diff options
Diffstat (limited to 'tools/testing/selftests/kvm/mmu_stress_test.c')
-rw-r--r-- | tools/testing/selftests/kvm/mmu_stress_test.c | 426 |
1 files changed, 426 insertions, 0 deletions
diff --git a/tools/testing/selftests/kvm/mmu_stress_test.c b/tools/testing/selftests/kvm/mmu_stress_test.c new file mode 100644 index 000000000000..6a437d2be9fa --- /dev/null +++ b/tools/testing/selftests/kvm/mmu_stress_test.c @@ -0,0 +1,426 @@ +// SPDX-License-Identifier: GPL-2.0 +#include <stdio.h> +#include <stdlib.h> +#include <pthread.h> +#include <semaphore.h> +#include <sys/types.h> +#include <signal.h> +#include <errno.h> +#include <linux/bitmap.h> +#include <linux/bitops.h> +#include <linux/atomic.h> +#include <linux/sizes.h> + +#include "kvm_util.h" +#include "test_util.h" +#include "guest_modes.h" +#include "processor.h" +#include "ucall_common.h" + +static bool mprotect_ro_done; +static bool all_vcpus_hit_ro_fault; + +static void guest_code(uint64_t start_gpa, uint64_t end_gpa, uint64_t stride) +{ + uint64_t gpa; + int i; + + for (i = 0; i < 2; i++) { + for (gpa = start_gpa; gpa < end_gpa; gpa += stride) + vcpu_arch_put_guest(*((volatile uint64_t *)gpa), gpa); + GUEST_SYNC(i); + } + + for (gpa = start_gpa; gpa < end_gpa; gpa += stride) + *((volatile uint64_t *)gpa); + GUEST_SYNC(2); + + /* + * Write to the region while mprotect(PROT_READ) is underway. Keep + * looping until the memory is guaranteed to be read-only and a fault + * has occurred, otherwise vCPUs may complete their writes and advance + * to the next stage prematurely. + * + * For architectures that support skipping the faulting instruction, + * generate the store via inline assembly to ensure the exact length + * of the instruction is known and stable (vcpu_arch_put_guest() on + * fixed-length architectures should work, but the cost of paranoia + * is low in this case). For x86, hand-code the exact opcode so that + * there is no room for variability in the generated instruction. + */ + do { + for (gpa = start_gpa; gpa < end_gpa; gpa += stride) +#ifdef __x86_64__ + asm volatile(".byte 0x48,0x89,0x00" :: "a"(gpa) : "memory"); /* mov %rax, (%rax) */ +#elif defined(__aarch64__) + asm volatile("str %0, [%0]" :: "r" (gpa) : "memory"); +#else + vcpu_arch_put_guest(*((volatile uint64_t *)gpa), gpa); +#endif + } while (!READ_ONCE(mprotect_ro_done) || !READ_ONCE(all_vcpus_hit_ro_fault)); + + /* + * Only architectures that write the entire range can explicitly sync, + * as other architectures will be stuck on the write fault. + */ +#if defined(__x86_64__) || defined(__aarch64__) + GUEST_SYNC(3); +#endif + + for (gpa = start_gpa; gpa < end_gpa; gpa += stride) + vcpu_arch_put_guest(*((volatile uint64_t *)gpa), gpa); + GUEST_SYNC(4); + + GUEST_ASSERT(0); +} + +struct vcpu_info { + struct kvm_vcpu *vcpu; + uint64_t start_gpa; + uint64_t end_gpa; +}; + +static int nr_vcpus; +static atomic_t rendezvous; +static atomic_t nr_ro_faults; + +static void rendezvous_with_boss(void) +{ + int orig = atomic_read(&rendezvous); + + if (orig > 0) { + atomic_dec_and_test(&rendezvous); + while (atomic_read(&rendezvous) > 0) + cpu_relax(); + } else { + atomic_inc(&rendezvous); + while (atomic_read(&rendezvous) < 0) + cpu_relax(); + } +} + +static void assert_sync_stage(struct kvm_vcpu *vcpu, int stage) +{ + struct ucall uc; + + TEST_ASSERT_EQ(get_ucall(vcpu, &uc), UCALL_SYNC); + TEST_ASSERT_EQ(uc.args[1], stage); +} + +static void run_vcpu(struct kvm_vcpu *vcpu, int stage) +{ + vcpu_run(vcpu); + assert_sync_stage(vcpu, stage); +} + +static void *vcpu_worker(void *data) +{ + struct kvm_sregs __maybe_unused sregs; + struct vcpu_info *info = data; + struct kvm_vcpu *vcpu = info->vcpu; + struct kvm_vm *vm = vcpu->vm; + int r; + + vcpu_args_set(vcpu, 3, info->start_gpa, info->end_gpa, vm->page_size); + + rendezvous_with_boss(); + + /* Stage 0, write all of guest memory. */ + run_vcpu(vcpu, 0); + rendezvous_with_boss(); +#ifdef __x86_64__ + vcpu_sregs_get(vcpu, &sregs); + /* Toggle CR0.WP to trigger a MMU context reset. */ + sregs.cr0 ^= X86_CR0_WP; + vcpu_sregs_set(vcpu, &sregs); +#endif + rendezvous_with_boss(); + + /* Stage 1, re-write all of guest memory. */ + run_vcpu(vcpu, 1); + rendezvous_with_boss(); + + /* Stage 2, read all of guest memory, which is now read-only. */ + run_vcpu(vcpu, 2); + + /* + * Stage 3, write guest memory and verify KVM returns -EFAULT for once + * the mprotect(PROT_READ) lands. Only architectures that support + * validating *all* of guest memory sync for this stage, as vCPUs will + * be stuck on the faulting instruction for other architectures. Go to + * stage 3 without a rendezvous + */ + r = _vcpu_run(vcpu); + TEST_ASSERT(r == -1 && errno == EFAULT, + "Expected EFAULT on write to RO memory, got r = %d, errno = %d", r, errno); + + atomic_inc(&nr_ro_faults); + if (atomic_read(&nr_ro_faults) == nr_vcpus) { + WRITE_ONCE(all_vcpus_hit_ro_fault, true); + sync_global_to_guest(vm, all_vcpus_hit_ro_fault); + } + +#if defined(__x86_64__) || defined(__aarch64__) + /* + * Verify *all* writes from the guest hit EFAULT due to the VMA now + * being read-only. x86 and arm64 only at this time as skipping the + * instruction that hits the EFAULT requires advancing the program + * counter, which is arch specific and relies on inline assembly. + */ +#ifdef __x86_64__ + vcpu->run->kvm_valid_regs = KVM_SYNC_X86_REGS; +#endif + for (;;) { + r = _vcpu_run(vcpu); + if (!r) + break; + TEST_ASSERT_EQ(errno, EFAULT); +#if defined(__x86_64__) + WRITE_ONCE(vcpu->run->kvm_dirty_regs, KVM_SYNC_X86_REGS); + vcpu->run->s.regs.regs.rip += 3; +#elif defined(__aarch64__) + vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.pc), + vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pc)) + 4); +#endif + + } + assert_sync_stage(vcpu, 3); +#endif /* __x86_64__ || __aarch64__ */ + rendezvous_with_boss(); + + /* + * Stage 4. Run to completion, waiting for mprotect(PROT_WRITE) to + * make the memory writable again. + */ + do { + r = _vcpu_run(vcpu); + } while (r && errno == EFAULT); + TEST_ASSERT_EQ(r, 0); + assert_sync_stage(vcpu, 4); + rendezvous_with_boss(); + + return NULL; +} + +static pthread_t *spawn_workers(struct kvm_vm *vm, struct kvm_vcpu **vcpus, + uint64_t start_gpa, uint64_t end_gpa) +{ + struct vcpu_info *info; + uint64_t gpa, nr_bytes; + pthread_t *threads; + int i; + + threads = malloc(nr_vcpus * sizeof(*threads)); + TEST_ASSERT(threads, "Failed to allocate vCPU threads"); + + info = malloc(nr_vcpus * sizeof(*info)); + TEST_ASSERT(info, "Failed to allocate vCPU gpa ranges"); + + nr_bytes = ((end_gpa - start_gpa) / nr_vcpus) & + ~((uint64_t)vm->page_size - 1); + TEST_ASSERT(nr_bytes, "C'mon, no way you have %d CPUs", nr_vcpus); + + for (i = 0, gpa = start_gpa; i < nr_vcpus; i++, gpa += nr_bytes) { + info[i].vcpu = vcpus[i]; + info[i].start_gpa = gpa; + info[i].end_gpa = gpa + nr_bytes; + pthread_create(&threads[i], NULL, vcpu_worker, &info[i]); + } + return threads; +} + +static void rendezvous_with_vcpus(struct timespec *time, const char *name) +{ + int i, rendezvoused; + + pr_info("Waiting for vCPUs to finish %s...\n", name); + + rendezvoused = atomic_read(&rendezvous); + for (i = 0; abs(rendezvoused) != 1; i++) { + usleep(100); + if (!(i & 0x3f)) + pr_info("\r%d vCPUs haven't rendezvoused...", + abs(rendezvoused) - 1); + rendezvoused = atomic_read(&rendezvous); + } + + clock_gettime(CLOCK_MONOTONIC, time); + + /* Release the vCPUs after getting the time of the previous action. */ + pr_info("\rAll vCPUs finished %s, releasing...\n", name); + if (rendezvoused > 0) + atomic_set(&rendezvous, -nr_vcpus - 1); + else + atomic_set(&rendezvous, nr_vcpus + 1); +} + +static void calc_default_nr_vcpus(void) +{ + cpu_set_t possible_mask; + int r; + + r = sched_getaffinity(0, sizeof(possible_mask), &possible_mask); + TEST_ASSERT(!r, "sched_getaffinity failed, errno = %d (%s)", + errno, strerror(errno)); + + nr_vcpus = CPU_COUNT(&possible_mask) * 3/4; + TEST_ASSERT(nr_vcpus > 0, "Uh, no CPUs?"); +} + +int main(int argc, char *argv[]) +{ + /* + * Skip the first 4gb and slot0. slot0 maps <1gb and is used to back + * the guest's code, stack, and page tables. Because selftests creates + * an IRQCHIP, a.k.a. a local APIC, KVM creates an internal memslot + * just below the 4gb boundary. This test could create memory at + * 1gb-3gb,but it's simpler to skip straight to 4gb. + */ + const uint64_t start_gpa = SZ_4G; + const int first_slot = 1; + + struct timespec time_start, time_run1, time_reset, time_run2, time_ro, time_rw; + uint64_t max_gpa, gpa, slot_size, max_mem, i; + int max_slots, slot, opt, fd; + bool hugepages = false; + struct kvm_vcpu **vcpus; + pthread_t *threads; + struct kvm_vm *vm; + void *mem; + + /* + * Default to 2gb so that maxing out systems with MAXPHADDR=46, which + * are quite common for x86, requires changing only max_mem (KVM allows + * 32k memslots, 32k * 2gb == ~64tb of guest memory). + */ + slot_size = SZ_2G; + + max_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS); + TEST_ASSERT(max_slots > first_slot, "KVM is broken"); + + /* All KVM MMUs should be able to survive a 128gb guest. */ + max_mem = 128ull * SZ_1G; + + calc_default_nr_vcpus(); + + while ((opt = getopt(argc, argv, "c:h:m:s:H")) != -1) { + switch (opt) { + case 'c': + nr_vcpus = atoi_positive("Number of vCPUs", optarg); + break; + case 'm': + max_mem = 1ull * atoi_positive("Memory size", optarg) * SZ_1G; + break; + case 's': + slot_size = 1ull * atoi_positive("Slot size", optarg) * SZ_1G; + break; + case 'H': + hugepages = true; + break; + case 'h': + default: + printf("usage: %s [-c nr_vcpus] [-m max_mem_in_gb] [-s slot_size_in_gb] [-H]\n", argv[0]); + exit(1); + } + } + + vcpus = malloc(nr_vcpus * sizeof(*vcpus)); + TEST_ASSERT(vcpus, "Failed to allocate vCPU array"); + + vm = __vm_create_with_vcpus(VM_SHAPE_DEFAULT, nr_vcpus, +#ifdef __x86_64__ + max_mem / SZ_1G, +#else + max_mem / vm_guest_mode_params[VM_MODE_DEFAULT].page_size, +#endif + guest_code, vcpus); + + max_gpa = vm->max_gfn << vm->page_shift; + TEST_ASSERT(max_gpa > (4 * slot_size), "MAXPHYADDR <4gb "); + + fd = kvm_memfd_alloc(slot_size, hugepages); + mem = mmap(NULL, slot_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); + TEST_ASSERT(mem != MAP_FAILED, "mmap() failed"); + + TEST_ASSERT(!madvise(mem, slot_size, MADV_NOHUGEPAGE), "madvise() failed"); + + /* Pre-fault the memory to avoid taking mmap_sem on guest page faults. */ + for (i = 0; i < slot_size; i += vm->page_size) + ((uint8_t *)mem)[i] = 0xaa; + + gpa = 0; + for (slot = first_slot; slot < max_slots; slot++) { + gpa = start_gpa + ((slot - first_slot) * slot_size); + if (gpa + slot_size > max_gpa) + break; + + if ((gpa - start_gpa) >= max_mem) + break; + + vm_set_user_memory_region(vm, slot, 0, gpa, slot_size, mem); + +#ifdef __x86_64__ + /* Identity map memory in the guest using 1gb pages. */ + for (i = 0; i < slot_size; i += SZ_1G) + __virt_pg_map(vm, gpa + i, gpa + i, PG_LEVEL_1G); +#else + for (i = 0; i < slot_size; i += vm->page_size) + virt_pg_map(vm, gpa + i, gpa + i); +#endif + } + + atomic_set(&rendezvous, nr_vcpus + 1); + threads = spawn_workers(vm, vcpus, start_gpa, gpa); + + free(vcpus); + vcpus = NULL; + + pr_info("Running with %lugb of guest memory and %u vCPUs\n", + (gpa - start_gpa) / SZ_1G, nr_vcpus); + + rendezvous_with_vcpus(&time_start, "spawning"); + rendezvous_with_vcpus(&time_run1, "run 1"); + rendezvous_with_vcpus(&time_reset, "reset"); + rendezvous_with_vcpus(&time_run2, "run 2"); + + mprotect(mem, slot_size, PROT_READ); + mprotect_ro_done = true; + sync_global_to_guest(vm, mprotect_ro_done); + + rendezvous_with_vcpus(&time_ro, "mprotect RO"); + mprotect(mem, slot_size, PROT_READ | PROT_WRITE); + rendezvous_with_vcpus(&time_rw, "mprotect RW"); + + time_rw = timespec_sub(time_rw, time_ro); + time_ro = timespec_sub(time_ro, time_run2); + time_run2 = timespec_sub(time_run2, time_reset); + time_reset = timespec_sub(time_reset, time_run1); + time_run1 = timespec_sub(time_run1, time_start); + + pr_info("run1 = %ld.%.9lds, reset = %ld.%.9lds, run2 = %ld.%.9lds, " + "ro = %ld.%.9lds, rw = %ld.%.9lds\n", + time_run1.tv_sec, time_run1.tv_nsec, + time_reset.tv_sec, time_reset.tv_nsec, + time_run2.tv_sec, time_run2.tv_nsec, + time_ro.tv_sec, time_ro.tv_nsec, + time_rw.tv_sec, time_rw.tv_nsec); + + /* + * Delete even numbered slots (arbitrary) and unmap the first half of + * the backing (also arbitrary) to verify KVM correctly drops all + * references to the removed regions. + */ + for (slot = (slot - 1) & ~1ull; slot >= first_slot; slot -= 2) + vm_set_user_memory_region(vm, slot, 0, 0, 0, NULL); + + munmap(mem, slot_size / 2); + + /* Sanity check that the vCPUs actually ran. */ + for (i = 0; i < nr_vcpus; i++) + pthread_join(threads[i], NULL); + + /* + * Deliberately exit without deleting the remaining memslots or closing + * kvm_fd to test cleanup via mmu_notifier.release. + */ +} |