevent deadlocks from occurring in similar situations due to kprobe and fentry programs. Signed-off-by: Priya Bala Govindasamy <pgovind2@uci.edu> Link: https://lore.kernel.org/r/CAPPBnEZpjGnsuA26Mf9kYibSaGLm=oF6=12L21X1GEQdqjLnzQ@mail.gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-12-13bpf: Augment raw_tp arguments with PTR_MAYBE_NULLKumar Kartikeya Dwivedi
Arguments to a raw tracepoint are tagged as trusted, which carries the semantics that the pointer will be non-NULL. However, in certain cases, a raw tracepoint argument may end up being NULL. More context about this issue is available in [0]. Thus, there is a discrepancy between the reality, that raw_tp arguments can actually be NULL, and the verifier's knowledge, that they are never NULL, causing explicit NULL check branch to be dead code eliminated. A previous attempt [1], i.e. the second fixed commit, was made to simulate symbolic execution as if in most accesses, the argument is a non-NULL raw_tp, except for conditional jumps. This tried to suppress branch prediction while preserving compatibility, but surfaced issues with production programs that were difficult to solve without increasing verifier complexity. A more complete discussion of issues and fixes is available at [2]. Fix this by maintaining an explicit list of tracepoints where the arguments are known to be NULL, and mark the positional arguments as PTR_MAYBE_NULL. Additionally, capture the tracepoints where arguments are known to be ERR_PTR, and mark these arguments as scalar values to prevent potential dereference. Each hex digit is used to encode NULL-ness (0x1) or ERR_PTR-ness (0x2), shifted by the zero-indexed argument number x 4. This can be represented as follows: 1st arg: 0x1 2nd arg: 0x10 3rd arg: 0x100 ... and so on (likewise for ERR_PTR case). In the future, an automated pass will be used to produce such a list, or insert __nullable annotations automatically for tracepoints. Each compilation unit will be analyzed and results will be collated to find whether a tracepoint pointer is definitely not null, maybe null, or an unknown state where verifier conservatively marks it PTR_MAYBE_NULL. A proof of concept of this tool from Eduard is available at [3]. Note that in case we don't find a specification in the raw_tp_null_args array and the tracepoint belongs to a kernel module, we will conservatively mark the arguments as PTR_MAYBE_NULL. This is because unlike for in-tree modules, out-of-tree module tracepoints may pass NULL freely to the tracepoint. We don't protect against such tracepoints passing ERR_PTR (which is uncommon anyway), lest we mark all such arguments as SCALAR_VALUE. While we are it, let's adjust the test raw_tp_null to not perform dereference of the skb->mark, as that won't be allowed anymore, and make it more robust by using inline assembly to test the dead code elimination behavior, which should still stay the same. [0]: https://lore.kernel.org/bpf/ZrCZS6nisraEqehw@jlelli-thinkpadt14gen4.remote.csb [1]: https://lore.kernel.org/all/20241104171959.2938862-1-memxor@gmail.com [2]: https://lore.kernel.org/bpf/20241206161053.809580-1-memxor@gmail.com [3]: https://github.com/eddyz87/llvm-project/tree/nullness-for-tracepoint-params Reported-by: Juri Lelli <juri.lelli@redhat.com> # original bug Reported-by: Manu Bretelle <chantra@meta.com> # bugs in masking fix Fixes: 3f00c5239344 ("bpf: Allow trusted pointers to be passed to KF_TRUSTED_ARGS kfuncs") Fixes: cb4158ce8ec8 ("bpf: Mark raw_tp arguments with PTR_MAYBE_NULL") Reviewed-by: Eduard Zingerman <eddyz87@gmail.com> Co-developed-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20241213221929.3495062-3-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-12-13bpf: Revert "bpf: Mark raw_tp arguments with PTR_MAYBE_NULL"Kumar Kartikeya Dwivedi
This patch reverts commit cb4158ce8ec8 ("bpf: Mark raw_tp arguments with PTR_MAYBE_NULL"). The patch was well-intended and meant to be as a stop-gap fixing branch prediction when the pointer may actually be NULL at runtime. Eventually, it was supposed to be replaced by an automated script or compiler pass detecting possibly NULL arguments and marking them accordingly. However, it caused two main issues observed for production programs and failed to preserve backwards compatibility. First, programs relied on the verifier not exploring == NULL branch when pointer is not NULL, thus they started failing with a 'dereference of scalar' error. Next, allowing raw_tp arguments to be modified surfaced the warning in the verifier that warns against reg->off when PTR_MAYBE_NULL is set. More information, context, and discusson on both problems is available in [0]. Overall, this approach had several shortcomings, and the fixes would further complicate the verifier's logic, and the entire masking scheme would have to be removed eventually anyway. Hence, revert the patch in preparation of a better fix avoiding these issues to replace this commit. [0]: https://lore.kernel.org/bpf/20241206161053.809580-1-memxor@gmail.com Reported-by: Manu Bretelle <chantra@meta.com> Fixes: cb4158ce8ec8 ("bpf: Mark raw_tp arguments with PTR_MAYBE_NULL") Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20241213221929.3495062-2-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-12-12bpf: Check size for BTF-based ctx access of pointer membersKumar Kartikeya Dwivedi
Robert Morris reported the following program type which passes the verifier in [0]: SEC("struct_ops/bpf_cubic_init") void BPF_PROG(bpf_cubic_init, struct sock *sk) { asm volatile("r2 = *(u16*)(r1 + 0)"); // verifier should demand u64 asm volatile("*(u32 *)(r2 +1504) = 0"); // 1280 in some configs } The second line may or may not work, but the first instruction shouldn't pass, as it's a narrow load into the context structure of the struct ops callback. The code falls back to btf_ctx_access to ensure correctness and obtaining the types of pointers. Ensure that the size of the access is correctly checked to be 8 bytes, otherwise the verifier thinks the narrow load obtained a trusted BTF pointer and will permit loads/stores as it sees fit. Perform the check on size after we've verified that the load is for a pointer field, as for scalar values narrow loads are fine. Access to structs passed as arguments to a BPF program are also treated as scalars, therefore no adjustment is needed in their case. Existing verifier selftests are broken by this change, but because they were incorrect. Verifier tests for d_path were performing narrow load into context to obtain path pointer, had this program actually run it would cause a crash. The same holds for verifier_btf_ctx_access tests. [0]: https://lore.kernel.org/bpf/51338.1732985814@localhost Fixes: 9e15db66136a ("bpf: Implement accurate raw_tp context access via BTF") Reported-by: Robert Morris <rtm@mit.edu> Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20241212092050.3204165-2-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-12-12bpf: fix null dereference when computing changes_pkt_data of prog w/o subprogsEduard Zingerman
bpf_prog_aux->func field might be NULL if program does not have subprograms except for main sub-program. The fixed commit does bpf_prog_aux->func access unconditionally, which might lead to null pointer dereference. The bug could be triggered by replacing the following BPF program: SEC("tc") int main_changes(struct __sk_buff *sk) { bpf_skb_pull_data(sk, 0); return 0; } With the following BPF program: SEC("freplace") long changes_pkt_data(struct __sk_buff *sk) { return bpf_skb_pull_data(sk, 0); } bpf_prog_aux instance itself represents the main sub-program, use this property to fix the bug. Fixes: 81f6d0530ba0 ("bpf: check changes_pkt_data property for extension programs") Reported-by: kernel test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@linaro.org> Closes: https://lore.kernel.org/r/202412111822.qGw6tOyB-lkp@intel.com/ Signed-off-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/r/20241212070711.427443-1-eddyz87@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-12-10bpf: fix potential error returnAnton Protopopov
The bpf_remove_insns() function returns WARN_ON_ONCE(error), where error is a result of bpf_adj_branches(), and thus should be always 0 However, if for any reason it is not 0, then it will be converted to boolean by WARN_ON_ONCE and returned to user space as 1, not an actual error value. Fix this by returning the original err after the WARN check. Signed-off-by: Anton Protopopov <aspsk@isovalent.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20241210114245.836164-1-aspsk@isovalent.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-12-10bpf: check changes_pkt_data property for extension programsEduard Zingerman
When processing calls to global sub-programs, verifier decides whether to invalidate all packet pointers in current state depending on the changes_pkt_data property of the global sub-program. Because of this, an extension program replacing a global sub-program must be compatible with changes_pkt_data property of the sub-program being replaced. This commit: - adds changes_pkt_data flag to struct bpf_prog_aux: - this flag is set in check_cfg() for main sub-program; - in jit_subprogs() for other sub-programs; - modifies bpf_check_attach_btf_id() to check changes_pkt_data flag; - moves call to check_attach_btf_id() after the call to check_cfg(), because it needs changes_pkt_data flag to be set: bpf_check: ... ... - check_attach_btf_id resolve_pseudo_ldimm64 resolve_pseudo_ldimm64 --> bpf_prog_is_offloaded bpf_prog_is_offloaded check_cfg check_cfg + check_attach_btf_id ... ... The following fields are set by check_attach_btf_id(): - env->ops - prog->aux->attach_btf_trace - prog->aux->attach_func_name - prog->aux->attach_func_proto - prog->aux->dst_trampoline - prog->aux->mod - prog->aux->saved_dst_attach_type - prog->aux->saved_dst_prog_type - prog->expected_attach_type Neither of these fields are used by resolve_pseudo_ldimm64() or bpf_prog_offload_verifier_prep() (for netronome and netdevsim drivers), so the reordering is safe. Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> Signed-off-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/r/20241210041100.1898468-6-eddyz87@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-12-10bpf: track changes_pkt_data property for global functionsEduard Zingerman
When processing calls to certain helpers, verifier invalidates all packet pointers in a current state. For example, consider the following program: __attribute__((__noinline__)) long skb_pull_data(struct __sk_buff *sk, __u32 len) { return bpf_skb_pull_data(sk, len); } SEC("tc") int test_invalidate_checks(struct __sk_buff *sk) { int *p = (void *)(long)sk->data; if ((void *)(p + 1) > (void *)(long)sk->data_end) return TCX_DROP; skb_pull_data(sk, 0); *p = 42; return TCX_PASS; } After a call to bpf_skb_pull_data() the pointer 'p' can't be used safely. See function filter.c:bpf_helper_changes_pkt_data() for a list of such helpers. At the moment verifier invalidates packet pointers when processing helper function calls, and does not traverse global sub-programs when processing calls to global sub-programs. This means that calls to helpers done from global sub-programs do not invalidate pointers in the caller state. E.g. the program above is unsafe, but is not rejected by verifier. This commit fixes the omission by computing field bpf_subprog_info->changes_pkt_data for each sub-program before main verification pass. changes_pkt_data should be set if: - subprogram calls helper for which bpf_helper_changes_pkt_data returns true; - subprogram calls a global function, for which bpf_subprog_info->changes_pkt_data should be set. The verifier.c:check_cfg() pass is modified to compute this information. The commit relies on depth first instruction traversal done by check_cfg() and absence of recursive function calls: - check_cfg() would eventually visit every call to subprogram S in a state when S is fully explored; - when S is fully explored: - every direct helper call within S is explored (and thus changes_pkt_data is set if needed); - every call to subprogram S1 called by S was visited with S1 fully explored (and thus S inherits changes_pkt_data from S1). The downside of such approach is that dead code elimination is not taken into account: if a helper call inside global function is dead because of current configuration, verifier would conservatively assume that the call occurs for the purpose of the changes_pkt_data computation. Reported-by: Nick Zavaritsky <mejedi@gmail.com> Closes: https://lore.kernel.org/bpf/0498CA22-5779-4767-9C0C-A9515CEA711F@gmail.com/ Signed-off-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/r/20241210041100.1898468-4-eddyz87@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-12-10bpf: refactor bpf_helper_changes_pkt_data to use helper numberEduard Zingerman
Use BPF helper number instead of function pointer in bpf_helper_changes_pkt_data(). This would simplify usage of this function in verifier.c:check_cfg() (in a follow-up patch), where only helper number is easily available and there is no real need to lookup helper proto. Signed-off-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/r/20241210041100.1898468-3-eddyz87@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-12-10bpf: add find_containing_subprog() utility functionEduard Zingerman
Add a utility function, looking for a subprogram containing a given instruction index, rewrite find_subprog() to use this function. Signed-off-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/r/20241210041100.1898468-2-eddyz87@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-12-06bpf: Use raw_spinlock_t for LPM trieHou Tao
After switching from kmalloc() to the bpf memory allocator, there will be no blocking operation during the update of LPM trie. Therefore, change trie->lock from spinlock_t to raw_spinlock_t to make LPM trie usable in atomic context, even on RT kernels. The max value of prefixlen is 2048. Therefore, update or deletion operations will find the target after at most 2048 comparisons. Constructing a test case which updates an element after 2048 comparisons under a 8 CPU VM, and the average time and the maximal time for such update operation is about 210us and 900us. Signed-off-by: Hou Tao <houtao1@huawei.com> Link: https://lore.kernel.org/r/20241206110622.1161752-8-houtao@huaweicloud.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-12-06bpf: Switch to bpf mem allocator for LPM trieHou Tao
Multiple syzbot warnings have been reported. These warnings are mainly about the lock order between trie->lock and kmalloc()'s internal lock. See report [1] as an example: ====================================================== WARNING: possible circular locking dependency detected 6.10.0-rc7-syzkaller-00003-g4376e966ecb7 #0 Not tainted ------------------------------------------------------ syz.3.2069/15008 is trying to acquire lock: ffff88801544e6d8 (&n->list_lock){-.-.}-{2:2}, at: get_partial_node ... but task is already holding lock: ffff88802dcc89f8 (&trie->lock){-.-.}-{2:2}, at: trie_update_elem ... which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (&trie->lock){-.-.}-{2:2}: __raw_spin_lock_irqsave _raw_spin_lock_irqsave+0x3a/0x60 trie_delete_elem+0xb0/0x820 ___bpf_prog_run+0x3e51/0xabd0 __bpf_prog_run32+0xc1/0x100 bpf_dispatcher_nop_func ...... bpf_trace_run2+0x231/0x590 __bpf_trace_contention_end+0xca/0x110 trace_contention_end.constprop.0+0xea/0x170 __pv_queued_spin_lock_slowpath+0x28e/0xcc0 pv_queued_spin_lock_slowpath queued_spin_lock_slowpath queued_spin_lock do_raw_spin_lock+0x210/0x2c0 __raw_spin_lock_irqsave _raw_spin_lock_irqsave+0x42/0x60 __put_partials+0xc3/0x170 qlink_free qlist_free_all+0x4e/0x140 kasan_quarantine_reduce+0x192/0x1e0 __kasan_slab_alloc+0x69/0x90 kasan_slab_alloc slab_post_alloc_hook slab_alloc_node kmem_cache_alloc_node_noprof+0x153/0x310 __alloc_skb+0x2b1/0x380 ...... -> #0 (&n->list_lock){-.-.}-{2:2}: check_prev_add check_prevs_add validate_chain __lock_acquire+0x2478/0x3b30 lock_acquire lock_acquire+0x1b1/0x560 __raw_spin_lock_irqsave _raw_spin_lock_irqsave+0x3a/0x60 get_partial_node.part.0+0x20/0x350 get_partial_node get_partial ___slab_alloc+0x65b/0x1870 __slab_alloc.constprop.0+0x56/0xb0 __slab_alloc_node slab_alloc_node __do_kmalloc_node __kmalloc_node_noprof+0x35c/0x440 kmalloc_node_noprof bpf_map_kmalloc_node+0x98/0x4a0 lpm_trie_node_alloc trie_update_elem+0x1ef/0xe00 bpf_map_update_value+0x2c1/0x6c0 map_update_elem+0x623/0x910 __sys_bpf+0x90c/0x49a0 ... other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&trie->lock); lock(&n->list_lock); lock(&trie->lock); lock(&n->list_lock); *** DEADLOCK *** [1]: https://syzkaller.appspot.com/bug?extid=9045c0a3d5a7f1b119f7 A bpf program attached to trace_contention_end() triggers after acquiring &n->list_lock. The program invokes trie_delete_elem(), which then acquires trie->lock. However, it is possible that another process is invoking trie_update_elem(). trie_update_elem() will acquire trie->lock first, then invoke kmalloc_node(). kmalloc_node() may invoke get_partial_node() and try to acquire &n->list_lock (not necessarily the same lock object). Therefore, lockdep warns about the circular locking dependency. Invoking kmalloc() before acquiring trie->lock could fix the warning. However, since BPF programs call be invoked from any context (e.g., through kprobe/tracepoint/fentry), there may still be lock ordering problems for internal locks in kmalloc() or trie->lock itself. To eliminate these potential lock ordering problems with kmalloc()'s internal locks, replacing kmalloc()/kfree()/kfree_rcu() with equivalent BPF memory allocator APIs that can be invoked in any context. The lock ordering problems with trie->lock (e.g., reentrance) will be handled separately. Three aspects of this change require explanation: 1. Intermediate and leaf nodes are allocated from the same allocator. Since the value size of LPM trie is usually small, using a single alocator reduces the memory overhead of the BPF memory allocator. 2. Leaf nodes are allocated before disabling IRQs. This handles cases where leaf_size is large (e.g., > 4KB - 8) and updates require intermediate node allocation. If leaf nodes were allocated in IRQ-disabled region, the free objects in BPF memory allocator would not be refilled timely and the intermediate node allocation may fail. 3. Paired migrate_{disable|enable}() calls for node alloc and free. The BPF memory allocator uses per-CPU struct internally, these paired calls are necessary to guarantee correctness. Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Hou Tao <houtao1@huawei.com> Link: https://lore.kernel.org/r/20241206110622.1161752-7-houtao@huaweicloud.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-12-06bpf: Fix exact match conditions in trie_get_next_key()Hou Tao
trie_get_next_key() uses node->prefixlen == key->prefixlen to identify an exact match, However, it is incorrect because when the target key doesn't fully match the found node (e.g., node->prefixlen != matchlen), these two nodes may also have the same prefixlen. It will return expected result when the passed key exist in the trie. However when a recently-deleted key or nonexistent key is passed to trie_get_next_key(), it may skip keys and return incorrect result. Fix it by using node->prefixlen == matchlen to identify exact matches. When the condition is true after the search, it also implies node->prefixlen equals key->prefixlen, otherwise, the search would return NULL instead. Fixes: b471f2f1de8b ("bpf: implement MAP_GET_NEXT_KEY command for LPM_TRIE map") Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Hou Tao <houtao1@huawei.com> Link: https://lore.kernel.org/r/20241206110622.1161752-6-houtao@huaweicloud.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-12-06bpf: Handle in-place update for full LPM trie correctlyHou Tao
When a LPM trie is full, in-place updates of existing elements incorrectly return -ENOSPC. Fix this by deferring the check of trie->n_entries. For new insertions, n_entries must not exceed max_entries. However, in-place updates are allowed even when the trie is full. Fixes: b95a5c4db09b ("bpf: add a longest prefix match trie map implementation") Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Hou Tao <houtao1@huawei.com> Link: https://lore.kernel.org/r/20241206110622.1161752-5-houtao@huaweicloud.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-12-06bpf: Handle BPF_EXIST and BPF_NOEXIST for LPM trieHou Tao
Add the currently missing handling for the BPF_EXIST and BPF_NOEXIST flags. These flags can be specified by users and are relevant since LPM trie supports exact matches during update. Fixes: b95a5c4db09b ("bpf: add a longest prefix match trie map implementation") Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Hou Tao <houtao1@huawei.com> Link: https://lore.kernel.org/r/20241206110622.1161752-4-houtao@huaweicloud.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-12-06bpf: Remove unnecessary kfree(im_node) in lpm_trie_update_elemHou Tao
There is no need to call kfree(im_node) when updating element fails, because im_node must be NULL. Remove the unnecessary kfree() for im_node. Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Hou Tao <houtao1@huawei.com> Link: https://lore.kernel.org/r/20241206110622.1161752-3-houtao@huaweicloud.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-12-06bpf: Remove unnecessary check when updating LPM trieHou Tao
When "node->prefixlen == matchlen" is true, it means that the node is fully matched. If "node->prefixlen == key->prefixlen" is false, it means the prefix length of key is greater than the prefix length of node, otherwise, matchlen will not be equal with node->prefixlen. However, it also implies that the prefix length of node must be less than max_prefixlen. Therefore, "node->prefixlen == trie->max_prefixlen" will always be false when the check of "node->prefixlen == key->prefixlen" returns false. Remove this unnecessary comparison. Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Hou Tao <houtao1@huawei.com> Link: https://lore.kernel.org/r/20241206110622.1161752-2-houtao@huaweicloud.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-12-04bpf: Fix narrow scalar spill onto 64-bit spilled scalar slotsTao Lyu
When CAP_PERFMON and CAP_SYS_ADMIN (allow_ptr_leaks) are disabled, the verifier aims to reject partial overwrite on an 8-byte stack slot that contains a spilled pointer. However, in such a scenario, it rejects all partial stack overwrites as long as the targeted stack slot is a spilled register, because it does not check if the stack slot is a spilled pointer. Incomplete checks will result in the rejection of valid programs, which spill narrower scalar values onto scalar slots, as shown below. 0: R1=ctx() R10=fp0 ; asm volatile ( @ repro.bpf.c:679 0: (7a) *(u64 *)(r10 -8) = 1 ; R10=fp0 fp-8_w=1 1: (62) *(u32 *)(r10 -8) = 1 attempt to corrupt spilled pointer on stack processed 2 insns (limit 1000000) max_states_per_insn 0 total_states 0 peak_states 0 mark_read 0. Fix this by expanding the check to not consider spilled scalar registers when rejecting the write into the stack. Previous discussion on this patch is at link [0]. [0]: https://lore.kernel.org/bpf/20240403202409.2615469-1-tao.lyu@epfl.ch Fixes: ab125ed3ec1c ("bpf: fix check for attempt to corrupt spilled pointer") Acked-by: Eduard Zingerman <eddyz87@gmail.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Tao Lyu <tao.lyu@epfl.ch> Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20241204044757.1483141-3-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-12-04bpf: Don't mark STACK_INVALID as STACK_MISC in mark_stack_slot_miscKumar Kartikeya Dwivedi
Inside mark_stack_slot_misc, we should not upgrade STACK_INVALID to STACK_MISC when allow_ptr_leaks is false, since invalid contents shouldn't be read unless the program has the relevant capabilities. The relaxation only makes sense when env->allow_ptr_leaks is true. However, such conversion in privileged mode becomes unnecessary, as invalid slots can be read without being upgraded to STACK_MISC. Currently, the condition is inverted (i.e. checking for true instead of false), simply remove it to restore correct behavior. Fixes: eaf18febd6eb ("bpf: preserve STACK_ZERO slots on partial reg spills") Acked-by: Andrii Nakryiko <andrii@kernel.org> Reported-by: Tao Lyu <tao.lyu@epfl.ch> Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20241204044757.1483141-2-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-12-02bpf: Zero index arg error string for dynptr and iterKumar Kartikeya Dwivedi
Andrii spotted that process_dynptr_func's rejection of incorrect argument register type will print an error string where argument numbers are not zero-indexed, unlike elsewhere in the verifier. Fix this by subtracting 1 from regno. The same scenario exists for iterator messages. Fix selftest error strings that match on the exact argument number while we're at it to ensure clean bisection. Suggested-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20241203002235.3776418-1-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-12-02bpf: Ensure reg is PTR_TO_STACK in process_iter_argTao Lyu
Currently, KF_ARG_PTR_TO_ITER handling missed checking the reg->type and ensuring it is PTR_TO_STACK. Instead of enforcing this in the caller of process_iter_arg, move the check into it instead so that all callers will gain the check by default. This is similar to process_dynptr_func. An existing selftest in verifier_bits_iter.c fails due to this change, but it's because it was passing a NULL pointer into iter_next helper and getting an error further down the checks, but probably meant to pass an uninitialized iterator on the stack (as is done in the subsequent test below it). We will gain coverage for non-PTR_TO_STACK arguments in later patches hence just change the declaration to zero-ed stack object. Fixes: 06accc8779c1 ("bpf: add support for open-coded iterator loops") Suggested-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Tao Lyu <tao.lyu@epfl.ch> [ Kartikeya: move check into process_iter_arg, rewrite commit log ] Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20241203000238.3602922-2-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-11-25bpf: fix OOB devmap writes when deleting elementsMaciej Fijalkowski
Jordy reported issue against XSKMAP which also applies to DEVMAP - the index used for accessing map entry, due to being a signed integer, causes the OOB writes. Fix is simple as changing the type from int to u32, however, when compared to XSKMAP case, one more thing needs to be addressed. When map is released from system via dev_map_free(), we iterate through all of the entries and an iterator variable is also an int, which implies OOB accesses. Again, change it to be u32. Example splat below: [ 160.724676] BUG: unable to handle page fault for address: ffffc8fc2c001000 [ 160.731662] #PF: supervisor read access in kernel mode [ 160.736876] #PF: error_code(0x0000) - not-present page [ 160.742095] PGD 0 P4D 0 [ 160.744678] Oops: Oops: 0000 [#1] PREEMPT SMP [ 160.749106] CPU: 1 UID: 0 PID: 520 Comm: kworker/u145:12 Not tainted 6.12.0-rc1+ #487 [ 160.757050] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019 [ 160.767642] Workqueue: events_unbound bpf_map_free_deferred [ 160.773308] RIP: 0010:dev_map_free+0x77/0x170 [ 160.777735] Code: 00 e8 fd 91 ed ff e8 b8 73 ed ff 41 83 7d 18 19 74 6e 41 8b 45 24 49 8b bd f8 00 00 00 31 db 85 c0 74 48 48 63 c3 48 8d 04 c7 <48> 8b 28 48 85 ed 74 30 48 8b 7d 18 48 85 ff 74 05 e8 b3 52 fa ff [ 160.796777] RSP: 0018:ffffc9000ee1fe38 EFLAGS: 00010202 [ 160.802086] RAX: ffffc8fc2c001000 RBX: 0000000080000000 RCX: 0000000000000024 [ 160.809331] RDX: 0000000000000000 RSI: 0000000000000024 RDI: ffffc9002c001000 [ 160.816576] RBP: 0000000000000000 R08: 0000000000000023 R09: 0000000000000001 [ 160.823823] R10: 0000000000000001 R11: 00000000000ee6b2 R12: dead000000000122 [ 160.831066] R13: ffff88810c928e00 R14: ffff8881002df405 R15: 0000000000000000 [ 160.838310] FS: 0000000000000000(0000) GS:ffff8897e0c40000(0000) knlGS:0000000000000000 [ 160.846528] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 160.852357] CR2: ffffc8fc2c001000 CR3: 0000000005c32006 CR4: 00000000007726f0 [ 160.859604] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 160.866847] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 160.874092] PKRU: 55555554 [ 160.876847] Call Trace: [ 160.879338] <TASK> [ 160.881477] ? __die+0x20/0x60 [ 160.884586] ? page_fault_oops+0x15a/0x450 [ 160.888746] ? search_extable+0x22/0x30 [ 160.892647] ? search_bpf_extables+0x5f/0x80 [ 160.896988] ? exc_page_fault+0xa9/0x140 [ 160.900973] ? asm_exc_page_fault+0x22/0x30 [ 160.905232] ? dev_map_free+0x77/0x170 [ 160.909043] ? dev_map_free+0x58/0x170 [ 160.912857] bpf_map_free_deferred+0x51/0x90 [ 160.917196] process_one_work+0x142/0x370 [ 160.921272] worker_thread+0x29e/0x3b0 [ 160.925082] ? rescuer_thread+0x4b0/0x4b0 [ 160.929157] kthread+0xd4/0x110 [ 160.932355] ? kthread_park+0x80/0x80 [ 160.936079] ret_from_fork+0x2d/0x50 [ 160.943396] ? kthread_park+0x80/0x80 [ 160.950803] ret_from_fork_asm+0x11/0x20 [ 160.958482] </TASK> Fixes: 546ac1ffb70d ("bpf: add devmap, a map for storing net device references") CC: stable@vger.kernel.org Reported-by: Jordy Zomer <jordyzomer@google.com> Suggested-by: Jordy Zomer <jordyzomer@google.com> Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com> Acked-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Link: https://lore.kernel.org/r/20241122121030.716788-3-maciej.fijalkowski@intel.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-11-25bpf, lsm: Remove getlsmprop hooks BTF IDsThomas Weißschuh
These hooks are not useful for BPF LSM currently. Furthermore a recent renaming introduced build warnings: BTFIDS vmlinux WARN: resolve_btfids: unresolved symbol bpf_lsm_task_getsecid_obj WARN: resolve_btfids: unresolved symbol bpf_lsm_current_getsecid_subj Link: https://lore.kernel.org/lkml/20241123-bpf_lsm_task_getsecid_obj-v1-1-0d0f94649e05@weissschuh.net/ Fixes: 37f670aacd48 ("lsm: use lsm_prop in security_current_getsecid") Signed-off-by: Thomas Weißschuh <linux@weissschuh.net> Link: https://lore.kernel.org/r/20241125-bpf_lsm_task_getsecid_obj-v2-1-c8395bde84e0@weissschuh.net Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-11-22Merge tag 'sysctl-6.13-rc1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/sysctl/sysctl Pull sysctl updates from Joel Granados: "sysctl ctl_table constification: - Constifying ctl_table structs prevents the modification of proc_handler function pointers. All ctl_table struct arguments are const qualified in the sysctl API in such a way that the ctl_table arrays being defined elsewhere and passed through sysctl can be constified one-by-one. We kick the constification off by qualifying user_table in kernel/ucount.c and expect all the ctl_tables to be constified in the coming releases. Misc fixes: - Adjust comments in two places to better reflect the code - Remove superfluous dput calls - Remove Luis from sysctl maintainership - Replace comments about holding a lock with calls to lockdep_assert_held" * tag 'sysctl-6.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/sysctl/sysctl: sysctl: Reduce dput(child) calls in proc_sys_fill_cache() sysctl: Reorganize kerneldoc parameter names ucounts: constify sysctl table user_table sysctl: update comments to new registration APIs MAINTAINERS: remove me from sysctl sysctl: Convert locking comments to lockdep assertions const_structs.checkpatch: add ctl_table sysctl: make internal ctl_tables const sysctl: allow registration of const struct ctl_table sysctl: move internal interfaces to const struct ctl_table bpf: Constify ctl_table argument of filter function
2024-11-22Merge tag 'trace-v6.13' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull tracing updates from Steven Rostedt: - Addition of faultable tracepoints There's a tracepoint attached to both a system call entry and exit. This location is known to allow page faults. The tracepoints are called under an rcu_read_lock() which does not allow faults that can sleep. This limits the ability of tracepoint handlers to page fault in user space system call parameters. Now these tracepoints have been made "faultable", allowing the callbacks to fault in user space parameters and record them. Note, only the infrastructure has been implemented. The consumers (perf, ftrace, BPF) now need to have their code modified to allow faults. - Fix up of BPF code for the tracepoint faultable logic - Update tracepoints to use the new static branch API - Remove trace_*_rcuidle() variants and the SRCU protection they used - Remove unused TRACE_EVENT_FL_FILTERED logic - Replace strncpy() with strscpy() and memcpy() - Use replace per_cpu_ptr(smp_processor_id()) with this_cpu_ptr() - Fix perf events to not duplicate samples when tracing is enabled - Replace atomic64_add_return(1, counter) with atomic64_inc_return(counter) - Make stack trace buffer 4K instead of PAGE_SIZE - Remove TRACE_FLAG_IRQS_NOSUPPORT flag as it was never used - Get the true return address for function tracer when function graph tracer is also running. When function_graph trace is running along with function tracer, the parent function of the function tracer sometimes is "return_to_handler", which is the function graph trampoline to record the exit of the function. Use existing logic that calls into the fgraph infrastructure to find the real return address. - Remove (un)regfunc pointers out of tracepoint structure - Added last minute bug fix for setting pending modules in stack function filter. echo "write*:mod:ext3" > /sys/kernel/tracing/stack_trace_filter Would cause a kernel NULL dereference. - Minor clean ups * tag 'trace-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (31 commits) ftrace: Fix regression with module command in stack_trace_filter tracing: Fix function name for trampoline ftrace: Get the true parent ip for function tracer tracing: Remove redundant check on field->field in histograms bpf: ensure RCU Tasks Trace GP for sleepable raw tracepoint BPF links bpf: decouple BPF link/attach hook and BPF program sleepable semantics bpf: put bpf_link's program when link is safe to be deallocated tracing: Replace strncpy() with strscpy() when copying comm tracing: Add might_fault() check in __DECLARE_TRACE_SYSCALL tracing: Fix syscall tracepoint use-after-free tracing: Introduce tracepoint_is_faultable() tracing: Introduce tracepoint extended structure tracing: Remove TRACE_FLAG_IRQS_NOSUPPORT tracing: Replace multiple deprecated strncpy with memcpy tracing: Make percpu stack trace buffer invariant to PAGE_SIZE tracing: Use atomic64_inc_return() in trace_clock_counter() trace/trace_event_perf: remove duplicate samples on the first tracepoint event tracing/bpf: Add might_fault check to syscall probes tracing/perf: Add might_fault check to syscall probes tracing/ftrace: Add might_fault check to syscall probes ...
2024-11-21Merge tag 'bpf-next-6.13' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next Pull bpf updates from Alexei Starovoitov: - Add BPF uprobe session support (Jiri Olsa) - Optimize uprobe performance (Andrii Nakryiko) - Add bpf_fastcall support to helpers and kfuncs (Eduard Zingerman) - Avoid calling free_htab_elem() under hash map bucket lock (Hou Tao) - Prevent tailcall infinite loop caused by freplace (Leon Hwang) - Mark raw_tracepoint arguments as nullable (Kumar Kartikeya Dwivedi) - Introduce uptr support in the task local storage map (Martin KaFai Lau) - Stringify errno log messages in libbpf (Mykyta Yatsenko) - Add kmem_cache BPF iterator for perf's lock profiling (Namhyung Kim) - Support BPF objects of either endianness in libbpf (Tony Ambardar) - Add ksym to struct_ops trampoline to fix stack trace (Xu Kuohai) - Introduce private stack for eligible BPF programs (Yonghong Song) - Migrate samples/bpf tests to selftests/bpf test_progs (Daniel T. Lee) - Migrate test_sock to selftests/bpf test_progs (Jordan Rife) * tag 'bpf-next-6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (152 commits) libbpf: Change hash_combine parameters from long to unsigned long selftests/bpf: Fix build error with llvm 19 libbpf: Fix memory leak in bpf_program__attach_uprobe_multi bpf: use common instruction history across all states bpf: Add necessary migrate_disable to range_tree. bpf: Do not alloc arena on unsupported arches selftests/bpf: Set test path for token/obj_priv_implicit_token_envvar selftests/bpf: Add a test for arena range tree algorithm bpf: Introduce range_tree data structure and use it in bpf arena samples/bpf: Remove unused variable in xdp2skb_meta_kern.c samples/bpf: Remove unused variables in tc_l2_redirect_kern.c bpftool: Cast variable `var` to long long bpf, x86: Propagate tailcall info only for subprogs bpf: Add kernel symbol for struct_ops trampoline bpf: Use function pointers count as struct_ops links count bpf: Remove unused member rcu from bpf_struct_ops_map selftests/bpf: Add struct_ops prog private stack tests bpf: Support private stack for struct_ops progs selftests/bpf: Add tracing prog private stack tests bpf, x86: Support private stack in jit ...
2024-11-19Merge tag 'random-6.13-rc1-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/crng/random Pull random number generator updates from Jason Donenfeld: "This contains a single series from Uros to replace uses of <linux/random.h> with prandom.h or other more specific headers as needed, in order to avoid a circular header issue. Uros' goal is to be able to use percpu.h from prandom.h, which will then allow him to define __percpu in percpu.h rather than in compiler_types.h" * tag 'random-6.13-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random: prandom: Include <linux/percpu.h> in <linux/prandom.h> random: Do not include <linux/prandom.h> in <linux/random.h> netem: Include <linux/prandom.h> in sch_netem.c lib/test_scanf: Include <linux/prandom.h> instead of <linux/random.h> lib/test_parman: Include <linux/prandom.h> instead of <linux/random.h> bpf/tests: Include <linux/prandom.h> instead of <linux/random.h> lib/rbtree-test: Include <linux/prandom.h> instead of <linux/random.h> random32: Include <linux/prandom.h> instead of <linux/random.h> kunit: string-stream-test: Include <linux/prandom.h> lib/interval_tree_test.c: Include <linux/prandom.h> instead of <linux/random.h> bpf: Include <linux/prandom.h> instead of <linux/random.h> scsi: libfcoe: Include <linux/prandom.h> instead of <linux/random.h> fscrypt: Include <linux/once.h> in fs/crypto/keyring.c mtd: tests: Include <linux/prandom.h> instead of <linux/random.h> media: vivid: Include <linux/prandom.h> in vivid-vid-cap.c drm/lib: Include <linux/prandom.h> instead of <linux/random.h> drm/i915/selftests: Include <linux/prandom.h> instead of <linux/random.h> crypto: testmgr: Include <linux/prandom.h> instead of <linux/random.h> x86/kaslr: Include <linux/prandom.h> instead of <linux/random.h>
2024-11-18Merge tag 'vfs-6.13.file' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs Pull vfs file updates from Christian Brauner: "This contains changes the changes for files for this cycle: - Introduce a new reference counting mechanism for files. As atomic_inc_not_zero() is implemented with a try_cmpxchg() loop it has O(N^2) behaviour under contention with N concurrent operations and it is in a hot path in __fget_files_rcu(). The rcuref infrastructures remedies this problem by using an unconditional increment relying on safe- and dead zones to make this work and requiring rcu protection for the data structure in question. This not just scales better it also introduces overflow protection. However, in contrast to generic rcuref, files require a memory barrier and thus cannot rely on *_relaxed() atomic operations and also require to be built on atomic_long_t as having massive amounts of reference isn't unheard of even if it is just an attack. This adds a file specific variant instead of making this a generic library. This has been tested by various people and it gives consistent improvement up to 3-5% on workloads with loads of threads. - Add a fastpath for find_next_zero_bit(). Skip 2-levels searching via find_next_zero_bit() when there is a free slot in the word that contains the next fd. This improves pts/blogbench-1.1.0 read by 8% and write by 4% on Intel ICX 160. - Conditionally clear full_fds_bits since it's very likely that a bit in full_fds_bits has been cleared during __clear_open_fds(). This improves pts/blogbench-1.1.0 read up to 13%, and write up to 5% on Intel ICX 160. - Get rid of all lookup_*_fdget_rcu() variants. They were used to lookup files without taking a reference count. That became invalid once files were switched to SLAB_TYPESAFE_BY_RCU and now we're always taking a reference count. Switch to an already existing helper and remove the legacy variants. - Remove pointless includes of <linux/fdtable.h>. - Avoid cmpxchg() in close_files() as nobody else has a reference to the files_struct at that point. - Move close_range() into fs/file.c and fold __close_range() into it. - Cleanup calling conventions of alloc_fdtable() and expand_files(). - Merge __{set,clear}_close_on_exec() into one. - Make __set_open_fd() set cloexec as well instead of doing it in two separate steps" * tag 'vfs-6.13.file' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: selftests: add file SLAB_TYPESAFE_BY_RCU recycling stressor fs: port files to file_ref fs: add file_ref expand_files(): simplify calling conventions make __set_open_fd() set cloexec state as well fs: protect backing files with rcu file.c: merge __{set,clear}_close_on_exec() alloc_fdtable(): change calling conventions. fs/file.c: add fast path in find_next_fd() fs/file.c: conditionally clear full_fds fs/file.c: remove sanity_check and add likely/unlikely in alloc_fd() move close_range(2) into fs/file.c, fold __close_range() into it close_files(): don't bother with xchg() remove pointless includes of <linux/fdtable.h> get rid of ...lookup...fdget_rcu() family
2024-11-15bpf: use common instruction history across all statesAndrii Nakryiko
Instead of allocating and copying instruction history each time we enqueue child verifier state, switch to a model where we use one common dynamically sized array of instruction history entries across all states. The key observation for proving this is correct is that instruction history is only relevant while state is active, which means it either is a current state (and thus we are actively modifying instruction history and no other state can interfere with us) or we are checkpointed state with some children still active (either enqueued or being current). In the latter case our portion of instruction history is finalized and won't change or grow, so as long as we keep it immutable until the state is finalized, we are good. Now, when state is finalized and is put into state hash for potentially future pruning lookups, instruction history is not used anymore. This is because instruction history is only used by precision marking logic, and we never modify precision markings for finalized states. So, instead of each state having its own small instruction history, we keep a global dynamically-sized instruction history, where each state in current DFS path from root to active state remembers its portion of instruction history. Current state can append to this history, but cannot modify any of its parent histories. Async callback state enqueueing, while logically detached from parent state, still is part of verification backtracking tree, so has to follow the same schema as normal state checkpoints. Because the insn_hist array can be grown through realloc, states don't keep pointers, they instead maintain two indices, [start, end), into global instruction history array. End is exclusive index, so `start == end` means there is no relevant instruction history. This eliminates a lot of allocations and minimizes overall memory usage. For instance, running a worst-case test from [0] (but without the heuristics-based fix [1]), it took 12.5 minutes until we get -ENOMEM. With the changes in this patch the whole test succeeds in 10 minutes (very slow, so heuristics from [1] is important, of course). To further validate correctness, veristat-based comparison was performed for Meta production BPF objects and BPF selftests objects. In both cases there were no differences *at all* in terms of verdict or instruction and state counts, providing a good confidence in the change. Having this low-memory-overhead solution of keeping dynamic per-instruction history cheaply opens up some new possibilities, like keeping extra information for literally every single validated instruction. This will be used for simplifying precision backpropagation logic in follow up patches. [0] https://lore.kernel.org/bpf/20241029172641.1042523-2-eddyz87@gmail.com/ [1] https://lore.kernel.org/bpf/20241029172641.1042523-1-eddyz87@gmail.com/ Acked-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20241115001303.277272-1-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-11-15bpf: Add necessary migrate_disable to range_tree.Yonghong Song
When running bpf selftest (./test_progs -j), the following warnings showed up: $ ./test_progs -t arena_atomics ... BUG: using smp_processor_id() in preemptible [00000000] code: kworker/u19:0/12501 caller is bpf_mem_free+0x128/0x330 ... Call Trace: <TASK> dump_stack_lvl check_preemption_disabled bpf_mem_free range_tree_destroy arena_map_free bpf_map_free_deferred process_scheduled_works ... For selftests arena_htab and arena_list, similar smp_process_id() BUGs are dumped, and the following are two stack trace: <TASK> dump_stack_lvl check_preemption_disabled bpf_mem_alloc range_tree_set arena_map_alloc map_create ... <TASK> dump_stack_lvl check_preemption_disabled bpf_mem_alloc range_tree_clear arena_vm_fault do_pte_missing handle_mm_fault do_user_addr_fault ... Add migrate_{disable,enable}() around related bpf_mem_{alloc,free}() calls to fix the issue. Fixes: b795379757eb ("bpf: Introduce range_tree data structure and use it in bpf arena") Signed-off-by: Yonghong Song <yonghong.song@linux.dev> Link: https://lore.kernel.org/r/20241115060354.2832495-1-yonghong.song@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-11-15bpf: Do not alloc arena on unsupported archesViktor Malik
Do not allocate BPF arena on arches that do not support it, instead return EOPNOTSUPP. This is useful to prevent bugs such as soft lockups while trying to free the arena which we have witnessed on ppc64le [1]. [1] https://lore.kernel.org/bpf/4afdcb50-13f2-4772-8db1-3fd02bd985b3@redhat.com/ Signed-off-by: Viktor Malik <vmalik@redhat.com> Link: https://lore.kernel.org/r/20241115082548.74972-1-vmalik@redhat.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-11-13bpf: Introduce range_tree data structure and use it in bpf arenaAlexei Starovoitov
Introduce range_tree data structure and use it in bpf arena to track ranges of allocated pages. range_tree is a large bitmap that is implemented as interval tree plus rbtree. The contiguous sequence of bits represents unallocated pages. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/bpf/20241108025616.17625-2-alexei.starovoitov@gmail.com
2024-11-13Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpfAlexei Starovoitov
Cross-merge bpf fixes after downstream PR. In particular to bring the fix in commit aa30eb3260b2 ("bpf: Force checkpoint when jmp history is too long"). The follow up verifier work depends on it. And the fix in commit 6801cf7890f2 ("selftests/bpf: Use -4095 as the bad address for bits iterator"). It's fixing instability of BPF CI on s390 arch. No conflicts. Adjacent changes in: Auto-merging arch/Kconfig Auto-merging kernel/bpf/helpers.c Auto-merging kernel/bpf/memalloc.c Auto-merging kernel/bpf/verifier.c Auto-merging mm/slab_common.c Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-11-12bpf: Add kernel symbol for struct_ops trampolineXu Kuohai
Without kernel symbols for struct_ops trampoline, the unwinder may produce unexpected stacktraces. For example, the x86 ORC and FP unwinders check if an IP is in kernel text by verifying the presence of the IP's kernel symbol. When a struct_ops trampoline address is encountered, the unwinder stops due to the absence of symbol, resulting in an incomplete stacktrace that consists only of direct and indirect child functions called from the trampoline. The arm64 unwinder is another example. While the arm64 unwinder can proceed across a struct_ops trampoline address, the corresponding symbol name is displayed as "unknown", which is confusing. Thus, add kernel symbol for struct_ops trampoline. The name is bpf__<struct_ops_name>_<member_name>, where <struct_ops_name> is the type name of the struct_ops, and <member_name> is the name of the member that the trampoline is linked to. Below is a comparison of stacktraces captured on x86 by perf record, before and after this patch. Before: ffffffff8116545d __lock_acquire+0xad ([kernel.kallsyms]) ffffffff81167fcc lock_acquire+0xcc ([kernel.kallsyms]) ffffffff813088f4 __bpf_prog_enter+0x34 ([kernel.kallsyms]) After: ffffffff811656bd __lock_acquire+0x30d ([kernel.kallsyms]) ffffffff81167fcc lock_acquire+0xcc ([kernel.kallsyms]) ffffffff81309024 __bpf_prog_enter+0x34 ([kernel.kallsyms]) ffffffffc000d7e9 bpf__tcp_congestion_ops_cong_avoid+0x3e ([kernel.kallsyms]) ffffffff81f250a5 tcp_ack+0x10d5 ([kernel.kallsyms]) ffffffff81f27c66 tcp_rcv_established+0x3b6 ([kernel.kallsyms]) ffffffff81f3ad03 tcp_v4_do_rcv+0x193 ([kernel.kallsyms]) ffffffff81d65a18 __release_sock+0xd8 ([kernel.kallsyms]) ffffffff81d65af4 release_sock+0x34 ([kernel.kallsyms]) ffffffff81f15c4b tcp_sendmsg+0x3b ([kernel.kallsyms]) ffffffff81f663d7 inet_sendmsg+0x47 ([kernel.kallsyms]) ffffffff81d5ab40 sock_write_iter+0x160 ([kernel.kallsyms]) ffffffff8149c67b vfs_write+0x3fb ([kernel.kallsyms]) ffffffff8149caf6 ksys_write+0xc6 ([kernel.kallsyms]) ffffffff8149cb5d __x64_sys_write+0x1d ([kernel.kallsyms]) ffffffff81009200 x64_sys_call+0x1d30 ([kernel.kallsyms]) ffffffff82232d28 do_syscall_64+0x68 ([kernel.kallsyms]) ffffffff8240012f entry_SYSCALL_64_after_hwframe+0x76 ([kernel.kallsyms]) Fixes: 85d33df357b6 ("bpf: Introduce BPF_MAP_TYPE_STRUCT_OPS") Signed-off-by: Xu Kuohai <xukuohai@huawei.com> Acked-by: Yonghong Song <yonghong.song@linux.dev> Link: https://lore.kernel.org/r/20241112145849.3436772-4-xukuohai@huaweicloud.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-11-12bpf: Use function pointers count as struct_ops links countXu Kuohai
Only function pointers in a struct_ops structure can be linked to bpf progs, so set the links count to the function pointers count, instead of the total members count in the structure. Suggested-by: Martin KaFai Lau <martin.lau@linux.dev> Signed-off-by: Xu Kuohai <xukuohai@huawei.com> Link: https://lore.kernel.org/r/20241112145849.3436772-3-xukuohai@huaweicloud.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-11-12bpf: Remove unused member rcu from bpf_struct_ops_mapXu Kuohai
The rcu member in bpf_struct_ops_map is not used after commit b671c2067a04 ("bpf: Retire the struct_ops map kvalue->refcnt.") Remove it. Suggested-by: Martin KaFai Lau <martin.lau@linux.dev> Signed-off-by: Xu Kuohai <xukuohai@huawei.com> Link: https://lore.kernel.org/r/20241112145849.3436772-2-xukuohai@huaweicloud.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-11-12bpf: Support private stack for struct_ops progsYonghong Song
For struct_ops progs, whether a particular prog uses private stack depends on prog->aux->priv_stack_requested setting before actual insn-level verification for that prog. One particular implementation is to piggyback on struct_ops->check_member(). The next patch has an example for this. The struct_ops->check_member() sets prog->aux->priv_stack_requested to be true which enables private stack usage. The struct_ops prog follows the same rule as kprobe/tracing progs after function bpf_enable_priv_stack(). For example, even a struct_ops prog requests private stack, it could still use normal kernel stack if the stack size is small (< 64 bytes). Similar to tracing progs, nested same cpu same prog run will be skipped. A field (recursion_detected()) is added to bpf_prog_aux structure. If bpf_prog->aux->recursion_detected is implemented by the struct_ops subsystem and nested same cpu/prog happens, the function will be triggered to report an error, collect related info, etc. Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Yonghong Song <yonghong.song@linux.dev> Link: https://lore.kernel.org/r/20241112163933.2224962-1-yonghong.song@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-11-12bpf: Enable private stack for eligible subprogsYonghong Song
If private stack is used by any subprog, set that subprog prog->aux->jits_use_priv_stack to be true so later jit can allocate private stack for that subprog properly. Also set env->prog->aux->jits_use_priv_stack to be true if any subprog uses private stack. This is a use case for a single main prog (no subprogs) to use private stack, and also a use case for later struct-ops progs where env->prog->aux->jits_use_priv_stack will enable recursion check if any subprog uses private stack. Signed-off-by: Yonghong Song <yonghong.song@linux.dev> Link: https://lore.kernel.org/r/20241112163912.2224007-1-yonghong.song@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-11-12bpf: Find eligible subprogs for private stack supportYonghong Song
Private stack will be allocated with percpu allocator in jit time. To avoid complexity at runtime, only one copy of private stack is available per cpu per prog. So runtime recursion check is necessary to avoid stack corruption. Current private stack only supports kprobe/perf_event/tp/raw_tp which has recursion check in the kernel, and prog types that use bpf trampoline recursion check. For trampoline related prog types, currently only tracing progs have recursion checking. To avoid complexity, all async_cb subprogs use normal kernel stack including those subprogs used by both main prog subtree and async_cb subtree. Any prog having tail call also uses kernel stack. To avoid jit penalty with private stack support, a subprog stack size threshold is set such that only if the stack size is no less than the threshold, private stack is supported. The current threshold is 64 bytes. This avoids jit penality if the stack usage is small. A useless 'continue' is also removed from a loop in func check_max_stack_depth(). Signed-off-by: Yonghong Song <yonghong.song@linux.dev> Link: https://lore.kernel.org/r/20241112163907.2223839-1-yonghong.song@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-11-11bpf: Drop special callback reference handlingKumar Kartikeya Dwivedi
Logic to prevent callbacks from acquiring new references for the program (i.e. leaving acquired references), and releasing caller references (i.e. those acquired in parent frames) was introduced in commit 9d9d00ac29d0 ("bpf: Fix reference state management for synchronous callbacks"). This was necessary because back then, the verifier simulated each callback once (that could potentially be executed N times, where N can be zero). This meant that callbacks that left lingering resources or cleared caller resources could do it more than once, operating on undefined state or leaking memory. With the fixes to callback verification in commit ab5cfac139ab ("bpf: verify callbacks as if they are called unknown number of times"), all of this extra logic is no longer necessary. Hence, drop it as part of this commit. Cc: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20241109231430.2475236-3-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
2024-11-11bpf: Refactor active lock managementKumar Kartikeya Dwivedi
When bpf_spin_lock was introduced originally, there was deliberation on whether to use an array of lock IDs, but since bpf_spin_lock is limited to holding a single lock at any given time, we've been using a single ID to identify the held lock. In preparation for introducing spin locks that can be taken multiple times, introduce support for acquiring multiple lock IDs. For this purpose, reuse the acquired_refs array and store both lock and pointer references. We tag the entry with REF_TYPE_PTR or REF_TYPE_LOCK to disambiguate and find the relevant entry. The ptr field is used to track the map_ptr or btf (for bpf_obj_new allocations) to ensure locks can be matched with protected fields within the same "allocation", i.e. bpf_obj_new object or map value. The struct active_lock is changed to an int as the state is part of the acquired_refs array, and we only need active_lock as a cheap way of detecting lock presence. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20241109231430.2475236-2-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
2024-11-11bpf: Call free_htab_elem() after htab_unlock_bucket()Hou Tao
For htab of maps, when the map is removed from the htab, it may hold the last reference of the map. bpf_map_fd_put_ptr() will invoke bpf_map_free_id() to free the id of the removed map element. However, bpf_map_fd_put_ptr() is invoked while holding a bucket lock (raw_spin_lock_t), and bpf_map_free_id() attempts to acquire map_idr_lock (spinlock_t), triggering the following lockdep warning: ============================= [ BUG: Invalid wait context ] 6.11.0-rc4+ #49 Not tainted ----------------------------- test_maps/4881 is trying to lock: ffffffff84884578 (map_idr_lock){+...}-{3:3}, at: bpf_map_free_id.part.0+0x21/0x70 other info that might help us debug this: context-{5:5} 2 locks held by test_maps/4881: #0: ffffffff846caf60 (rcu_read_lock){....}-{1:3}, at: bpf_fd_htab_map_update_elem+0xf9/0x270 #1: ffff888149ced148 (&htab->lockdep_key#2){....}-{2:2}, at: htab_map_update_elem+0x178/0xa80 stack backtrace: CPU: 0 UID: 0 PID: 4881 Comm: test_maps Not tainted 6.11.0-rc4+ #49 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), ... Call Trace: <TASK> dump_stack_lvl+0x6e/0xb0 dump_stack+0x10/0x20 __lock_acquire+0x73e/0x36c0 lock_acquire+0x182/0x450 _raw_spin_lock_irqsave+0x43/0x70 bpf_map_free_id.part.0+0x21/0x70 bpf_map_put+0xcf/0x110 bpf_map_fd_put_ptr+0x9a/0xb0 free_htab_elem+0x69/0xe0 htab_map_update_elem+0x50f/0xa80 bpf_fd_htab_map_update_elem+0x131/0x270 htab_map_update_elem+0x50f/0xa80 bpf_fd_htab_map_update_elem+0x131/0x270 bpf_map_update_value+0x266/0x380 __sys_bpf+0x21bb/0x36b0 __x64_sys_bpf+0x45/0x60 x64_sys_call+0x1b2a/0x20d0 do_syscall_64+0x5d/0x100 entry_SYSCALL_64_after_hwframe+0x76/0x7e One way to fix the lockdep warning is using raw_spinlock_t for map_idr_lock as well. However, bpf_map_alloc_id() invokes idr_alloc_cyclic() after acquiring map_idr_lock, it will trigger a similar lockdep warning because the slab's lock (s->cpu_slab->lock) is still a spinlock. Instead of changing map_idr_lock's type, fix the issue by invoking htab_put_fd_value() after htab_unlock_bucket(). However, only deferring the invocation of htab_put_fd_value() is not enough, because the old map pointers in htab of maps can not be saved during batched deletion. Therefore, also defer the invocation of free_htab_elem(), so these to-be-freed elements could be linked together similar to lru map. There are four callers for ->map_fd_put_ptr: (1) alloc_htab_elem() (through htab_put_fd_value()) It invokes ->map_fd_put_ptr() under a raw_spinlock_t. The invocation of htab_put_fd_value() can not simply move after htab_unlock_bucket(), because the old element has already been stashed in htab->extra_elems. It may be reused immediately after htab_unlock_bucket() and the invocation of htab_put_fd_value() after htab_unlock_bucket() may release the newly-added element incorrectly. Therefore, saving the map pointer of the old element for htab of maps before unlocking the bucket and releasing the map_ptr after unlock. Beside the map pointer in the old element, should do the same thing for the special fields in the old element as well. (2) free_htab_elem() (through htab_put_fd_value()) Its caller includes __htab_map_lookup_and_delete_elem(), htab_map_delete_elem() and __htab_map_lookup_and_delete_batch(). For htab_map_delete_elem(), simply invoke free_htab_elem() after htab_unlock_bucket(). For __htab_map_lookup_and_delete_batch(), just like lru map, linking the to-be-freed element into node_to_free list and invoking free_htab_elem() for these element after unlock. It is safe to reuse batch_flink as the link for node_to_free, because these elements have been removed from the hash llist. Because htab of maps doesn't support lookup_and_delete operation, __htab_map_lookup_and_delete_elem() doesn't have the problem, so kept it as is. (3) fd_htab_map_free() It invokes ->map_fd_put_ptr without raw_spinlock_t. (4) bpf_fd_htab_map_update_elem() It invokes ->map_fd_put_ptr without raw_spinlock_t. After moving free_htab_elem() outside htab bucket lock scope, using pcpu_freelist_push() instead of __pcpu_freelist_push() to disable the irq before freeing elements, and protecting the invocations of bpf_mem_cache_free() with migrate_{disable|enable} pair. Signed-off-by: Hou Tao <houtao1@huawei.com> Link: https://lore.kernel.org/r/20241106063542.357743-2-houtao@huaweicloud.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
2024-11-11bpf: Add support for uprobe multi session attachJiri Olsa
Adding support to attach BPF program for entry and return probe of the same function. This is common use case which at the moment requires to create two uprobe multi links. Adding new BPF_TRACE_UPROBE_SESSION attach type that instructs kernel to attach single link program to both entry and exit probe. It's possible to control execution of the BPF program on return probe simply by returning zero or non zero from the entry BPF program execution to execute or not the BPF program on return probe respectively. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20241108134544.480660-4-jolsa@kernel.org
2024-11-11bpf: Allow return values 0 and 1 for kprobe sessionJiri Olsa
The kprobe session program can return only 0 or 1, instruct verifier to check for that. Fixes: 535a3692ba72 ("bpf: Add support for kprobe session attach") Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20241108134544.480660-2-jolsa@kernel.org
2024-11-04bpf: Mark raw_tp arguments with PTR_MAYBE_NULLKumar Kartikeya Dwivedi
Arguments to a raw tracepoint are tagged as trusted, which carries the semantics that the pointer will be non-NULL. However, in certain cases, a raw tracepoint argument may end up being NULL. More context about this issue is available in [0]. Thus, there is a discrepancy between the reality, that raw_tp arguments can actually be NULL, and the verifier's knowledge, that they are never NULL, causing explicit NULL checks to be deleted, and accesses to such pointers potentially crashing the kernel. To fix this, mark raw_tp arguments as PTR_MAYBE_NULL, and then special case the dereference and pointer arithmetic to permit it, and allow passing them into helpers/kfuncs; these exceptions are made for raw_tp programs only. Ensure that we don't do this when ref_obj_id > 0, as in that case this is an acquired object and doesn't need such adjustment. The reason we do mask_raw_tp_trusted_reg logic is because other will recheck in places whether the register is a trusted_reg, and then consider our register as untrusted when detecting the presence of the PTR_MAYBE_NULL flag. To allow safe dereference, we enable PROBE_MEM marking when we see loads into trusted pointers with PTR_MAYBE_NULL. While trusted raw_tp arguments can also be passed into helpers or kfuncs where such broken assumption may cause issues, a future patch set will tackle their case separately, as PTR_TO_BTF_ID (without PTR_TRUSTED) can already be passed into helpers and causes similar problems. Thus, they are left alone for now. It is possible that these checks also permit passing non-raw_tp args that are trusted PTR_TO_BTF_ID with null marking. In such a case, allowing dereference when pointer is NULL expands allowed behavior, so won't regress existing programs, and the case of passing these into helpers is the same as above and will be dealt with later. Also update the failure case in tp_btf_nullable selftest to capture the new behavior, as the verifier will no longer cause an error when directly dereference a raw tracepoint argument marked as __nullable. [0]: https://lore.kernel.org/bpf/ZrCZS6nisraEqehw@jlelli-thinkpadt14gen4.remote.csb Reviewed-by: Jiri Olsa <jolsa@kernel.org> Reported-by: Juri Lelli <juri.lelli@redhat.com> Tested-by: Juri Lelli <juri.lelli@redhat.com> Fixes: 3f00c5239344 ("bpf: Allow trusted pointers to be passed to KF_TRUSTED_ARGS kfuncs") Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20241104171959.2938862-2-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-11-03bpf: Unify resource leak checksKumar Kartikeya Dwivedi
There are similar checks for covering locks, references, RCU read sections and preempt_disable sections in 3 places in the verifer, i.e. for tail calls, bpf_ld_[abs, ind], and exit path (for BPF_EXIT and bpf_throw). Unify all of these into a common check_resource_leak function to avoid code duplication. Also update the error strings in selftests to the new ones in the same change to ensure clean bisection. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20241103225940.1408302-3-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-11-03bpf: Tighten tail call checks for lingering locks, RCU, preempt_disableKumar Kartikeya Dwivedi
There are three situations when a program logically exits and transfers control to the kernel or another program: bpf_throw, BPF_EXIT, and tail calls. The former two check for any lingering locks and references, but tail calls currently do not. Expand the checks to check for spin locks, RCU read sections and preempt disabled sections. Spin locks are indirectly preventing tail calls as function calls are disallowed, but the checks for preemption and RCU are more relaxed, hence ensure tail calls are prevented in their presence. Fixes: 9bb00b2895cb ("bpf: Add kfunc bpf_rcu_read_lock/unlock()") Fixes: fc7566ad0a82 ("bpf: Introduce bpf_preempt_[disable,enable] kfuncs") Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20241103225940.1408302-2-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-11-01bpf: ensure RCU Tasks Trace GP for sleepable raw tracepoint BPF linksAndrii Nakryiko
Now that kernel supports sleepable tracepoints, the fact that bpf_probe_unregister() is asynchronous, i.e., that it doesn't wait for any in-flight tracepoints to conclude before returning, we now need to delay BPF raw tp link's deallocation and bpf_prog_put() of its underlying BPF program (regardless of program's own sleepable semantics) until after full RCU Tasks Trace GP. With that GP over, we'll have a guarantee that no tracepoint can reach BPF link and thus its BPF program. We use newly added tracepoint_is_faultable() check to know when this RCU Tasks Trace GP is necessary and utilize BPF link's own sleepable flag passed through bpf_link_init_sleepable() initializer. Link: https://lore.kernel.org/20241101181754.782341-3-andrii@kernel.org Tested-by: Jordan Rife <jrife@google.com> Reported-by: Jordan Rife <jrife@google.com> Fixes: a363d27cdbc2 ("tracing: Allow system call tracepoints to handle page faults") Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-11-01bpf: decouple BPF link/attach hook and BPF program sleepable semanticsAndrii Nakryiko
BPF link's lifecycle protection scheme depends on both BPF hook and BPF program. If *either* of those require RCU Tasks Trace GP, then we need to go through a chain of GPs before putting BPF program refcount and deallocating BPF link memory. This patch adds bpf_link-specific sleepable flag, which can be set to true even if underlying BPF program is not sleepable itself. If either link->sleepable or link->prog->sleepable is true, we'll go through a chain of RCU Tasks Trace GP and RCU GP before putting BPF program and freeing memory. This will be used to protect BPF link for sleepable (faultable) raw tracepoints in the next patch. Link: https://lore.kernel.org/20241101181754.782341-2-andrii@kernel.org Tested-by: Jordan Rife <jrife@google.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>