summaryrefslogtreecommitdiff
path: root/tools/testing/selftests/kvm/s390x/memop.c
blob: f2df7416be84743c96e5e0a76b28059df31f5546 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Test for s390x KVM_S390_MEM_OP
 *
 * Copyright (C) 2019, Red Hat, Inc.
 */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <pthread.h>

#include <linux/bits.h>

#include "test_util.h"
#include "kvm_util.h"
#include "kselftest.h"
#include "ucall_common.h"

enum mop_target {
	LOGICAL,
	SIDA,
	ABSOLUTE,
	INVALID,
};

enum mop_access_mode {
	READ,
	WRITE,
	CMPXCHG,
};

struct mop_desc {
	uintptr_t gaddr;
	uintptr_t gaddr_v;
	uint64_t set_flags;
	unsigned int f_check : 1;
	unsigned int f_inject : 1;
	unsigned int f_key : 1;
	unsigned int _gaddr_v : 1;
	unsigned int _set_flags : 1;
	unsigned int _sida_offset : 1;
	unsigned int _ar : 1;
	uint32_t size;
	enum mop_target target;
	enum mop_access_mode mode;
	void *buf;
	uint32_t sida_offset;
	void *old;
	uint8_t old_value[16];
	bool *cmpxchg_success;
	uint8_t ar;
	uint8_t key;
};

const uint8_t NO_KEY = 0xff;

static struct kvm_s390_mem_op ksmo_from_desc(struct mop_desc *desc)
{
	struct kvm_s390_mem_op ksmo = {
		.gaddr = (uintptr_t)desc->gaddr,
		.size = desc->size,
		.buf = ((uintptr_t)desc->buf),
		.reserved = "ignored_ignored_ignored_ignored"
	};

	switch (desc->target) {
	case LOGICAL:
		if (desc->mode == READ)
			ksmo.op = KVM_S390_MEMOP_LOGICAL_READ;
		if (desc->mode == WRITE)
			ksmo.op = KVM_S390_MEMOP_LOGICAL_WRITE;
		break;
	case SIDA:
		if (desc->mode == READ)
			ksmo.op = KVM_S390_MEMOP_SIDA_READ;
		if (desc->mode == WRITE)
			ksmo.op = KVM_S390_MEMOP_SIDA_WRITE;
		break;
	case ABSOLUTE:
		if (desc->mode == READ)
			ksmo.op = KVM_S390_MEMOP_ABSOLUTE_READ;
		if (desc->mode == WRITE)
			ksmo.op = KVM_S390_MEMOP_ABSOLUTE_WRITE;
		if (desc->mode == CMPXCHG) {
			ksmo.op = KVM_S390_MEMOP_ABSOLUTE_CMPXCHG;
			ksmo.old_addr = (uint64_t)desc->old;
			memcpy(desc->old_value, desc->old, desc->size);
		}
		break;
	case INVALID:
		ksmo.op = -1;
	}
	if (desc->f_check)
		ksmo.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
	if (desc->f_inject)
		ksmo.flags |= KVM_S390_MEMOP_F_INJECT_EXCEPTION;
	if (desc->_set_flags)
		ksmo.flags = desc->set_flags;
	if (desc->f_key && desc->key != NO_KEY) {
		ksmo.flags |= KVM_S390_MEMOP_F_SKEY_PROTECTION;
		ksmo.key = desc->key;
	}
	if (desc->_ar)
		ksmo.ar = desc->ar;
	else
		ksmo.ar = 0;
	if (desc->_sida_offset)
		ksmo.sida_offset = desc->sida_offset;

	return ksmo;
}

struct test_info {
	struct kvm_vm *vm;
	struct kvm_vcpu *vcpu;
};

#define PRINT_MEMOP false
static void print_memop(struct kvm_vcpu *vcpu, const struct kvm_s390_mem_op *ksmo)
{
	if (!PRINT_MEMOP)
		return;

	if (!vcpu)
		printf("vm memop(");
	else
		printf("vcpu memop(");
	switch (ksmo->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		printf("LOGICAL, READ, ");
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		printf("LOGICAL, WRITE, ");
		break;
	case KVM_S390_MEMOP_SIDA_READ:
		printf("SIDA, READ, ");
		break;
	case KVM_S390_MEMOP_SIDA_WRITE:
		printf("SIDA, WRITE, ");
		break;
	case KVM_S390_MEMOP_ABSOLUTE_READ:
		printf("ABSOLUTE, READ, ");
		break;
	case KVM_S390_MEMOP_ABSOLUTE_WRITE:
		printf("ABSOLUTE, WRITE, ");
		break;
	case KVM_S390_MEMOP_ABSOLUTE_CMPXCHG:
		printf("ABSOLUTE, CMPXCHG, ");
		break;
	}
	printf("gaddr=%llu, size=%u, buf=%llu, ar=%u, key=%u, old_addr=%llx",
	       ksmo->gaddr, ksmo->size, ksmo->buf, ksmo->ar, ksmo->key,
	       ksmo->old_addr);
	if (ksmo->flags & KVM_S390_MEMOP_F_CHECK_ONLY)
		printf(", CHECK_ONLY");
	if (ksmo->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION)
		printf(", INJECT_EXCEPTION");
	if (ksmo->flags & KVM_S390_MEMOP_F_SKEY_PROTECTION)
		printf(", SKEY_PROTECTION");
	puts(")");
}

static int err_memop_ioctl(struct test_info info, struct kvm_s390_mem_op *ksmo,
			   struct mop_desc *desc)
{
	struct kvm_vcpu *vcpu = info.vcpu;

	if (!vcpu)
		return __vm_ioctl(info.vm, KVM_S390_MEM_OP, ksmo);
	else
		return __vcpu_ioctl(vcpu, KVM_S390_MEM_OP, ksmo);
}

static void memop_ioctl(struct test_info info, struct kvm_s390_mem_op *ksmo,
			struct mop_desc *desc)
{
	int r;

	r = err_memop_ioctl(info, ksmo, desc);
	if (ksmo->op == KVM_S390_MEMOP_ABSOLUTE_CMPXCHG) {
		if (desc->cmpxchg_success) {
			int diff = memcmp(desc->old_value, desc->old, desc->size);
			*desc->cmpxchg_success = !diff;
		}
	}
	TEST_ASSERT(!r, __KVM_IOCTL_ERROR("KVM_S390_MEM_OP", r));
}

#define MEMOP(err, info_p, mop_target_p, access_mode_p, buf_p, size_p, ...)	\
({										\
	struct test_info __info = (info_p);					\
	struct mop_desc __desc = {						\
		.target = (mop_target_p),					\
		.mode = (access_mode_p),					\
		.buf = (buf_p),							\
		.size = (size_p),						\
		__VA_ARGS__							\
	};									\
	struct kvm_s390_mem_op __ksmo;						\
										\
	if (__desc._gaddr_v) {							\
		if (__desc.target == ABSOLUTE)					\
			__desc.gaddr = addr_gva2gpa(__info.vm, __desc.gaddr_v);	\
		else								\
			__desc.gaddr = __desc.gaddr_v;				\
	}									\
	__ksmo = ksmo_from_desc(&__desc);					\
	print_memop(__info.vcpu, &__ksmo);					\
	err##memop_ioctl(__info, &__ksmo, &__desc);				\
})

#define MOP(...) MEMOP(, __VA_ARGS__)
#define ERR_MOP(...) MEMOP(err_, __VA_ARGS__)

#define GADDR(a) .gaddr = ((uintptr_t)a)
#define GADDR_V(v) ._gaddr_v = 1, .gaddr_v = ((uintptr_t)v)
#define CHECK_ONLY .f_check = 1
#define SET_FLAGS(f) ._set_flags = 1, .set_flags = (f)
#define SIDA_OFFSET(o) ._sida_offset = 1, .sida_offset = (o)
#define AR(a) ._ar = 1, .ar = (a)
#define KEY(a) .f_key = 1, .key = (a)
#define INJECT .f_inject = 1
#define CMPXCHG_OLD(o) .old = (o)
#define CMPXCHG_SUCCESS(s) .cmpxchg_success = (s)

#define CHECK_N_DO(f, ...) ({ f(__VA_ARGS__, CHECK_ONLY); f(__VA_ARGS__); })

#define PAGE_SHIFT 12
#define PAGE_SIZE (1ULL << PAGE_SHIFT)
#define PAGE_MASK (~(PAGE_SIZE - 1))
#define CR0_FETCH_PROTECTION_OVERRIDE	(1UL << (63 - 38))
#define CR0_STORAGE_PROTECTION_OVERRIDE	(1UL << (63 - 39))

static uint8_t __aligned(PAGE_SIZE) mem1[65536];
static uint8_t __aligned(PAGE_SIZE) mem2[65536];

struct test_default {
	struct kvm_vm *kvm_vm;
	struct test_info vm;
	struct test_info vcpu;
	struct kvm_run *run;
	int size;
};

static struct test_default test_default_init(void *guest_code)
{
	struct kvm_vcpu *vcpu;
	struct test_default t;

	t.size = min((size_t)kvm_check_cap(KVM_CAP_S390_MEM_OP), sizeof(mem1));
	t.kvm_vm = vm_create_with_one_vcpu(&vcpu, guest_code);
	t.vm = (struct test_info) { t.kvm_vm, NULL };
	t.vcpu = (struct test_info) { t.kvm_vm, vcpu };
	t.run = vcpu->run;
	return t;
}

enum stage {
	/* Synced state set by host, e.g. DAT */
	STAGE_INITED,
	/* Guest did nothing */
	STAGE_IDLED,
	/* Guest set storage keys (specifics up to test case) */
	STAGE_SKEYS_SET,
	/* Guest copied memory (locations up to test case) */
	STAGE_COPIED,
	/* End of guest code reached */
	STAGE_DONE,
};

#define HOST_SYNC(info_p, stage)					\
({									\
	struct test_info __info = (info_p);				\
	struct kvm_vcpu *__vcpu = __info.vcpu;				\
	struct ucall uc;						\
	int __stage = (stage);						\
									\
	vcpu_run(__vcpu);						\
	get_ucall(__vcpu, &uc);						\
	if (uc.cmd == UCALL_ABORT) {					\
		REPORT_GUEST_ASSERT(uc);				\
	}								\
	TEST_ASSERT_EQ(uc.cmd, UCALL_SYNC);				\
	TEST_ASSERT_EQ(uc.args[1], __stage);				\
})									\

static void prepare_mem12(void)
{
	int i;

	for (i = 0; i < sizeof(mem1); i++)
		mem1[i] = rand();
	memset(mem2, 0xaa, sizeof(mem2));
}

#define ASSERT_MEM_EQ(p1, p2, size) \
	TEST_ASSERT(!memcmp(p1, p2, size), "Memory contents do not match!")

static void default_write_read(struct test_info copy_cpu, struct test_info mop_cpu,
			       enum mop_target mop_target, uint32_t size, uint8_t key)
{
	prepare_mem12();
	CHECK_N_DO(MOP, mop_cpu, mop_target, WRITE, mem1, size,
		   GADDR_V(mem1), KEY(key));
	HOST_SYNC(copy_cpu, STAGE_COPIED);
	CHECK_N_DO(MOP, mop_cpu, mop_target, READ, mem2, size,
		   GADDR_V(mem2), KEY(key));
	ASSERT_MEM_EQ(mem1, mem2, size);
}

static void default_read(struct test_info copy_cpu, struct test_info mop_cpu,
			 enum mop_target mop_target, uint32_t size, uint8_t key)
{
	prepare_mem12();
	CHECK_N_DO(MOP, mop_cpu, mop_target, WRITE, mem1, size, GADDR_V(mem1));
	HOST_SYNC(copy_cpu, STAGE_COPIED);
	CHECK_N_DO(MOP, mop_cpu, mop_target, READ, mem2, size,
		   GADDR_V(mem2), KEY(key));
	ASSERT_MEM_EQ(mem1, mem2, size);
}

static void default_cmpxchg(struct test_default *test, uint8_t key)
{
	for (int size = 1; size <= 16; size *= 2) {
		for (int offset = 0; offset < 16; offset += size) {
			uint8_t __aligned(16) new[16] = {};
			uint8_t __aligned(16) old[16];
			bool succ;

			prepare_mem12();
			default_write_read(test->vcpu, test->vcpu, LOGICAL, 16, NO_KEY);

			memcpy(&old, mem1, 16);
			MOP(test->vm, ABSOLUTE, CMPXCHG, new + offset,
			    size, GADDR_V(mem1 + offset),
			    CMPXCHG_OLD(old + offset),
			    CMPXCHG_SUCCESS(&succ), KEY(key));
			HOST_SYNC(test->vcpu, STAGE_COPIED);
			MOP(test->vm, ABSOLUTE, READ, mem2, 16, GADDR_V(mem2));
			TEST_ASSERT(succ, "exchange of values should succeed");
			memcpy(mem1 + offset, new + offset, size);
			ASSERT_MEM_EQ(mem1, mem2, 16);

			memcpy(&old, mem1, 16);
			new[offset]++;
			old[offset]++;
			MOP(test->vm, ABSOLUTE, CMPXCHG, new + offset,
			    size, GADDR_V(mem1 + offset),
			    CMPXCHG_OLD(old + offset),
			    CMPXCHG_SUCCESS(&succ), KEY(key));
			HOST_SYNC(test->vcpu, STAGE_COPIED);
			MOP(test->vm, ABSOLUTE, READ, mem2, 16, GADDR_V(mem2));
			TEST_ASSERT(!succ, "exchange of values should not succeed");
			ASSERT_MEM_EQ(mem1, mem2, 16);
			ASSERT_MEM_EQ(&old, mem1, 16);
		}
	}
}

static void guest_copy(void)
{
	GUEST_SYNC(STAGE_INITED);
	memcpy(&mem2, &mem1, sizeof(mem2));
	GUEST_SYNC(STAGE_COPIED);
}

static void test_copy(void)
{
	struct test_default t = test_default_init(guest_copy);

	HOST_SYNC(t.vcpu, STAGE_INITED);

	default_write_read(t.vcpu, t.vcpu, LOGICAL, t.size, NO_KEY);

	kvm_vm_free(t.kvm_vm);
}

static void test_copy_access_register(void)
{
	struct test_default t = test_default_init(guest_copy);

	HOST_SYNC(t.vcpu, STAGE_INITED);

	prepare_mem12();
	t.run->psw_mask &= ~(3UL << (63 - 17));
	t.run->psw_mask |= 1UL << (63 - 17);  /* Enable AR mode */

	/*
	 * Primary address space gets used if an access register
	 * contains zero. The host makes use of AR[1] so is a good
	 * candidate to ensure the guest AR (of zero) is used.
	 */
	CHECK_N_DO(MOP, t.vcpu, LOGICAL, WRITE, mem1, t.size,
		   GADDR_V(mem1), AR(1));
	HOST_SYNC(t.vcpu, STAGE_COPIED);

	CHECK_N_DO(MOP, t.vcpu, LOGICAL, READ, mem2, t.size,
		   GADDR_V(mem2), AR(1));
	ASSERT_MEM_EQ(mem1, mem2, t.size);

	kvm_vm_free(t.kvm_vm);
}

static void set_storage_key_range(void *addr, size_t len, uint8_t key)
{
	uintptr_t _addr, abs, i;
	int not_mapped = 0;

	_addr = (uintptr_t)addr;
	for (i = _addr & PAGE_MASK; i < _addr + len; i += PAGE_SIZE) {
		abs = i;
		asm volatile (
			       "lra	%[abs], 0(0,%[abs])\n"
			"	jz	0f\n"
			"	llill	%[not_mapped],1\n"
			"	j	1f\n"
			"0:	sske	%[key], %[abs]\n"
			"1:"
			: [abs] "+&a" (abs), [not_mapped] "+r" (not_mapped)
			: [key] "r" (key)
			: "cc"
		);
		GUEST_ASSERT_EQ(not_mapped, 0);
	}
}

static void guest_copy_key(void)
{
	set_storage_key_range(mem1, sizeof(mem1), 0x90);
	set_storage_key_range(mem2, sizeof(mem2), 0x90);
	GUEST_SYNC(STAGE_SKEYS_SET);

	for (;;) {
		memcpy(&mem2, &mem1, sizeof(mem2));
		GUEST_SYNC(STAGE_COPIED);
	}
}

static void test_copy_key(void)
{
	struct test_default t = test_default_init(guest_copy_key);

	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);

	/* vm, no key */
	default_write_read(t.vcpu, t.vm, ABSOLUTE, t.size, NO_KEY);

	/* vm/vcpu, machting key or key 0 */
	default_write_read(t.vcpu, t.vcpu, LOGICAL, t.size, 0);
	default_write_read(t.vcpu, t.vcpu, LOGICAL, t.size, 9);
	default_write_read(t.vcpu, t.vm, ABSOLUTE, t.size, 0);
	default_write_read(t.vcpu, t.vm, ABSOLUTE, t.size, 9);
	/*
	 * There used to be different code paths for key handling depending on
	 * if the region crossed a page boundary.
	 * There currently are not, but the more tests the merrier.
	 */
	default_write_read(t.vcpu, t.vcpu, LOGICAL, 1, 0);
	default_write_read(t.vcpu, t.vcpu, LOGICAL, 1, 9);
	default_write_read(t.vcpu, t.vm, ABSOLUTE, 1, 0);
	default_write_read(t.vcpu, t.vm, ABSOLUTE, 1, 9);

	/* vm/vcpu, mismatching keys on read, but no fetch protection */
	default_read(t.vcpu, t.vcpu, LOGICAL, t.size, 2);
	default_read(t.vcpu, t.vm, ABSOLUTE, t.size, 2);

	kvm_vm_free(t.kvm_vm);
}

static void test_cmpxchg_key(void)
{
	struct test_default t = test_default_init(guest_copy_key);

	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);

	default_cmpxchg(&t, NO_KEY);
	default_cmpxchg(&t, 0);
	default_cmpxchg(&t, 9);

	kvm_vm_free(t.kvm_vm);
}

static __uint128_t cut_to_size(int size, __uint128_t val)
{
	switch (size) {
	case 1:
		return (uint8_t)val;
	case 2:
		return (uint16_t)val;
	case 4:
		return (uint32_t)val;
	case 8:
		return (uint64_t)val;
	case 16:
		return val;
	}
	GUEST_FAIL("Invalid size = %u", size);
	return 0;
}

static bool popcount_eq(__uint128_t a, __uint128_t b)
{
	unsigned int count_a, count_b;

	count_a = __builtin_popcountl((uint64_t)(a >> 64)) +
		  __builtin_popcountl((uint64_t)a);
	count_b = __builtin_popcountl((uint64_t)(b >> 64)) +
		  __builtin_popcountl((uint64_t)b);
	return count_a == count_b;
}

static __uint128_t rotate(int size, __uint128_t val, int amount)
{
	unsigned int bits = size * 8;

	amount = (amount + bits) % bits;
	val = cut_to_size(size, val);
	if (!amount)
		return val;
	return (val << (bits - amount)) | (val >> amount);
}

const unsigned int max_block = 16;

static void choose_block(bool guest, int i, int *size, int *offset)
{
	unsigned int rand;

	rand = i;
	if (guest) {
		rand = rand * 19 + 11;
		*size = 1 << ((rand % 3) + 2);
		rand = rand * 19 + 11;
		*offset = (rand % max_block) & ~(*size - 1);
	} else {
		rand = rand * 17 + 5;
		*size = 1 << (rand % 5);
		rand = rand * 17 + 5;
		*offset = (rand % max_block) & ~(*size - 1);
	}
}

static __uint128_t permutate_bits(bool guest, int i, int size, __uint128_t old)
{
	unsigned int rand;
	int amount;
	bool swap;

	rand = i;
	rand = rand * 3 + 1;
	if (guest)
		rand = rand * 3 + 1;
	swap = rand % 2 == 0;
	if (swap) {
		int i, j;
		__uint128_t new;
		uint8_t byte0, byte1;

		rand = rand * 3 + 1;
		i = rand % size;
		rand = rand * 3 + 1;
		j = rand % size;
		if (i == j)
			return old;
		new = rotate(16, old, i * 8);
		byte0 = new & 0xff;
		new &= ~0xff;
		new = rotate(16, new, -i * 8);
		new = rotate(16, new, j * 8);
		byte1 = new & 0xff;
		new = (new & ~0xff) | byte0;
		new = rotate(16, new, -j * 8);
		new = rotate(16, new, i * 8);
		new = new | byte1;
		new = rotate(16, new, -i * 8);
		return new;
	}
	rand = rand * 3 + 1;
	amount = rand % (size * 8);
	return rotate(size, old, amount);
}

static bool _cmpxchg(int size, void *target, __uint128_t *old_addr, __uint128_t new)
{
	bool ret;

	switch (size) {
	case 4: {
			uint32_t old = *old_addr;

			asm volatile ("cs %[old],%[new],%[address]"
			    : [old] "+d" (old),
			      [address] "+Q" (*(uint32_t *)(target))
			    : [new] "d" ((uint32_t)new)
			    : "cc"
			);
			ret = old == (uint32_t)*old_addr;
			*old_addr = old;
			return ret;
		}
	case 8: {
			uint64_t old = *old_addr;

			asm volatile ("csg %[old],%[new],%[address]"
			    : [old] "+d" (old),
			      [address] "+Q" (*(uint64_t *)(target))
			    : [new] "d" ((uint64_t)new)
			    : "cc"
			);
			ret = old == (uint64_t)*old_addr;
			*old_addr = old;
			return ret;
		}
	case 16: {
			__uint128_t old = *old_addr;

			asm volatile ("cdsg %[old],%[new],%[address]"
			    : [old] "+d" (old),
			      [address] "+Q" (*(__uint128_t *)(target))
			    : [new] "d" (new)
			    : "cc"
			);
			ret = old == *old_addr;
			*old_addr = old;
			return ret;
		}
	}
	GUEST_FAIL("Invalid size = %u", size);
	return 0;
}

const unsigned int cmpxchg_iter_outer = 100, cmpxchg_iter_inner = 10000;

static void guest_cmpxchg_key(void)
{
	int size, offset;
	__uint128_t old, new;

	set_storage_key_range(mem1, max_block, 0x10);
	set_storage_key_range(mem2, max_block, 0x10);
	GUEST_SYNC(STAGE_SKEYS_SET);

	for (int i = 0; i < cmpxchg_iter_outer; i++) {
		do {
			old = 1;
		} while (!_cmpxchg(16, mem1, &old, 0));
		for (int j = 0; j < cmpxchg_iter_inner; j++) {
			choose_block(true, i + j, &size, &offset);
			do {
				new = permutate_bits(true, i + j, size, old);
			} while (!_cmpxchg(size, mem2 + offset, &old, new));
		}
	}

	GUEST_SYNC(STAGE_DONE);
}

static void *run_guest(void *data)
{
	struct test_info *info = data;

	HOST_SYNC(*info, STAGE_DONE);
	return NULL;
}

static char *quad_to_char(__uint128_t *quad, int size)
{
	return ((char *)quad) + (sizeof(*quad) - size);
}

static void test_cmpxchg_key_concurrent(void)
{
	struct test_default t = test_default_init(guest_cmpxchg_key);
	int size, offset;
	__uint128_t old, new;
	bool success;
	pthread_t thread;

	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
	prepare_mem12();
	MOP(t.vcpu, LOGICAL, WRITE, mem1, max_block, GADDR_V(mem2));
	pthread_create(&thread, NULL, run_guest, &t.vcpu);

	for (int i = 0; i < cmpxchg_iter_outer; i++) {
		do {
			old = 0;
			new = 1;
			MOP(t.vm, ABSOLUTE, CMPXCHG, &new,
			    sizeof(new), GADDR_V(mem1),
			    CMPXCHG_OLD(&old),
			    CMPXCHG_SUCCESS(&success), KEY(1));
		} while (!success);
		for (int j = 0; j < cmpxchg_iter_inner; j++) {
			choose_block(false, i + j, &size, &offset);
			do {
				new = permutate_bits(false, i + j, size, old);
				MOP(t.vm, ABSOLUTE, CMPXCHG, quad_to_char(&new, size),
				    size, GADDR_V(mem2 + offset),
				    CMPXCHG_OLD(quad_to_char(&old, size)),
				    CMPXCHG_SUCCESS(&success), KEY(1));
			} while (!success);
		}
	}

	pthread_join(thread, NULL);

	MOP(t.vcpu, LOGICAL, READ, mem2, max_block, GADDR_V(mem2));
	TEST_ASSERT(popcount_eq(*(__uint128_t *)mem1, *(__uint128_t *)mem2),
		    "Must retain number of set bits");

	kvm_vm_free(t.kvm_vm);
}

static void guest_copy_key_fetch_prot(void)
{
	/*
	 * For some reason combining the first sync with override enablement
	 * results in an exception when calling HOST_SYNC.
	 */
	GUEST_SYNC(STAGE_INITED);
	/* Storage protection override applies to both store and fetch. */
	set_storage_key_range(mem1, sizeof(mem1), 0x98);
	set_storage_key_range(mem2, sizeof(mem2), 0x98);
	GUEST_SYNC(STAGE_SKEYS_SET);

	for (;;) {
		memcpy(&mem2, &mem1, sizeof(mem2));
		GUEST_SYNC(STAGE_COPIED);
	}
}

static void test_copy_key_storage_prot_override(void)
{
	struct test_default t = test_default_init(guest_copy_key_fetch_prot);

	HOST_SYNC(t.vcpu, STAGE_INITED);
	t.run->s.regs.crs[0] |= CR0_STORAGE_PROTECTION_OVERRIDE;
	t.run->kvm_dirty_regs = KVM_SYNC_CRS;
	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);

	/* vcpu, mismatching keys, storage protection override in effect */
	default_write_read(t.vcpu, t.vcpu, LOGICAL, t.size, 2);

	kvm_vm_free(t.kvm_vm);
}

static void test_copy_key_fetch_prot(void)
{
	struct test_default t = test_default_init(guest_copy_key_fetch_prot);

	HOST_SYNC(t.vcpu, STAGE_INITED);
	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);

	/* vm/vcpu, matching key, fetch protection in effect */
	default_read(t.vcpu, t.vcpu, LOGICAL, t.size, 9);
	default_read(t.vcpu, t.vm, ABSOLUTE, t.size, 9);

	kvm_vm_free(t.kvm_vm);
}

#define ERR_PROT_MOP(...)							\
({										\
	int rv;									\
										\
	rv = ERR_MOP(__VA_ARGS__);						\
	TEST_ASSERT(rv == 4, "Should result in protection exception");		\
})

static void guest_error_key(void)
{
	GUEST_SYNC(STAGE_INITED);
	set_storage_key_range(mem1, PAGE_SIZE, 0x18);
	set_storage_key_range(mem1 + PAGE_SIZE, sizeof(mem1) - PAGE_SIZE, 0x98);
	GUEST_SYNC(STAGE_SKEYS_SET);
	GUEST_SYNC(STAGE_IDLED);
}

static void test_errors_key(void)
{
	struct test_default t = test_default_init(guest_error_key);

	HOST_SYNC(t.vcpu, STAGE_INITED);
	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);

	/* vm/vcpu, mismatching keys, fetch protection in effect */
	CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, WRITE, mem1, t.size, GADDR_V(mem1), KEY(2));
	CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, READ, mem2, t.size, GADDR_V(mem1), KEY(2));
	CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, WRITE, mem1, t.size, GADDR_V(mem1), KEY(2));
	CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, READ, mem2, t.size, GADDR_V(mem1), KEY(2));

	kvm_vm_free(t.kvm_vm);
}

static void test_errors_cmpxchg_key(void)
{
	struct test_default t = test_default_init(guest_copy_key_fetch_prot);
	int i;

	HOST_SYNC(t.vcpu, STAGE_INITED);
	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);

	for (i = 1; i <= 16; i *= 2) {
		__uint128_t old = 0;

		ERR_PROT_MOP(t.vm, ABSOLUTE, CMPXCHG, mem2, i, GADDR_V(mem2),
			     CMPXCHG_OLD(&old), KEY(2));
	}

	kvm_vm_free(t.kvm_vm);
}

static void test_termination(void)
{
	struct test_default t = test_default_init(guest_error_key);
	uint64_t prefix;
	uint64_t teid;
	uint64_t teid_mask = BIT(63 - 56) | BIT(63 - 60) | BIT(63 - 61);
	uint64_t psw[2];

	HOST_SYNC(t.vcpu, STAGE_INITED);
	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);

	/* vcpu, mismatching keys after first page */
	ERR_PROT_MOP(t.vcpu, LOGICAL, WRITE, mem1, t.size, GADDR_V(mem1), KEY(1), INJECT);
	/*
	 * The memop injected a program exception and the test needs to check the
	 * Translation-Exception Identification (TEID). It is necessary to run
	 * the guest in order to be able to read the TEID from guest memory.
	 * Set the guest program new PSW, so the guest state is not clobbered.
	 */
	prefix = t.run->s.regs.prefix;
	psw[0] = t.run->psw_mask;
	psw[1] = t.run->psw_addr;
	MOP(t.vm, ABSOLUTE, WRITE, psw, sizeof(psw), GADDR(prefix + 464));
	HOST_SYNC(t.vcpu, STAGE_IDLED);
	MOP(t.vm, ABSOLUTE, READ, &teid, sizeof(teid), GADDR(prefix + 168));
	/* Bits 56, 60, 61 form a code, 0 being the only one allowing for termination */
	TEST_ASSERT_EQ(teid & teid_mask, 0);

	kvm_vm_free(t.kvm_vm);
}

static void test_errors_key_storage_prot_override(void)
{
	struct test_default t = test_default_init(guest_copy_key_fetch_prot);

	HOST_SYNC(t.vcpu, STAGE_INITED);
	t.run->s.regs.crs[0] |= CR0_STORAGE_PROTECTION_OVERRIDE;
	t.run->kvm_dirty_regs = KVM_SYNC_CRS;
	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);

	/* vm, mismatching keys, storage protection override not applicable to vm */
	CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, WRITE, mem1, t.size, GADDR_V(mem1), KEY(2));
	CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, READ, mem2, t.size, GADDR_V(mem2), KEY(2));

	kvm_vm_free(t.kvm_vm);
}

const uint64_t last_page_addr = -PAGE_SIZE;

static void guest_copy_key_fetch_prot_override(void)
{
	int i;
	char *page_0 = 0;

	GUEST_SYNC(STAGE_INITED);
	set_storage_key_range(0, PAGE_SIZE, 0x18);
	set_storage_key_range((void *)last_page_addr, PAGE_SIZE, 0x0);
	asm volatile ("sske %[key],%[addr]\n" :: [addr] "r"(0L), [key] "r"(0x18) : "cc");
	GUEST_SYNC(STAGE_SKEYS_SET);

	for (;;) {
		for (i = 0; i < PAGE_SIZE; i++)
			page_0[i] = mem1[i];
		GUEST_SYNC(STAGE_COPIED);
	}
}

static void test_copy_key_fetch_prot_override(void)
{
	struct test_default t = test_default_init(guest_copy_key_fetch_prot_override);
	vm_vaddr_t guest_0_page, guest_last_page;

	guest_0_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, 0);
	guest_last_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, last_page_addr);
	if (guest_0_page != 0 || guest_last_page != last_page_addr) {
		print_skip("did not allocate guest pages at required positions");
		goto out;
	}

	HOST_SYNC(t.vcpu, STAGE_INITED);
	t.run->s.regs.crs[0] |= CR0_FETCH_PROTECTION_OVERRIDE;
	t.run->kvm_dirty_regs = KVM_SYNC_CRS;
	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);

	/* vcpu, mismatching keys on fetch, fetch protection override applies */
	prepare_mem12();
	MOP(t.vcpu, LOGICAL, WRITE, mem1, PAGE_SIZE, GADDR_V(mem1));
	HOST_SYNC(t.vcpu, STAGE_COPIED);
	CHECK_N_DO(MOP, t.vcpu, LOGICAL, READ, mem2, 2048, GADDR_V(guest_0_page), KEY(2));
	ASSERT_MEM_EQ(mem1, mem2, 2048);

	/*
	 * vcpu, mismatching keys on fetch, fetch protection override applies,
	 * wraparound
	 */
	prepare_mem12();
	MOP(t.vcpu, LOGICAL, WRITE, mem1, 2 * PAGE_SIZE, GADDR_V(guest_last_page));
	HOST_SYNC(t.vcpu, STAGE_COPIED);
	CHECK_N_DO(MOP, t.vcpu, LOGICAL, READ, mem2, PAGE_SIZE + 2048,
		   GADDR_V(guest_last_page), KEY(2));
	ASSERT_MEM_EQ(mem1, mem2, 2048);

out:
	kvm_vm_free(t.kvm_vm);
}

static void test_errors_key_fetch_prot_override_not_enabled(void)
{
	struct test_default t = test_default_init(guest_copy_key_fetch_prot_override);
	vm_vaddr_t guest_0_page, guest_last_page;

	guest_0_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, 0);
	guest_last_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, last_page_addr);
	if (guest_0_page != 0 || guest_last_page != last_page_addr) {
		print_skip("did not allocate guest pages at required positions");
		goto out;
	}
	HOST_SYNC(t.vcpu, STAGE_INITED);
	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);

	/* vcpu, mismatching keys on fetch, fetch protection override not enabled */
	CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, READ, mem2, 2048, GADDR_V(0), KEY(2));

out:
	kvm_vm_free(t.kvm_vm);
}

static void test_errors_key_fetch_prot_override_enabled(void)
{
	struct test_default t = test_default_init(guest_copy_key_fetch_prot_override);
	vm_vaddr_t guest_0_page, guest_last_page;

	guest_0_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, 0);
	guest_last_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, last_page_addr);
	if (guest_0_page != 0 || guest_last_page != last_page_addr) {
		print_skip("did not allocate guest pages at required positions");
		goto out;
	}
	HOST_SYNC(t.vcpu, STAGE_INITED);
	t.run->s.regs.crs[0] |= CR0_FETCH_PROTECTION_OVERRIDE;
	t.run->kvm_dirty_regs = KVM_SYNC_CRS;
	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);

	/*
	 * vcpu, mismatching keys on fetch,
	 * fetch protection override does not apply because memory range exceeded
	 */
	CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, READ, mem2, 2048 + 1, GADDR_V(0), KEY(2));
	CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, READ, mem2, PAGE_SIZE + 2048 + 1,
		   GADDR_V(guest_last_page), KEY(2));
	/* vm, fetch protected override does not apply */
	CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, READ, mem2, 2048, GADDR(0), KEY(2));
	CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, READ, mem2, 2048, GADDR_V(guest_0_page), KEY(2));

out:
	kvm_vm_free(t.kvm_vm);
}

static void guest_idle(void)
{
	GUEST_SYNC(STAGE_INITED); /* for consistency's sake */
	for (;;)
		GUEST_SYNC(STAGE_IDLED);
}

static void _test_errors_common(struct test_info info, enum mop_target target, int size)
{
	int rv;

	/* Bad size: */
	rv = ERR_MOP(info, target, WRITE, mem1, -1, GADDR_V(mem1));
	TEST_ASSERT(rv == -1 && errno == E2BIG, "ioctl allows insane sizes");

	/* Zero size: */
	rv = ERR_MOP(info, target, WRITE, mem1, 0, GADDR_V(mem1));
	TEST_ASSERT(rv == -1 && (errno == EINVAL || errno == ENOMEM),
		    "ioctl allows 0 as size");

	/* Bad flags: */
	rv = ERR_MOP(info, target, WRITE, mem1, size, GADDR_V(mem1), SET_FLAGS(-1));
	TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows all flags");

	/* Bad guest address: */
	rv = ERR_MOP(info, target, WRITE, mem1, size, GADDR((void *)~0xfffUL), CHECK_ONLY);
	TEST_ASSERT(rv > 0, "ioctl does not report bad guest memory address with CHECK_ONLY");
	rv = ERR_MOP(info, target, WRITE, mem1, size, GADDR((void *)~0xfffUL));
	TEST_ASSERT(rv > 0, "ioctl does not report bad guest memory address on write");

	/* Bad host address: */
	rv = ERR_MOP(info, target, WRITE, 0, size, GADDR_V(mem1));
	TEST_ASSERT(rv == -1 && errno == EFAULT,
		    "ioctl does not report bad host memory address");

	/* Bad key: */
	rv = ERR_MOP(info, target, WRITE, mem1, size, GADDR_V(mem1), KEY(17));
	TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows invalid key");
}

static void test_errors(void)
{
	struct test_default t = test_default_init(guest_idle);
	int rv;

	HOST_SYNC(t.vcpu, STAGE_INITED);

	_test_errors_common(t.vcpu, LOGICAL, t.size);
	_test_errors_common(t.vm, ABSOLUTE, t.size);

	/* Bad operation: */
	rv = ERR_MOP(t.vcpu, INVALID, WRITE, mem1, t.size, GADDR_V(mem1));
	TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows bad operations");
	/* virtual addresses are not translated when passing INVALID */
	rv = ERR_MOP(t.vm, INVALID, WRITE, mem1, PAGE_SIZE, GADDR(0));
	TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows bad operations");

	/* Bad access register: */
	t.run->psw_mask &= ~(3UL << (63 - 17));
	t.run->psw_mask |= 1UL << (63 - 17);  /* Enable AR mode */
	HOST_SYNC(t.vcpu, STAGE_IDLED); /* To sync new state to SIE block */
	rv = ERR_MOP(t.vcpu, LOGICAL, WRITE, mem1, t.size, GADDR_V(mem1), AR(17));
	TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows ARs > 15");
	t.run->psw_mask &= ~(3UL << (63 - 17));   /* Disable AR mode */
	HOST_SYNC(t.vcpu, STAGE_IDLED); /* Run to sync new state */

	/* Check that the SIDA calls are rejected for non-protected guests */
	rv = ERR_MOP(t.vcpu, SIDA, READ, mem1, 8, GADDR(0), SIDA_OFFSET(0x1c0));
	TEST_ASSERT(rv == -1 && errno == EINVAL,
		    "ioctl does not reject SIDA_READ in non-protected mode");
	rv = ERR_MOP(t.vcpu, SIDA, WRITE, mem1, 8, GADDR(0), SIDA_OFFSET(0x1c0));
	TEST_ASSERT(rv == -1 && errno == EINVAL,
		    "ioctl does not reject SIDA_WRITE in non-protected mode");

	kvm_vm_free(t.kvm_vm);
}

static void test_errors_cmpxchg(void)
{
	struct test_default t = test_default_init(guest_idle);
	__uint128_t old;
	int rv, i, power = 1;

	HOST_SYNC(t.vcpu, STAGE_INITED);

	for (i = 0; i < 32; i++) {
		if (i == power) {
			power *= 2;
			continue;
		}
		rv = ERR_MOP(t.vm, ABSOLUTE, CMPXCHG, mem1, i, GADDR_V(mem1),
			     CMPXCHG_OLD(&old));
		TEST_ASSERT(rv == -1 && errno == EINVAL,
			    "ioctl allows bad size for cmpxchg");
	}
	for (i = 1; i <= 16; i *= 2) {
		rv = ERR_MOP(t.vm, ABSOLUTE, CMPXCHG, mem1, i, GADDR((void *)~0xfffUL),
			     CMPXCHG_OLD(&old));
		TEST_ASSERT(rv > 0, "ioctl allows bad guest address for cmpxchg");
	}
	for (i = 2; i <= 16; i *= 2) {
		rv = ERR_MOP(t.vm, ABSOLUTE, CMPXCHG, mem1, i, GADDR_V(mem1 + 1),
			     CMPXCHG_OLD(&old));
		TEST_ASSERT(rv == -1 && errno == EINVAL,
			    "ioctl allows bad alignment for cmpxchg");
	}

	kvm_vm_free(t.kvm_vm);
}

int main(int argc, char *argv[])
{
	int extension_cap, idx;

	TEST_REQUIRE(kvm_has_cap(KVM_CAP_S390_MEM_OP));
	extension_cap = kvm_check_cap(KVM_CAP_S390_MEM_OP_EXTENSION);

	struct testdef {
		const char *name;
		void (*test)(void);
		bool requirements_met;
	} testlist[] = {
		{
			.name = "simple copy",
			.test = test_copy,
			.requirements_met = true,
		},
		{
			.name = "generic error checks",
			.test = test_errors,
			.requirements_met = true,
		},
		{
			.name = "copy with storage keys",
			.test = test_copy_key,
			.requirements_met = extension_cap > 0,
		},
		{
			.name = "cmpxchg with storage keys",
			.test = test_cmpxchg_key,
			.requirements_met = extension_cap & 0x2,
		},
		{
			.name = "concurrently cmpxchg with storage keys",
			.test = test_cmpxchg_key_concurrent,
			.requirements_met = extension_cap & 0x2,
		},
		{
			.name = "copy with key storage protection override",
			.test = test_copy_key_storage_prot_override,
			.requirements_met = extension_cap > 0,
		},
		{
			.name = "copy with key fetch protection",
			.test = test_copy_key_fetch_prot,
			.requirements_met = extension_cap > 0,
		},
		{
			.name = "copy with key fetch protection override",
			.test = test_copy_key_fetch_prot_override,
			.requirements_met = extension_cap > 0,
		},
		{
			.name = "copy with access register mode",
			.test = test_copy_access_register,
			.requirements_met = true,
		},
		{
			.name = "error checks with key",
			.test = test_errors_key,
			.requirements_met = extension_cap > 0,
		},
		{
			.name = "error checks for cmpxchg with key",
			.test = test_errors_cmpxchg_key,
			.requirements_met = extension_cap & 0x2,
		},
		{
			.name = "error checks for cmpxchg",
			.test = test_errors_cmpxchg,
			.requirements_met = extension_cap & 0x2,
		},
		{
			.name = "termination",
			.test = test_termination,
			.requirements_met = extension_cap > 0,
		},
		{
			.name = "error checks with key storage protection override",
			.test = test_errors_key_storage_prot_override,
			.requirements_met = extension_cap > 0,
		},
		{
			.name = "error checks without key fetch prot override",
			.test = test_errors_key_fetch_prot_override_not_enabled,
			.requirements_met = extension_cap > 0,
		},
		{
			.name = "error checks with key fetch prot override",
			.test = test_errors_key_fetch_prot_override_enabled,
			.requirements_met = extension_cap > 0,
		},
	};

	ksft_print_header();
	ksft_set_plan(ARRAY_SIZE(testlist));

	for (idx = 0; idx < ARRAY_SIZE(testlist); idx++) {
		if (testlist[idx].requirements_met) {
			testlist[idx].test();
			ksft_test_result_pass("%s\n", testlist[idx].name);
		} else {
			ksft_test_result_skip("%s - requirements not met (kernel has extension cap %#x)\n",
					      testlist[idx].name, extension_cap);
		}
	}

	ksft_finished();	/* Print results and exit() accordingly */
}