summaryrefslogtreecommitdiff
path: root/tools/testing/selftests/kvm/mmu_stress_test.c
diff options
context:
space:
mode:
Diffstat (limited to 'tools/testing/selftests/kvm/mmu_stress_test.c')
-rw-r--r--tools/testing/selftests/kvm/mmu_stress_test.c426
1 files changed, 426 insertions, 0 deletions
diff --git a/tools/testing/selftests/kvm/mmu_stress_test.c b/tools/testing/selftests/kvm/mmu_stress_test.c
new file mode 100644
index 000000000000..6a437d2be9fa
--- /dev/null
+++ b/tools/testing/selftests/kvm/mmu_stress_test.c
@@ -0,0 +1,426 @@
+// SPDX-License-Identifier: GPL-2.0
+#include <stdio.h>
+#include <stdlib.h>
+#include <pthread.h>
+#include <semaphore.h>
+#include <sys/types.h>
+#include <signal.h>
+#include <errno.h>
+#include <linux/bitmap.h>
+#include <linux/bitops.h>
+#include <linux/atomic.h>
+#include <linux/sizes.h>
+
+#include "kvm_util.h"
+#include "test_util.h"
+#include "guest_modes.h"
+#include "processor.h"
+#include "ucall_common.h"
+
+static bool mprotect_ro_done;
+static bool all_vcpus_hit_ro_fault;
+
+static void guest_code(uint64_t start_gpa, uint64_t end_gpa, uint64_t stride)
+{
+ uint64_t gpa;
+ int i;
+
+ for (i = 0; i < 2; i++) {
+ for (gpa = start_gpa; gpa < end_gpa; gpa += stride)
+ vcpu_arch_put_guest(*((volatile uint64_t *)gpa), gpa);
+ GUEST_SYNC(i);
+ }
+
+ for (gpa = start_gpa; gpa < end_gpa; gpa += stride)
+ *((volatile uint64_t *)gpa);
+ GUEST_SYNC(2);
+
+ /*
+ * Write to the region while mprotect(PROT_READ) is underway. Keep
+ * looping until the memory is guaranteed to be read-only and a fault
+ * has occurred, otherwise vCPUs may complete their writes and advance
+ * to the next stage prematurely.
+ *
+ * For architectures that support skipping the faulting instruction,
+ * generate the store via inline assembly to ensure the exact length
+ * of the instruction is known and stable (vcpu_arch_put_guest() on
+ * fixed-length architectures should work, but the cost of paranoia
+ * is low in this case). For x86, hand-code the exact opcode so that
+ * there is no room for variability in the generated instruction.
+ */
+ do {
+ for (gpa = start_gpa; gpa < end_gpa; gpa += stride)
+#ifdef __x86_64__
+ asm volatile(".byte 0x48,0x89,0x00" :: "a"(gpa) : "memory"); /* mov %rax, (%rax) */
+#elif defined(__aarch64__)
+ asm volatile("str %0, [%0]" :: "r" (gpa) : "memory");
+#else
+ vcpu_arch_put_guest(*((volatile uint64_t *)gpa), gpa);
+#endif
+ } while (!READ_ONCE(mprotect_ro_done) || !READ_ONCE(all_vcpus_hit_ro_fault));
+
+ /*
+ * Only architectures that write the entire range can explicitly sync,
+ * as other architectures will be stuck on the write fault.
+ */
+#if defined(__x86_64__) || defined(__aarch64__)
+ GUEST_SYNC(3);
+#endif
+
+ for (gpa = start_gpa; gpa < end_gpa; gpa += stride)
+ vcpu_arch_put_guest(*((volatile uint64_t *)gpa), gpa);
+ GUEST_SYNC(4);
+
+ GUEST_ASSERT(0);
+}
+
+struct vcpu_info {
+ struct kvm_vcpu *vcpu;
+ uint64_t start_gpa;
+ uint64_t end_gpa;
+};
+
+static int nr_vcpus;
+static atomic_t rendezvous;
+static atomic_t nr_ro_faults;
+
+static void rendezvous_with_boss(void)
+{
+ int orig = atomic_read(&rendezvous);
+
+ if (orig > 0) {
+ atomic_dec_and_test(&rendezvous);
+ while (atomic_read(&rendezvous) > 0)
+ cpu_relax();
+ } else {
+ atomic_inc(&rendezvous);
+ while (atomic_read(&rendezvous) < 0)
+ cpu_relax();
+ }
+}
+
+static void assert_sync_stage(struct kvm_vcpu *vcpu, int stage)
+{
+ struct ucall uc;
+
+ TEST_ASSERT_EQ(get_ucall(vcpu, &uc), UCALL_SYNC);
+ TEST_ASSERT_EQ(uc.args[1], stage);
+}
+
+static void run_vcpu(struct kvm_vcpu *vcpu, int stage)
+{
+ vcpu_run(vcpu);
+ assert_sync_stage(vcpu, stage);
+}
+
+static void *vcpu_worker(void *data)
+{
+ struct kvm_sregs __maybe_unused sregs;
+ struct vcpu_info *info = data;
+ struct kvm_vcpu *vcpu = info->vcpu;
+ struct kvm_vm *vm = vcpu->vm;
+ int r;
+
+ vcpu_args_set(vcpu, 3, info->start_gpa, info->end_gpa, vm->page_size);
+
+ rendezvous_with_boss();
+
+ /* Stage 0, write all of guest memory. */
+ run_vcpu(vcpu, 0);
+ rendezvous_with_boss();
+#ifdef __x86_64__
+ vcpu_sregs_get(vcpu, &sregs);
+ /* Toggle CR0.WP to trigger a MMU context reset. */
+ sregs.cr0 ^= X86_CR0_WP;
+ vcpu_sregs_set(vcpu, &sregs);
+#endif
+ rendezvous_with_boss();
+
+ /* Stage 1, re-write all of guest memory. */
+ run_vcpu(vcpu, 1);
+ rendezvous_with_boss();
+
+ /* Stage 2, read all of guest memory, which is now read-only. */
+ run_vcpu(vcpu, 2);
+
+ /*
+ * Stage 3, write guest memory and verify KVM returns -EFAULT for once
+ * the mprotect(PROT_READ) lands. Only architectures that support
+ * validating *all* of guest memory sync for this stage, as vCPUs will
+ * be stuck on the faulting instruction for other architectures. Go to
+ * stage 3 without a rendezvous
+ */
+ r = _vcpu_run(vcpu);
+ TEST_ASSERT(r == -1 && errno == EFAULT,
+ "Expected EFAULT on write to RO memory, got r = %d, errno = %d", r, errno);
+
+ atomic_inc(&nr_ro_faults);
+ if (atomic_read(&nr_ro_faults) == nr_vcpus) {
+ WRITE_ONCE(all_vcpus_hit_ro_fault, true);
+ sync_global_to_guest(vm, all_vcpus_hit_ro_fault);
+ }
+
+#if defined(__x86_64__) || defined(__aarch64__)
+ /*
+ * Verify *all* writes from the guest hit EFAULT due to the VMA now
+ * being read-only. x86 and arm64 only at this time as skipping the
+ * instruction that hits the EFAULT requires advancing the program
+ * counter, which is arch specific and relies on inline assembly.
+ */
+#ifdef __x86_64__
+ vcpu->run->kvm_valid_regs = KVM_SYNC_X86_REGS;
+#endif
+ for (;;) {
+ r = _vcpu_run(vcpu);
+ if (!r)
+ break;
+ TEST_ASSERT_EQ(errno, EFAULT);
+#if defined(__x86_64__)
+ WRITE_ONCE(vcpu->run->kvm_dirty_regs, KVM_SYNC_X86_REGS);
+ vcpu->run->s.regs.regs.rip += 3;
+#elif defined(__aarch64__)
+ vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.pc),
+ vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pc)) + 4);
+#endif
+
+ }
+ assert_sync_stage(vcpu, 3);
+#endif /* __x86_64__ || __aarch64__ */
+ rendezvous_with_boss();
+
+ /*
+ * Stage 4. Run to completion, waiting for mprotect(PROT_WRITE) to
+ * make the memory writable again.
+ */
+ do {
+ r = _vcpu_run(vcpu);
+ } while (r && errno == EFAULT);
+ TEST_ASSERT_EQ(r, 0);
+ assert_sync_stage(vcpu, 4);
+ rendezvous_with_boss();
+
+ return NULL;
+}
+
+static pthread_t *spawn_workers(struct kvm_vm *vm, struct kvm_vcpu **vcpus,
+ uint64_t start_gpa, uint64_t end_gpa)
+{
+ struct vcpu_info *info;
+ uint64_t gpa, nr_bytes;
+ pthread_t *threads;
+ int i;
+
+ threads = malloc(nr_vcpus * sizeof(*threads));
+ TEST_ASSERT(threads, "Failed to allocate vCPU threads");
+
+ info = malloc(nr_vcpus * sizeof(*info));
+ TEST_ASSERT(info, "Failed to allocate vCPU gpa ranges");
+
+ nr_bytes = ((end_gpa - start_gpa) / nr_vcpus) &
+ ~((uint64_t)vm->page_size - 1);
+ TEST_ASSERT(nr_bytes, "C'mon, no way you have %d CPUs", nr_vcpus);
+
+ for (i = 0, gpa = start_gpa; i < nr_vcpus; i++, gpa += nr_bytes) {
+ info[i].vcpu = vcpus[i];
+ info[i].start_gpa = gpa;
+ info[i].end_gpa = gpa + nr_bytes;
+ pthread_create(&threads[i], NULL, vcpu_worker, &info[i]);
+ }
+ return threads;
+}
+
+static void rendezvous_with_vcpus(struct timespec *time, const char *name)
+{
+ int i, rendezvoused;
+
+ pr_info("Waiting for vCPUs to finish %s...\n", name);
+
+ rendezvoused = atomic_read(&rendezvous);
+ for (i = 0; abs(rendezvoused) != 1; i++) {
+ usleep(100);
+ if (!(i & 0x3f))
+ pr_info("\r%d vCPUs haven't rendezvoused...",
+ abs(rendezvoused) - 1);
+ rendezvoused = atomic_read(&rendezvous);
+ }
+
+ clock_gettime(CLOCK_MONOTONIC, time);
+
+ /* Release the vCPUs after getting the time of the previous action. */
+ pr_info("\rAll vCPUs finished %s, releasing...\n", name);
+ if (rendezvoused > 0)
+ atomic_set(&rendezvous, -nr_vcpus - 1);
+ else
+ atomic_set(&rendezvous, nr_vcpus + 1);
+}
+
+static void calc_default_nr_vcpus(void)
+{
+ cpu_set_t possible_mask;
+ int r;
+
+ r = sched_getaffinity(0, sizeof(possible_mask), &possible_mask);
+ TEST_ASSERT(!r, "sched_getaffinity failed, errno = %d (%s)",
+ errno, strerror(errno));
+
+ nr_vcpus = CPU_COUNT(&possible_mask) * 3/4;
+ TEST_ASSERT(nr_vcpus > 0, "Uh, no CPUs?");
+}
+
+int main(int argc, char *argv[])
+{
+ /*
+ * Skip the first 4gb and slot0. slot0 maps <1gb and is used to back
+ * the guest's code, stack, and page tables. Because selftests creates
+ * an IRQCHIP, a.k.a. a local APIC, KVM creates an internal memslot
+ * just below the 4gb boundary. This test could create memory at
+ * 1gb-3gb,but it's simpler to skip straight to 4gb.
+ */
+ const uint64_t start_gpa = SZ_4G;
+ const int first_slot = 1;
+
+ struct timespec time_start, time_run1, time_reset, time_run2, time_ro, time_rw;
+ uint64_t max_gpa, gpa, slot_size, max_mem, i;
+ int max_slots, slot, opt, fd;
+ bool hugepages = false;
+ struct kvm_vcpu **vcpus;
+ pthread_t *threads;
+ struct kvm_vm *vm;
+ void *mem;
+
+ /*
+ * Default to 2gb so that maxing out systems with MAXPHADDR=46, which
+ * are quite common for x86, requires changing only max_mem (KVM allows
+ * 32k memslots, 32k * 2gb == ~64tb of guest memory).
+ */
+ slot_size = SZ_2G;
+
+ max_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS);
+ TEST_ASSERT(max_slots > first_slot, "KVM is broken");
+
+ /* All KVM MMUs should be able to survive a 128gb guest. */
+ max_mem = 128ull * SZ_1G;
+
+ calc_default_nr_vcpus();
+
+ while ((opt = getopt(argc, argv, "c:h:m:s:H")) != -1) {
+ switch (opt) {
+ case 'c':
+ nr_vcpus = atoi_positive("Number of vCPUs", optarg);
+ break;
+ case 'm':
+ max_mem = 1ull * atoi_positive("Memory size", optarg) * SZ_1G;
+ break;
+ case 's':
+ slot_size = 1ull * atoi_positive("Slot size", optarg) * SZ_1G;
+ break;
+ case 'H':
+ hugepages = true;
+ break;
+ case 'h':
+ default:
+ printf("usage: %s [-c nr_vcpus] [-m max_mem_in_gb] [-s slot_size_in_gb] [-H]\n", argv[0]);
+ exit(1);
+ }
+ }
+
+ vcpus = malloc(nr_vcpus * sizeof(*vcpus));
+ TEST_ASSERT(vcpus, "Failed to allocate vCPU array");
+
+ vm = __vm_create_with_vcpus(VM_SHAPE_DEFAULT, nr_vcpus,
+#ifdef __x86_64__
+ max_mem / SZ_1G,
+#else
+ max_mem / vm_guest_mode_params[VM_MODE_DEFAULT].page_size,
+#endif
+ guest_code, vcpus);
+
+ max_gpa = vm->max_gfn << vm->page_shift;
+ TEST_ASSERT(max_gpa > (4 * slot_size), "MAXPHYADDR <4gb ");
+
+ fd = kvm_memfd_alloc(slot_size, hugepages);
+ mem = mmap(NULL, slot_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
+ TEST_ASSERT(mem != MAP_FAILED, "mmap() failed");
+
+ TEST_ASSERT(!madvise(mem, slot_size, MADV_NOHUGEPAGE), "madvise() failed");
+
+ /* Pre-fault the memory to avoid taking mmap_sem on guest page faults. */
+ for (i = 0; i < slot_size; i += vm->page_size)
+ ((uint8_t *)mem)[i] = 0xaa;
+
+ gpa = 0;
+ for (slot = first_slot; slot < max_slots; slot++) {
+ gpa = start_gpa + ((slot - first_slot) * slot_size);
+ if (gpa + slot_size > max_gpa)
+ break;
+
+ if ((gpa - start_gpa) >= max_mem)
+ break;
+
+ vm_set_user_memory_region(vm, slot, 0, gpa, slot_size, mem);
+
+#ifdef __x86_64__
+ /* Identity map memory in the guest using 1gb pages. */
+ for (i = 0; i < slot_size; i += SZ_1G)
+ __virt_pg_map(vm, gpa + i, gpa + i, PG_LEVEL_1G);
+#else
+ for (i = 0; i < slot_size; i += vm->page_size)
+ virt_pg_map(vm, gpa + i, gpa + i);
+#endif
+ }
+
+ atomic_set(&rendezvous, nr_vcpus + 1);
+ threads = spawn_workers(vm, vcpus, start_gpa, gpa);
+
+ free(vcpus);
+ vcpus = NULL;
+
+ pr_info("Running with %lugb of guest memory and %u vCPUs\n",
+ (gpa - start_gpa) / SZ_1G, nr_vcpus);
+
+ rendezvous_with_vcpus(&time_start, "spawning");
+ rendezvous_with_vcpus(&time_run1, "run 1");
+ rendezvous_with_vcpus(&time_reset, "reset");
+ rendezvous_with_vcpus(&time_run2, "run 2");
+
+ mprotect(mem, slot_size, PROT_READ);
+ mprotect_ro_done = true;
+ sync_global_to_guest(vm, mprotect_ro_done);
+
+ rendezvous_with_vcpus(&time_ro, "mprotect RO");
+ mprotect(mem, slot_size, PROT_READ | PROT_WRITE);
+ rendezvous_with_vcpus(&time_rw, "mprotect RW");
+
+ time_rw = timespec_sub(time_rw, time_ro);
+ time_ro = timespec_sub(time_ro, time_run2);
+ time_run2 = timespec_sub(time_run2, time_reset);
+ time_reset = timespec_sub(time_reset, time_run1);
+ time_run1 = timespec_sub(time_run1, time_start);
+
+ pr_info("run1 = %ld.%.9lds, reset = %ld.%.9lds, run2 = %ld.%.9lds, "
+ "ro = %ld.%.9lds, rw = %ld.%.9lds\n",
+ time_run1.tv_sec, time_run1.tv_nsec,
+ time_reset.tv_sec, time_reset.tv_nsec,
+ time_run2.tv_sec, time_run2.tv_nsec,
+ time_ro.tv_sec, time_ro.tv_nsec,
+ time_rw.tv_sec, time_rw.tv_nsec);
+
+ /*
+ * Delete even numbered slots (arbitrary) and unmap the first half of
+ * the backing (also arbitrary) to verify KVM correctly drops all
+ * references to the removed regions.
+ */
+ for (slot = (slot - 1) & ~1ull; slot >= first_slot; slot -= 2)
+ vm_set_user_memory_region(vm, slot, 0, 0, 0, NULL);
+
+ munmap(mem, slot_size / 2);
+
+ /* Sanity check that the vCPUs actually ran. */
+ for (i = 0; i < nr_vcpus; i++)
+ pthread_join(threads[i], NULL);
+
+ /*
+ * Deliberately exit without deleting the remaining memslots or closing
+ * kvm_fd to test cleanup via mmu_notifier.release.
+ */
+}