// SPDX-License-Identifier: GPL-2.0
//! Memory-mapped IO.
//!
//! C header: [`include/asm-generic/io.h`](srctree/include/asm-generic/io.h)
use crate::error::{code::EINVAL, Result};
use crate::{bindings, build_assert};
/// Raw representation of an MMIO region.
///
/// By itself, the existence of an instance of this structure does not provide any guarantees that
/// the represented MMIO region does exist or is properly mapped.
///
/// Instead, the bus specific MMIO implementation must convert this raw representation into an `Io`
/// instance providing the actual memory accessors. Only by the conversion into an `Io` structure
/// any guarantees are given.
pub struct IoRaw<const SIZE: usize = 0> {
addr: usize,
maxsize: usize,
}
impl<const SIZE: usize> IoRaw<SIZE> {
/// Returns a new `IoRaw` instance on success, an error otherwise.
pub fn new(addr: usize, maxsize: usize) -> Result<Self> {
if maxsize < SIZE {
return Err(EINVAL);
}
Ok(Self { addr, maxsize })
}
/// Returns the base address of the MMIO region.
#[inline]
pub fn addr(&self) -> usize {
self.addr
}
/// Returns the maximum size of the MMIO region.
#[inline]
pub fn maxsize(&self) -> usize {
self.maxsize
}
}
/// IO-mapped memory, starting at the base address @addr and spanning @maxlen bytes.
///
/// The creator (usually a subsystem / bus such as PCI) is responsible for creating the
/// mapping, performing an additional region request etc.
///
/// # Invariant
///
/// `addr` is the start and `maxsize` the length of valid I/O mapped memory region of size
/// `maxsize`.
///
/// # Examples
///
/// ```no_run
/// # use kernel::{bindings, io::{Io, IoRaw}};
/// # use core::ops::Deref;
///
/// // See also [`pci::Bar`] for a real example.
/// struct IoMem<const SIZE: usize>(IoRaw<SIZE>);
///
/// impl<const SIZE: usize> IoMem<SIZE> {
/// /// # Safety
/// ///
/// /// [`paddr`, `paddr` + `SIZE`) must be a valid MMIO region that is mappable into the CPUs
/// /// virtual address space.
/// unsafe fn new(paddr: usize) -> Result<Self>{
/// // SAFETY: By the safety requirements of this function [`paddr`, `paddr` + `SIZE`) is
/// // valid for `ioremap`.
/// let addr = unsafe { bindings::ioremap(paddr as _, SIZE as _) };
/// if addr.is_null() {
/// return Err(ENOMEM);
/// }
///
/// Ok(IoMem(IoRaw::new(addr as _, SIZE)?))
/// }
/// }
///
/// impl<const SIZE: usize> Drop for IoMem<SIZE> {
/// fn drop(&mut self) {
/// // SAFETY: `self.0.addr()` is guaranteed to be properly mapped by `Self::new`.
/// unsafe { bindings::iounmap(self.0.addr() as _); };
/// }
/// }
///
/// impl<const SIZE: usize> Deref for IoMem<SIZE> {
/// type Target = Io<SIZE>;
///
/// fn deref(&self) -> &Self::Target {
/// // SAFETY: The memory range stored in `self` has been properly mapped in `Self::new`.
/// unsafe { Io::from_raw(&self.0) }
/// }
/// }
///
///# fn no_run() -> Result<(), Error> {
/// // SAFETY: Invalid usage for example purposes.
/// let iomem = unsafe { IoMem::<{ core::mem::size_of::<u32>() }>::new(0xBAAAAAAD)? };
/// iomem.writel(0x42, 0x0);
/// assert!(iomem.try_writel(0x42, 0x0).is_ok());
/// assert!(iomem.try_writel(0x42, 0x4).is_err());
/// # Ok(())
/// # }
/// ```
#[repr(transparent)]
pub struct Io<const SIZE: usize = 0>(IoRaw<SIZE>);
macro_rules! define_read {
($(#[$attr:meta])* $name:ident, $try_name:ident, $type_name:ty) => {
/// Read IO data from a given offset known at compile time.
///
/// Bound checks are performed on compile time, hence if the offset is not known at compile
/// time, the build will fail.
$(#[$attr])*
#[inline]
pub fn $name(&self, offset: usize) -> $type_name {
let addr = self.io_addr_assert::<$type_name>(offset);
// SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
unsafe { bindings::$name(addr as _) }
}
/// Read IO data from a given offset.
///
/// Bound checks are performed on runtime, it fails if the offset (plus the type size) is
/// out of bounds.
$(#[$attr])*
pub fn $try_name(&self, offset: usize) -> Result<$type_name> {
let addr = self.io_addr::<$type_name>(offset)?;
// SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
Ok(unsafe { bindings::$name(addr as _) })
}
};
}
macro_rules! define_write {
($(#[$attr:meta])* $name:ident, $try_name:ident, $type_name:ty) => {
/// Write IO data from a given offset known at compile time.
///
/// Bound checks are performed on compile time, hence if the offset is not known at compile
/// time, the build will fail.
$(#[$attr])*
#[inline]
pub fn $name(&self, value: $type_name, offset: usize) {
let addr = self.io_addr_assert::<$type_name>(offset);
// SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
unsafe { bindings::$name(value, addr as _, ) }
}
/// Write IO data from a given offset.
///
/// Bound checks are performed on runtime, it fails if the offset (plus the type size) is
/// out of bounds.
$(#[$attr])*
pub fn $try_name(&self, value: $type_name, offset: usize) -> Result {
let addr = self.io_addr::<$type_name>(offset)?;
// SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
unsafe { bindings::$name(value, addr as _) }
Ok(())
}
};
}
impl<const SIZE: usize> Io<SIZE> {
/// Converts an `IoRaw` into an `Io` instance, providing the accessors to the MMIO mapping.
///
/// # Safety
///
/// Callers must ensure that `addr` is the start of a valid I/O mapped memory region of size
/// `maxsize`.
pub unsafe fn from_raw(raw: &IoRaw<SIZE>) -> &Self {
// SAFETY: `Io` is a transparent wrapper around `IoRaw`.
unsafe { &*core::ptr::from_ref(raw).cast() }
}
/// Returns the base address of this mapping.
#[inline]
pub fn addr(&self) -> usize {
self.0.addr()
}
/// Returns the maximum size of this mapping.
#[inline]
pub fn maxsize(&self) -> usize {
self.0.maxsize()
}
#[inline]
const fn offset_valid<U>(offset: usize, size: usize) -> bool {
let type_size = core::mem::size_of::<U>();
if let Some(end) = offset.checked_add(type_size) {
end <= size && offset % type_size == 0
} else {
false
}
}
#[inline]
fn io_addr<U>(&self, offset: usize) -> Result<usize> {
if !Self::offset_valid::<U>(offset, self.maxsize()) {
return Err(EINVAL);
}
// Probably no need to check, since the safety requirements of `Self::new` guarantee that
// this can't overflow.
self.addr().checked_add(offset).ok_or(EINVAL)
}
#[inline]
fn io_addr_assert<U>(&self, offset: usize) -> usize {
build_assert!(Self::offset_valid::<U>(offset, SIZE));
self.addr() + offset
}
define_read!(readb, try_readb, u8);
define_read!(readw, try_readw, u16);
define_read!(readl, try_readl, u32);
define_read!(
#[cfg(CONFIG_64BIT)]
readq,
try_readq,
u64
);
define_read!(readb_relaxed, try_readb_relaxed, u8);
define_read!(readw_relaxed, try_readw_relaxed, u16);
define_read!(readl_relaxed, try_readl_relaxed, u32);
define_read!(
#[cfg(CONFIG_64BIT)]
readq_relaxed,
try_readq_relaxed,
u64
);
define_write!(writeb, try_writeb, u8);
define_write!(writew, try_writew, u16);
define_write!(writel, try_writel, u32);
define_write!(
#[cfg(CONFIG_64BIT)]
writeq,
try_writeq,
u64
);
define_write!(writeb_relaxed, try_writeb_relaxed, u8);
define_write!(writew_relaxed, try_writew_relaxed, u16);
define_write!(writel_relaxed, try_writel_relaxed, u32);
define_write!(
#[cfg(CONFIG_64BIT)]
writeq_relaxed,
try_writeq_relaxed,
u64
);
}