summaryrefslogtreecommitdiff
path: root/tools/testing/selftests/kvm/mmu_stress_test.c
blob: 6a437d2be9fa444b34c2a73308a9d1c7ff3cc4f5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
// SPDX-License-Identifier: GPL-2.0
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <semaphore.h>
#include <sys/types.h>
#include <signal.h>
#include <errno.h>
#include <linux/bitmap.h>
#include <linux/bitops.h>
#include <linux/atomic.h>
#include <linux/sizes.h>

#include "kvm_util.h"
#include "test_util.h"
#include "guest_modes.h"
#include "processor.h"
#include "ucall_common.h"

static bool mprotect_ro_done;
static bool all_vcpus_hit_ro_fault;

static void guest_code(uint64_t start_gpa, uint64_t end_gpa, uint64_t stride)
{
	uint64_t gpa;
	int i;

	for (i = 0; i < 2; i++) {
		for (gpa = start_gpa; gpa < end_gpa; gpa += stride)
			vcpu_arch_put_guest(*((volatile uint64_t *)gpa), gpa);
		GUEST_SYNC(i);
	}

	for (gpa = start_gpa; gpa < end_gpa; gpa += stride)
		*((volatile uint64_t *)gpa);
	GUEST_SYNC(2);

	/*
	 * Write to the region while mprotect(PROT_READ) is underway.  Keep
	 * looping until the memory is guaranteed to be read-only and a fault
	 * has occurred, otherwise vCPUs may complete their writes and advance
	 * to the next stage prematurely.
	 *
	 * For architectures that support skipping the faulting instruction,
	 * generate the store via inline assembly to ensure the exact length
	 * of the instruction is known and stable (vcpu_arch_put_guest() on
	 * fixed-length architectures should work, but the cost of paranoia
	 * is low in this case).  For x86, hand-code the exact opcode so that
	 * there is no room for variability in the generated instruction.
	 */
	do {
		for (gpa = start_gpa; gpa < end_gpa; gpa += stride)
#ifdef __x86_64__
			asm volatile(".byte 0x48,0x89,0x00" :: "a"(gpa) : "memory"); /* mov %rax, (%rax) */
#elif defined(__aarch64__)
			asm volatile("str %0, [%0]" :: "r" (gpa) : "memory");
#else
			vcpu_arch_put_guest(*((volatile uint64_t *)gpa), gpa);
#endif
	} while (!READ_ONCE(mprotect_ro_done) || !READ_ONCE(all_vcpus_hit_ro_fault));

	/*
	 * Only architectures that write the entire range can explicitly sync,
	 * as other architectures will be stuck on the write fault.
	 */
#if defined(__x86_64__) || defined(__aarch64__)
	GUEST_SYNC(3);
#endif

	for (gpa = start_gpa; gpa < end_gpa; gpa += stride)
		vcpu_arch_put_guest(*((volatile uint64_t *)gpa), gpa);
	GUEST_SYNC(4);

	GUEST_ASSERT(0);
}

struct vcpu_info {
	struct kvm_vcpu *vcpu;
	uint64_t start_gpa;
	uint64_t end_gpa;
};

static int nr_vcpus;
static atomic_t rendezvous;
static atomic_t nr_ro_faults;

static void rendezvous_with_boss(void)
{
	int orig = atomic_read(&rendezvous);

	if (orig > 0) {
		atomic_dec_and_test(&rendezvous);
		while (atomic_read(&rendezvous) > 0)
			cpu_relax();
	} else {
		atomic_inc(&rendezvous);
		while (atomic_read(&rendezvous) < 0)
			cpu_relax();
	}
}

static void assert_sync_stage(struct kvm_vcpu *vcpu, int stage)
{
	struct ucall uc;

	TEST_ASSERT_EQ(get_ucall(vcpu, &uc), UCALL_SYNC);
	TEST_ASSERT_EQ(uc.args[1], stage);
}

static void run_vcpu(struct kvm_vcpu *vcpu, int stage)
{
	vcpu_run(vcpu);
	assert_sync_stage(vcpu, stage);
}

static void *vcpu_worker(void *data)
{
	struct kvm_sregs __maybe_unused sregs;
	struct vcpu_info *info = data;
	struct kvm_vcpu *vcpu = info->vcpu;
	struct kvm_vm *vm = vcpu->vm;
	int r;

	vcpu_args_set(vcpu, 3, info->start_gpa, info->end_gpa, vm->page_size);

	rendezvous_with_boss();

	/* Stage 0, write all of guest memory. */
	run_vcpu(vcpu, 0);
	rendezvous_with_boss();
#ifdef __x86_64__
	vcpu_sregs_get(vcpu, &sregs);
	/* Toggle CR0.WP to trigger a MMU context reset. */
	sregs.cr0 ^= X86_CR0_WP;
	vcpu_sregs_set(vcpu, &sregs);
#endif
	rendezvous_with_boss();

	/* Stage 1, re-write all of guest memory. */
	run_vcpu(vcpu, 1);
	rendezvous_with_boss();

	/* Stage 2, read all of guest memory, which is now read-only. */
	run_vcpu(vcpu, 2);

	/*
	 * Stage 3, write guest memory and verify KVM returns -EFAULT for once
	 * the mprotect(PROT_READ) lands.  Only architectures that support
	 * validating *all* of guest memory sync for this stage, as vCPUs will
	 * be stuck on the faulting instruction for other architectures.  Go to
	 * stage 3 without a rendezvous
	 */
	r = _vcpu_run(vcpu);
	TEST_ASSERT(r == -1 && errno == EFAULT,
		    "Expected EFAULT on write to RO memory, got r = %d, errno = %d", r, errno);

	atomic_inc(&nr_ro_faults);
	if (atomic_read(&nr_ro_faults) == nr_vcpus) {
		WRITE_ONCE(all_vcpus_hit_ro_fault, true);
		sync_global_to_guest(vm, all_vcpus_hit_ro_fault);
	}

#if defined(__x86_64__) || defined(__aarch64__)
	/*
	 * Verify *all* writes from the guest hit EFAULT due to the VMA now
	 * being read-only.  x86 and arm64 only at this time as skipping the
	 * instruction that hits the EFAULT requires advancing the program
	 * counter, which is arch specific and relies on inline assembly.
	 */
#ifdef __x86_64__
	vcpu->run->kvm_valid_regs = KVM_SYNC_X86_REGS;
#endif
	for (;;) {
		r = _vcpu_run(vcpu);
		if (!r)
			break;
		TEST_ASSERT_EQ(errno, EFAULT);
#if defined(__x86_64__)
		WRITE_ONCE(vcpu->run->kvm_dirty_regs, KVM_SYNC_X86_REGS);
		vcpu->run->s.regs.regs.rip += 3;
#elif defined(__aarch64__)
		vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.pc),
			     vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pc)) + 4);
#endif

	}
	assert_sync_stage(vcpu, 3);
#endif /* __x86_64__ || __aarch64__ */
	rendezvous_with_boss();

	/*
	 * Stage 4.  Run to completion, waiting for mprotect(PROT_WRITE) to
	 * make the memory writable again.
	 */
	do {
		r = _vcpu_run(vcpu);
	} while (r && errno == EFAULT);
	TEST_ASSERT_EQ(r, 0);
	assert_sync_stage(vcpu, 4);
	rendezvous_with_boss();

	return NULL;
}

static pthread_t *spawn_workers(struct kvm_vm *vm, struct kvm_vcpu **vcpus,
				uint64_t start_gpa, uint64_t end_gpa)
{
	struct vcpu_info *info;
	uint64_t gpa, nr_bytes;
	pthread_t *threads;
	int i;

	threads = malloc(nr_vcpus * sizeof(*threads));
	TEST_ASSERT(threads, "Failed to allocate vCPU threads");

	info = malloc(nr_vcpus * sizeof(*info));
	TEST_ASSERT(info, "Failed to allocate vCPU gpa ranges");

	nr_bytes = ((end_gpa - start_gpa) / nr_vcpus) &
			~((uint64_t)vm->page_size - 1);
	TEST_ASSERT(nr_bytes, "C'mon, no way you have %d CPUs", nr_vcpus);

	for (i = 0, gpa = start_gpa; i < nr_vcpus; i++, gpa += nr_bytes) {
		info[i].vcpu = vcpus[i];
		info[i].start_gpa = gpa;
		info[i].end_gpa = gpa + nr_bytes;
		pthread_create(&threads[i], NULL, vcpu_worker, &info[i]);
	}
	return threads;
}

static void rendezvous_with_vcpus(struct timespec *time, const char *name)
{
	int i, rendezvoused;

	pr_info("Waiting for vCPUs to finish %s...\n", name);

	rendezvoused = atomic_read(&rendezvous);
	for (i = 0; abs(rendezvoused) != 1; i++) {
		usleep(100);
		if (!(i & 0x3f))
			pr_info("\r%d vCPUs haven't rendezvoused...",
				abs(rendezvoused) - 1);
		rendezvoused = atomic_read(&rendezvous);
	}

	clock_gettime(CLOCK_MONOTONIC, time);

	/* Release the vCPUs after getting the time of the previous action. */
	pr_info("\rAll vCPUs finished %s, releasing...\n", name);
	if (rendezvoused > 0)
		atomic_set(&rendezvous, -nr_vcpus - 1);
	else
		atomic_set(&rendezvous, nr_vcpus + 1);
}

static void calc_default_nr_vcpus(void)
{
	cpu_set_t possible_mask;
	int r;

	r = sched_getaffinity(0, sizeof(possible_mask), &possible_mask);
	TEST_ASSERT(!r, "sched_getaffinity failed, errno = %d (%s)",
		    errno, strerror(errno));

	nr_vcpus = CPU_COUNT(&possible_mask) * 3/4;
	TEST_ASSERT(nr_vcpus > 0, "Uh, no CPUs?");
}

int main(int argc, char *argv[])
{
	/*
	 * Skip the first 4gb and slot0.  slot0 maps <1gb and is used to back
	 * the guest's code, stack, and page tables.  Because selftests creates
	 * an IRQCHIP, a.k.a. a local APIC, KVM creates an internal memslot
	 * just below the 4gb boundary.  This test could create memory at
	 * 1gb-3gb,but it's simpler to skip straight to 4gb.
	 */
	const uint64_t start_gpa = SZ_4G;
	const int first_slot = 1;

	struct timespec time_start, time_run1, time_reset, time_run2, time_ro, time_rw;
	uint64_t max_gpa, gpa, slot_size, max_mem, i;
	int max_slots, slot, opt, fd;
	bool hugepages = false;
	struct kvm_vcpu **vcpus;
	pthread_t *threads;
	struct kvm_vm *vm;
	void *mem;

	/*
	 * Default to 2gb so that maxing out systems with MAXPHADDR=46, which
	 * are quite common for x86, requires changing only max_mem (KVM allows
	 * 32k memslots, 32k * 2gb == ~64tb of guest memory).
	 */
	slot_size = SZ_2G;

	max_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS);
	TEST_ASSERT(max_slots > first_slot, "KVM is broken");

	/* All KVM MMUs should be able to survive a 128gb guest. */
	max_mem = 128ull * SZ_1G;

	calc_default_nr_vcpus();

	while ((opt = getopt(argc, argv, "c:h:m:s:H")) != -1) {
		switch (opt) {
		case 'c':
			nr_vcpus = atoi_positive("Number of vCPUs", optarg);
			break;
		case 'm':
			max_mem = 1ull * atoi_positive("Memory size", optarg) * SZ_1G;
			break;
		case 's':
			slot_size = 1ull * atoi_positive("Slot size", optarg) * SZ_1G;
			break;
		case 'H':
			hugepages = true;
			break;
		case 'h':
		default:
			printf("usage: %s [-c nr_vcpus] [-m max_mem_in_gb] [-s slot_size_in_gb] [-H]\n", argv[0]);
			exit(1);
		}
	}

	vcpus = malloc(nr_vcpus * sizeof(*vcpus));
	TEST_ASSERT(vcpus, "Failed to allocate vCPU array");

	vm = __vm_create_with_vcpus(VM_SHAPE_DEFAULT, nr_vcpus,
#ifdef __x86_64__
				    max_mem / SZ_1G,
#else
				    max_mem / vm_guest_mode_params[VM_MODE_DEFAULT].page_size,
#endif
				    guest_code, vcpus);

	max_gpa = vm->max_gfn << vm->page_shift;
	TEST_ASSERT(max_gpa > (4 * slot_size), "MAXPHYADDR <4gb ");

	fd = kvm_memfd_alloc(slot_size, hugepages);
	mem = mmap(NULL, slot_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
	TEST_ASSERT(mem != MAP_FAILED, "mmap() failed");

	TEST_ASSERT(!madvise(mem, slot_size, MADV_NOHUGEPAGE), "madvise() failed");

	/* Pre-fault the memory to avoid taking mmap_sem on guest page faults. */
	for (i = 0; i < slot_size; i += vm->page_size)
		((uint8_t *)mem)[i] = 0xaa;

	gpa = 0;
	for (slot = first_slot; slot < max_slots; slot++) {
		gpa = start_gpa + ((slot - first_slot) * slot_size);
		if (gpa + slot_size > max_gpa)
			break;

		if ((gpa - start_gpa) >= max_mem)
			break;

		vm_set_user_memory_region(vm, slot, 0, gpa, slot_size, mem);

#ifdef __x86_64__
		/* Identity map memory in the guest using 1gb pages. */
		for (i = 0; i < slot_size; i += SZ_1G)
			__virt_pg_map(vm, gpa + i, gpa + i, PG_LEVEL_1G);
#else
		for (i = 0; i < slot_size; i += vm->page_size)
			virt_pg_map(vm, gpa + i, gpa + i);
#endif
	}

	atomic_set(&rendezvous, nr_vcpus + 1);
	threads = spawn_workers(vm, vcpus, start_gpa, gpa);

	free(vcpus);
	vcpus = NULL;

	pr_info("Running with %lugb of guest memory and %u vCPUs\n",
		(gpa - start_gpa) / SZ_1G, nr_vcpus);

	rendezvous_with_vcpus(&time_start, "spawning");
	rendezvous_with_vcpus(&time_run1, "run 1");
	rendezvous_with_vcpus(&time_reset, "reset");
	rendezvous_with_vcpus(&time_run2, "run 2");

	mprotect(mem, slot_size, PROT_READ);
	mprotect_ro_done = true;
	sync_global_to_guest(vm, mprotect_ro_done);

	rendezvous_with_vcpus(&time_ro, "mprotect RO");
	mprotect(mem, slot_size, PROT_READ | PROT_WRITE);
	rendezvous_with_vcpus(&time_rw, "mprotect RW");

	time_rw    = timespec_sub(time_rw,     time_ro);
	time_ro    = timespec_sub(time_ro,     time_run2);
	time_run2  = timespec_sub(time_run2,   time_reset);
	time_reset = timespec_sub(time_reset,  time_run1);
	time_run1  = timespec_sub(time_run1,   time_start);

	pr_info("run1 = %ld.%.9lds, reset = %ld.%.9lds, run2 = %ld.%.9lds, "
		"ro = %ld.%.9lds, rw = %ld.%.9lds\n",
		time_run1.tv_sec, time_run1.tv_nsec,
		time_reset.tv_sec, time_reset.tv_nsec,
		time_run2.tv_sec, time_run2.tv_nsec,
		time_ro.tv_sec, time_ro.tv_nsec,
		time_rw.tv_sec, time_rw.tv_nsec);

	/*
	 * Delete even numbered slots (arbitrary) and unmap the first half of
	 * the backing (also arbitrary) to verify KVM correctly drops all
	 * references to the removed regions.
	 */
	for (slot = (slot - 1) & ~1ull; slot >= first_slot; slot -= 2)
		vm_set_user_memory_region(vm, slot, 0, 0, 0, NULL);

	munmap(mem, slot_size / 2);

	/* Sanity check that the vCPUs actually ran. */
	for (i = 0; i < nr_vcpus; i++)
		pthread_join(threads[i], NULL);

	/*
	 * Deliberately exit without deleting the remaining memslots or closing
	 * kvm_fd to test cleanup via mmu_notifier.release.
	 */
}