summaryrefslogtreecommitdiff
path: root/arch/arm/lib/crc-t10dif-core.S
diff options
context:
space:
mode:
Diffstat (limited to 'arch/arm/lib/crc-t10dif-core.S')
-rw-r--r--arch/arm/lib/crc-t10dif-core.S468
1 files changed, 468 insertions, 0 deletions
diff --git a/arch/arm/lib/crc-t10dif-core.S b/arch/arm/lib/crc-t10dif-core.S
new file mode 100644
index 000000000000..2bbf2df9c1e2
--- /dev/null
+++ b/arch/arm/lib/crc-t10dif-core.S
@@ -0,0 +1,468 @@
+//
+// Accelerated CRC-T10DIF using ARM NEON and Crypto Extensions instructions
+//
+// Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
+// Copyright (C) 2019 Google LLC <ebiggers@google.com>
+//
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License version 2 as
+// published by the Free Software Foundation.
+//
+
+// Derived from the x86 version:
+//
+// Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions
+//
+// Copyright (c) 2013, Intel Corporation
+//
+// Authors:
+// Erdinc Ozturk <erdinc.ozturk@intel.com>
+// Vinodh Gopal <vinodh.gopal@intel.com>
+// James Guilford <james.guilford@intel.com>
+// Tim Chen <tim.c.chen@linux.intel.com>
+//
+// This software is available to you under a choice of one of two
+// licenses. You may choose to be licensed under the terms of the GNU
+// General Public License (GPL) Version 2, available from the file
+// COPYING in the main directory of this source tree, or the
+// OpenIB.org BSD license below:
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// * Redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the
+// distribution.
+//
+// * Neither the name of the Intel Corporation nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+//
+// THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
+// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Reference paper titled "Fast CRC Computation for Generic
+// Polynomials Using PCLMULQDQ Instruction"
+// URL: http://www.intel.com/content/dam/www/public/us/en/documents
+// /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
+//
+
+#include <linux/linkage.h>
+#include <asm/assembler.h>
+
+#ifdef CONFIG_CPU_ENDIAN_BE8
+#define CPU_LE(code...)
+#else
+#define CPU_LE(code...) code
+#endif
+
+ .text
+ .arch armv8-a
+ .fpu crypto-neon-fp-armv8
+
+ init_crc .req r0
+ buf .req r1
+ len .req r2
+
+ fold_consts_ptr .req ip
+
+ q0l .req d0
+ q0h .req d1
+ q1l .req d2
+ q1h .req d3
+ q2l .req d4
+ q2h .req d5
+ q3l .req d6
+ q3h .req d7
+ q4l .req d8
+ q4h .req d9
+ q5l .req d10
+ q5h .req d11
+ q6l .req d12
+ q6h .req d13
+ q7l .req d14
+ q7h .req d15
+ q8l .req d16
+ q8h .req d17
+ q9l .req d18
+ q9h .req d19
+ q10l .req d20
+ q10h .req d21
+ q11l .req d22
+ q11h .req d23
+ q12l .req d24
+ q12h .req d25
+
+ FOLD_CONSTS .req q10
+ FOLD_CONST_L .req q10l
+ FOLD_CONST_H .req q10h
+
+ /*
+ * Pairwise long polynomial multiplication of two 16-bit values
+ *
+ * { w0, w1 }, { y0, y1 }
+ *
+ * by two 64-bit values
+ *
+ * { x0, x1, x2, x3, x4, x5, x6, x7 }, { z0, z1, z2, z3, z4, z5, z6, z7 }
+ *
+ * where each vector element is a byte, ordered from least to most
+ * significant. The resulting 80-bit vectors are XOR'ed together.
+ *
+ * This can be implemented using 8x8 long polynomial multiplication, by
+ * reorganizing the input so that each pairwise 8x8 multiplication
+ * produces one of the terms from the decomposition below, and
+ * combining the results of each rank and shifting them into place.
+ *
+ * Rank
+ * 0 w0*x0 ^ | y0*z0 ^
+ * 1 (w0*x1 ^ w1*x0) << 8 ^ | (y0*z1 ^ y1*z0) << 8 ^
+ * 2 (w0*x2 ^ w1*x1) << 16 ^ | (y0*z2 ^ y1*z1) << 16 ^
+ * 3 (w0*x3 ^ w1*x2) << 24 ^ | (y0*z3 ^ y1*z2) << 24 ^
+ * 4 (w0*x4 ^ w1*x3) << 32 ^ | (y0*z4 ^ y1*z3) << 32 ^
+ * 5 (w0*x5 ^ w1*x4) << 40 ^ | (y0*z5 ^ y1*z4) << 40 ^
+ * 6 (w0*x6 ^ w1*x5) << 48 ^ | (y0*z6 ^ y1*z5) << 48 ^
+ * 7 (w0*x7 ^ w1*x6) << 56 ^ | (y0*z7 ^ y1*z6) << 56 ^
+ * 8 w1*x7 << 64 | y1*z7 << 64
+ *
+ * The inputs can be reorganized into
+ *
+ * { w0, w0, w0, w0, y0, y0, y0, y0 }, { w1, w1, w1, w1, y1, y1, y1, y1 }
+ * { x0, x2, x4, x6, z0, z2, z4, z6 }, { x1, x3, x5, x7, z1, z3, z5, z7 }
+ *
+ * and after performing 8x8->16 bit long polynomial multiplication of
+ * each of the halves of the first vector with those of the second one,
+ * we obtain the following four vectors of 16-bit elements:
+ *
+ * a := { w0*x0, w0*x2, w0*x4, w0*x6 }, { y0*z0, y0*z2, y0*z4, y0*z6 }
+ * b := { w0*x1, w0*x3, w0*x5, w0*x7 }, { y0*z1, y0*z3, y0*z5, y0*z7 }
+ * c := { w1*x0, w1*x2, w1*x4, w1*x6 }, { y1*z0, y1*z2, y1*z4, y1*z6 }
+ * d := { w1*x1, w1*x3, w1*x5, w1*x7 }, { y1*z1, y1*z3, y1*z5, y1*z7 }
+ *
+ * Results b and c can be XORed together, as the vector elements have
+ * matching ranks. Then, the final XOR can be pulled forward, and
+ * applied between the halves of each of the remaining three vectors,
+ * which are then shifted into place, and XORed together to produce the
+ * final 80-bit result.
+ */
+ .macro pmull16x64_p8, v16, v64
+ vext.8 q11, \v64, \v64, #1
+ vld1.64 {q12}, [r4, :128]
+ vuzp.8 q11, \v64
+ vtbl.8 d24, {\v16\()_L-\v16\()_H}, d24
+ vtbl.8 d25, {\v16\()_L-\v16\()_H}, d25
+ bl __pmull16x64_p8
+ veor \v64, q12, q14
+ .endm
+
+__pmull16x64_p8:
+ vmull.p8 q13, d23, d24
+ vmull.p8 q14, d23, d25
+ vmull.p8 q15, d22, d24
+ vmull.p8 q12, d22, d25
+
+ veor q14, q14, q15
+ veor d24, d24, d25
+ veor d26, d26, d27
+ veor d28, d28, d29
+ vmov.i32 d25, #0
+ vmov.i32 d29, #0
+ vext.8 q12, q12, q12, #14
+ vext.8 q14, q14, q14, #15
+ veor d24, d24, d26
+ bx lr
+ENDPROC(__pmull16x64_p8)
+
+ .macro pmull16x64_p64, v16, v64
+ vmull.p64 q11, \v64\()l, \v16\()_L
+ vmull.p64 \v64, \v64\()h, \v16\()_H
+ veor \v64, \v64, q11
+ .endm
+
+ // Fold reg1, reg2 into the next 32 data bytes, storing the result back
+ // into reg1, reg2.
+ .macro fold_32_bytes, reg1, reg2, p
+ vld1.64 {q8-q9}, [buf]!
+
+ pmull16x64_\p FOLD_CONST, \reg1
+ pmull16x64_\p FOLD_CONST, \reg2
+
+CPU_LE( vrev64.8 q8, q8 )
+CPU_LE( vrev64.8 q9, q9 )
+ vswp q8l, q8h
+ vswp q9l, q9h
+
+ veor.8 \reg1, \reg1, q8
+ veor.8 \reg2, \reg2, q9
+ .endm
+
+ // Fold src_reg into dst_reg, optionally loading the next fold constants
+ .macro fold_16_bytes, src_reg, dst_reg, p, load_next_consts
+ pmull16x64_\p FOLD_CONST, \src_reg
+ .ifnb \load_next_consts
+ vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]!
+ .endif
+ veor.8 \dst_reg, \dst_reg, \src_reg
+ .endm
+
+ .macro crct10dif, p
+ // For sizes less than 256 bytes, we can't fold 128 bytes at a time.
+ cmp len, #256
+ blt .Lless_than_256_bytes\@
+
+ mov_l fold_consts_ptr, .Lfold_across_128_bytes_consts
+
+ // Load the first 128 data bytes. Byte swapping is necessary to make
+ // the bit order match the polynomial coefficient order.
+ vld1.64 {q0-q1}, [buf]!
+ vld1.64 {q2-q3}, [buf]!
+ vld1.64 {q4-q5}, [buf]!
+ vld1.64 {q6-q7}, [buf]!
+CPU_LE( vrev64.8 q0, q0 )
+CPU_LE( vrev64.8 q1, q1 )
+CPU_LE( vrev64.8 q2, q2 )
+CPU_LE( vrev64.8 q3, q3 )
+CPU_LE( vrev64.8 q4, q4 )
+CPU_LE( vrev64.8 q5, q5 )
+CPU_LE( vrev64.8 q6, q6 )
+CPU_LE( vrev64.8 q7, q7 )
+ vswp q0l, q0h
+ vswp q1l, q1h
+ vswp q2l, q2h
+ vswp q3l, q3h
+ vswp q4l, q4h
+ vswp q5l, q5h
+ vswp q6l, q6h
+ vswp q7l, q7h
+
+ // XOR the first 16 data *bits* with the initial CRC value.
+ vmov.i8 q8h, #0
+ vmov.u16 q8h[3], init_crc
+ veor q0h, q0h, q8h
+
+ // Load the constants for folding across 128 bytes.
+ vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]!
+
+ // Subtract 128 for the 128 data bytes just consumed. Subtract another
+ // 128 to simplify the termination condition of the following loop.
+ sub len, len, #256
+
+ // While >= 128 data bytes remain (not counting q0-q7), fold the 128
+ // bytes q0-q7 into them, storing the result back into q0-q7.
+.Lfold_128_bytes_loop\@:
+ fold_32_bytes q0, q1, \p
+ fold_32_bytes q2, q3, \p
+ fold_32_bytes q4, q5, \p
+ fold_32_bytes q6, q7, \p
+ subs len, len, #128
+ bge .Lfold_128_bytes_loop\@
+
+ // Now fold the 112 bytes in q0-q6 into the 16 bytes in q7.
+
+ // Fold across 64 bytes.
+ vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]!
+ fold_16_bytes q0, q4, \p
+ fold_16_bytes q1, q5, \p
+ fold_16_bytes q2, q6, \p
+ fold_16_bytes q3, q7, \p, 1
+ // Fold across 32 bytes.
+ fold_16_bytes q4, q6, \p
+ fold_16_bytes q5, q7, \p, 1
+ // Fold across 16 bytes.
+ fold_16_bytes q6, q7, \p
+
+ // Add 128 to get the correct number of data bytes remaining in 0...127
+ // (not counting q7), following the previous extra subtraction by 128.
+ // Then subtract 16 to simplify the termination condition of the
+ // following loop.
+ adds len, len, #(128-16)
+
+ // While >= 16 data bytes remain (not counting q7), fold the 16 bytes q7
+ // into them, storing the result back into q7.
+ blt .Lfold_16_bytes_loop_done\@
+.Lfold_16_bytes_loop\@:
+ pmull16x64_\p FOLD_CONST, q7
+ vld1.64 {q0}, [buf]!
+CPU_LE( vrev64.8 q0, q0 )
+ vswp q0l, q0h
+ veor.8 q7, q7, q0
+ subs len, len, #16
+ bge .Lfold_16_bytes_loop\@
+
+.Lfold_16_bytes_loop_done\@:
+ // Add 16 to get the correct number of data bytes remaining in 0...15
+ // (not counting q7), following the previous extra subtraction by 16.
+ adds len, len, #16
+ beq .Lreduce_final_16_bytes\@
+
+.Lhandle_partial_segment\@:
+ // Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first
+ // 16 bytes are in q7 and the rest are the remaining data in 'buf'. To
+ // do this without needing a fold constant for each possible 'len',
+ // redivide the bytes into a first chunk of 'len' bytes and a second
+ // chunk of 16 bytes, then fold the first chunk into the second.
+
+ // q0 = last 16 original data bytes
+ add buf, buf, len
+ sub buf, buf, #16
+ vld1.64 {q0}, [buf]
+CPU_LE( vrev64.8 q0, q0 )
+ vswp q0l, q0h
+
+ // q1 = high order part of second chunk: q7 left-shifted by 'len' bytes.
+ mov_l r1, .Lbyteshift_table + 16
+ sub r1, r1, len
+ vld1.8 {q2}, [r1]
+ vtbl.8 q1l, {q7l-q7h}, q2l
+ vtbl.8 q1h, {q7l-q7h}, q2h
+
+ // q3 = first chunk: q7 right-shifted by '16-len' bytes.
+ vmov.i8 q3, #0x80
+ veor.8 q2, q2, q3
+ vtbl.8 q3l, {q7l-q7h}, q2l
+ vtbl.8 q3h, {q7l-q7h}, q2h
+
+ // Convert to 8-bit masks: 'len' 0x00 bytes, then '16-len' 0xff bytes.
+ vshr.s8 q2, q2, #7
+
+ // q2 = second chunk: 'len' bytes from q0 (low-order bytes),
+ // then '16-len' bytes from q1 (high-order bytes).
+ vbsl.8 q2, q1, q0
+
+ // Fold the first chunk into the second chunk, storing the result in q7.
+ pmull16x64_\p FOLD_CONST, q3
+ veor.8 q7, q3, q2
+ b .Lreduce_final_16_bytes\@
+
+.Lless_than_256_bytes\@:
+ // Checksumming a buffer of length 16...255 bytes
+
+ mov_l fold_consts_ptr, .Lfold_across_16_bytes_consts
+
+ // Load the first 16 data bytes.
+ vld1.64 {q7}, [buf]!
+CPU_LE( vrev64.8 q7, q7 )
+ vswp q7l, q7h
+
+ // XOR the first 16 data *bits* with the initial CRC value.
+ vmov.i8 q0h, #0
+ vmov.u16 q0h[3], init_crc
+ veor.8 q7h, q7h, q0h
+
+ // Load the fold-across-16-bytes constants.
+ vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]!
+
+ cmp len, #16
+ beq .Lreduce_final_16_bytes\@ // len == 16
+ subs len, len, #32
+ addlt len, len, #16
+ blt .Lhandle_partial_segment\@ // 17 <= len <= 31
+ b .Lfold_16_bytes_loop\@ // 32 <= len <= 255
+
+.Lreduce_final_16_bytes\@:
+ .endm
+
+//
+// u16 crc_t10dif_pmull(u16 init_crc, const u8 *buf, size_t len);
+//
+// Assumes len >= 16.
+//
+ENTRY(crc_t10dif_pmull64)
+ crct10dif p64
+
+ // Reduce the 128-bit value M(x), stored in q7, to the final 16-bit CRC.
+
+ // Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'.
+ vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]!
+
+ // Fold the high 64 bits into the low 64 bits, while also multiplying by
+ // x^64. This produces a 128-bit value congruent to x^64 * M(x) and
+ // whose low 48 bits are 0.
+ vmull.p64 q0, q7h, FOLD_CONST_H // high bits * x^48 * (x^80 mod G(x))
+ veor.8 q0h, q0h, q7l // + low bits * x^64
+
+ // Fold the high 32 bits into the low 96 bits. This produces a 96-bit
+ // value congruent to x^64 * M(x) and whose low 48 bits are 0.
+ vmov.i8 q1, #0
+ vmov s4, s3 // extract high 32 bits
+ vmov s3, s5 // zero high 32 bits
+ vmull.p64 q1, q1l, FOLD_CONST_L // high 32 bits * x^48 * (x^48 mod G(x))
+ veor.8 q0, q0, q1 // + low bits
+
+ // Load G(x) and floor(x^48 / G(x)).
+ vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]
+
+ // Use Barrett reduction to compute the final CRC value.
+ vmull.p64 q1, q0h, FOLD_CONST_H // high 32 bits * floor(x^48 / G(x))
+ vshr.u64 q1l, q1l, #32 // /= x^32
+ vmull.p64 q1, q1l, FOLD_CONST_L // *= G(x)
+ vshr.u64 q0l, q0l, #48
+ veor.8 q0l, q0l, q1l // + low 16 nonzero bits
+ // Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of q0.
+
+ vmov.u16 r0, q0l[0]
+ bx lr
+ENDPROC(crc_t10dif_pmull64)
+
+ENTRY(crc_t10dif_pmull8)
+ push {r4, lr}
+ mov_l r4, .L16x64perm
+
+ crct10dif p8
+
+CPU_LE( vrev64.8 q7, q7 )
+ vswp q7l, q7h
+ vst1.64 {q7}, [r3, :128]
+ pop {r4, pc}
+ENDPROC(crc_t10dif_pmull8)
+
+ .section ".rodata", "a"
+ .align 4
+
+// Fold constants precomputed from the polynomial 0x18bb7
+// G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0
+.Lfold_across_128_bytes_consts:
+ .quad 0x0000000000006123 // x^(8*128) mod G(x)
+ .quad 0x0000000000002295 // x^(8*128+64) mod G(x)
+// .Lfold_across_64_bytes_consts:
+ .quad 0x0000000000001069 // x^(4*128) mod G(x)
+ .quad 0x000000000000dd31 // x^(4*128+64) mod G(x)
+// .Lfold_across_32_bytes_consts:
+ .quad 0x000000000000857d // x^(2*128) mod G(x)
+ .quad 0x0000000000007acc // x^(2*128+64) mod G(x)
+.Lfold_across_16_bytes_consts:
+ .quad 0x000000000000a010 // x^(1*128) mod G(x)
+ .quad 0x0000000000001faa // x^(1*128+64) mod G(x)
+// .Lfinal_fold_consts:
+ .quad 0x1368000000000000 // x^48 * (x^48 mod G(x))
+ .quad 0x2d56000000000000 // x^48 * (x^80 mod G(x))
+// .Lbarrett_reduction_consts:
+ .quad 0x0000000000018bb7 // G(x)
+ .quad 0x00000001f65a57f8 // floor(x^48 / G(x))
+
+// For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 -
+// len] is the index vector to shift left by 'len' bytes, and is also {0x80,
+// ..., 0x80} XOR the index vector to shift right by '16 - len' bytes.
+.Lbyteshift_table:
+ .byte 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87
+ .byte 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f
+ .byte 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7
+ .byte 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe , 0x0
+
+.L16x64perm:
+ .quad 0x808080800000000, 0x909090901010101