1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Test for s390x CMMA migration
*
* Copyright IBM Corp. 2023
*
* Authors:
* Nico Boehr <nrb@linux.ibm.com>
*/
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include "test_util.h"
#include "kvm_util.h"
#include "kselftest.h"
#include "ucall_common.h"
#include "processor.h"
#define MAIN_PAGE_COUNT 512
#define TEST_DATA_PAGE_COUNT 512
#define TEST_DATA_MEMSLOT 1
#define TEST_DATA_START_GFN PAGE_SIZE
#define TEST_DATA_TWO_PAGE_COUNT 256
#define TEST_DATA_TWO_MEMSLOT 2
#define TEST_DATA_TWO_START_GFN (2 * PAGE_SIZE)
static char cmma_value_buf[MAIN_PAGE_COUNT + TEST_DATA_PAGE_COUNT];
/**
* Dirty CMMA attributes of exactly one page in the TEST_DATA memslot,
* so use_cmma goes on and the CMMA related ioctls do something.
*/
static void guest_do_one_essa(void)
{
asm volatile(
/* load TEST_DATA_START_GFN into r1 */
" llilf 1,%[start_gfn]\n"
/* calculate the address from the gfn */
" sllg 1,1,12(0)\n"
/* set the first page in TEST_DATA memslot to STABLE */
" .insn rrf,0xb9ab0000,2,1,1,0\n"
/* hypercall */
" diag 0,0,0x501\n"
"0: j 0b"
:
: [start_gfn] "L"(TEST_DATA_START_GFN)
: "r1", "r2", "memory", "cc"
);
}
/**
* Touch CMMA attributes of all pages in TEST_DATA memslot. Set them to stable
* state.
*/
static void guest_dirty_test_data(void)
{
asm volatile(
/* r1 = TEST_DATA_START_GFN */
" xgr 1,1\n"
" llilf 1,%[start_gfn]\n"
/* r5 = TEST_DATA_PAGE_COUNT */
" lghi 5,%[page_count]\n"
/* r5 += r1 */
"2: agfr 5,1\n"
/* r2 = r1 << PAGE_SHIFT */
"1: sllg 2,1,12(0)\n"
/* essa(r4, r2, SET_STABLE) */
" .insn rrf,0xb9ab0000,4,2,1,0\n"
/* i++ */
" agfi 1,1\n"
/* if r1 < r5 goto 1 */
" cgrjl 1,5,1b\n"
/* hypercall */
" diag 0,0,0x501\n"
"0: j 0b"
:
: [start_gfn] "L"(TEST_DATA_START_GFN),
[page_count] "L"(TEST_DATA_PAGE_COUNT)
:
/* the counter in our loop over the pages */
"r1",
/* the calculated page physical address */
"r2",
/* ESSA output register */
"r4",
/* last page */
"r5",
"cc", "memory"
);
}
static void create_main_memslot(struct kvm_vm *vm)
{
int i;
vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, MAIN_PAGE_COUNT, 0);
/* set the array of memslots to zero like __vm_create does */
for (i = 0; i < NR_MEM_REGIONS; i++)
vm->memslots[i] = 0;
}
static void create_test_memslot(struct kvm_vm *vm)
{
vm_userspace_mem_region_add(vm,
VM_MEM_SRC_ANONYMOUS,
TEST_DATA_START_GFN << vm->page_shift,
TEST_DATA_MEMSLOT,
TEST_DATA_PAGE_COUNT,
0
);
vm->memslots[MEM_REGION_TEST_DATA] = TEST_DATA_MEMSLOT;
}
static void create_memslots(struct kvm_vm *vm)
{
/*
* Our VM has the following memory layout:
* +------+---------------------------+
* | GFN | Memslot |
* +------+---------------------------+
* | 0 | |
* | ... | MAIN (Code, Stack, ...) |
* | 511 | |
* +------+---------------------------+
* | 4096 | |
* | ... | TEST_DATA |
* | 4607 | |
* +------+---------------------------+
*/
create_main_memslot(vm);
create_test_memslot(vm);
}
static void finish_vm_setup(struct kvm_vm *vm)
{
struct userspace_mem_region *slot0;
kvm_vm_elf_load(vm, program_invocation_name);
slot0 = memslot2region(vm, 0);
ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
kvm_arch_vm_post_create(vm);
}
static struct kvm_vm *create_vm_two_memslots(void)
{
struct kvm_vm *vm;
vm = vm_create_barebones();
create_memslots(vm);
finish_vm_setup(vm);
return vm;
}
static void enable_cmma(struct kvm_vm *vm)
{
int r;
r = __kvm_device_attr_set(vm->fd, KVM_S390_VM_MEM_CTRL, KVM_S390_VM_MEM_ENABLE_CMMA, NULL);
TEST_ASSERT(!r, "enabling cmma failed r=%d errno=%d", r, errno);
}
static void enable_dirty_tracking(struct kvm_vm *vm)
{
vm_mem_region_set_flags(vm, 0, KVM_MEM_LOG_DIRTY_PAGES);
vm_mem_region_set_flags(vm, TEST_DATA_MEMSLOT, KVM_MEM_LOG_DIRTY_PAGES);
}
static int __enable_migration_mode(struct kvm_vm *vm)
{
return __kvm_device_attr_set(vm->fd,
KVM_S390_VM_MIGRATION,
KVM_S390_VM_MIGRATION_START,
NULL
);
}
static void enable_migration_mode(struct kvm_vm *vm)
{
int r = __enable_migration_mode(vm);
TEST_ASSERT(!r, "enabling migration mode failed r=%d errno=%d", r, errno);
}
static bool is_migration_mode_on(struct kvm_vm *vm)
{
u64 out;
int r;
r = __kvm_device_attr_get(vm->fd,
KVM_S390_VM_MIGRATION,
KVM_S390_VM_MIGRATION_STATUS,
&out
);
TEST_ASSERT(!r, "getting migration mode status failed r=%d errno=%d", r, errno);
return out;
}
static int vm_get_cmma_bits(struct kvm_vm *vm, u64 flags, int *errno_out)
{
struct kvm_s390_cmma_log args;
int rc;
errno = 0;
args = (struct kvm_s390_cmma_log){
.start_gfn = 0,
.count = sizeof(cmma_value_buf),
.flags = flags,
.values = (__u64)&cmma_value_buf[0]
};
rc = __vm_ioctl(vm, KVM_S390_GET_CMMA_BITS, &args);
*errno_out = errno;
return rc;
}
static void test_get_cmma_basic(void)
{
struct kvm_vm *vm = create_vm_two_memslots();
struct kvm_vcpu *vcpu;
int rc, errno_out;
/* GET_CMMA_BITS without CMMA enabled should fail */
rc = vm_get_cmma_bits(vm, 0, &errno_out);
TEST_ASSERT_EQ(rc, -1);
TEST_ASSERT_EQ(errno_out, ENXIO);
enable_cmma(vm);
vcpu = vm_vcpu_add(vm, 1, guest_do_one_essa);
vcpu_run(vcpu);
/* GET_CMMA_BITS without migration mode and without peeking should fail */
rc = vm_get_cmma_bits(vm, 0, &errno_out);
TEST_ASSERT_EQ(rc, -1);
TEST_ASSERT_EQ(errno_out, EINVAL);
/* GET_CMMA_BITS without migration mode and with peeking should work */
rc = vm_get_cmma_bits(vm, KVM_S390_CMMA_PEEK, &errno_out);
TEST_ASSERT_EQ(rc, 0);
TEST_ASSERT_EQ(errno_out, 0);
enable_dirty_tracking(vm);
enable_migration_mode(vm);
/* GET_CMMA_BITS with invalid flags */
rc = vm_get_cmma_bits(vm, 0xfeedc0fe, &errno_out);
TEST_ASSERT_EQ(rc, -1);
TEST_ASSERT_EQ(errno_out, EINVAL);
kvm_vm_free(vm);
}
static void assert_exit_was_hypercall(struct kvm_vcpu *vcpu)
{
TEST_ASSERT_EQ(vcpu->run->exit_reason, 13);
TEST_ASSERT_EQ(vcpu->run->s390_sieic.icptcode, 4);
TEST_ASSERT_EQ(vcpu->run->s390_sieic.ipa, 0x8300);
TEST_ASSERT_EQ(vcpu->run->s390_sieic.ipb, 0x5010000);
}
static void test_migration_mode(void)
{
struct kvm_vm *vm = vm_create_barebones();
struct kvm_vcpu *vcpu;
u64 orig_psw;
int rc;
/* enabling migration mode on a VM without memory should fail */
rc = __enable_migration_mode(vm);
TEST_ASSERT_EQ(rc, -1);
TEST_ASSERT_EQ(errno, EINVAL);
TEST_ASSERT(!is_migration_mode_on(vm), "migration mode should still be off");
errno = 0;
create_memslots(vm);
finish_vm_setup(vm);
enable_cmma(vm);
vcpu = vm_vcpu_add(vm, 1, guest_do_one_essa);
orig_psw = vcpu->run->psw_addr;
/*
* Execute one essa instruction in the guest. Otherwise the guest will
* not have use_cmm enabled and GET_CMMA_BITS will return no pages.
*/
vcpu_run(vcpu);
assert_exit_was_hypercall(vcpu);
/* migration mode when memslots have dirty tracking off should fail */
rc = __enable_migration_mode(vm);
TEST_ASSERT_EQ(rc, -1);
TEST_ASSERT_EQ(errno, EINVAL);
TEST_ASSERT(!is_migration_mode_on(vm), "migration mode should still be off");
errno = 0;
/* enable dirty tracking */
enable_dirty_tracking(vm);
/* enabling migration mode should work now */
rc = __enable_migration_mode(vm);
TEST_ASSERT_EQ(rc, 0);
TEST_ASSERT(is_migration_mode_on(vm), "migration mode should be on");
errno = 0;
/* execute another ESSA instruction to see this goes fine */
vcpu->run->psw_addr = orig_psw;
vcpu_run(vcpu);
assert_exit_was_hypercall(vcpu);
/*
* With migration mode on, create a new memslot with dirty tracking off.
* This should turn off migration mode.
*/
TEST_ASSERT(is_migration_mode_on(vm), "migration mode should be on");
vm_userspace_mem_region_add(vm,
VM_MEM_SRC_ANONYMOUS,
TEST_DATA_TWO_START_GFN << vm->page_shift,
TEST_DATA_TWO_MEMSLOT,
TEST_DATA_TWO_PAGE_COUNT,
0
);
TEST_ASSERT(!is_migration_mode_on(vm),
"creating memslot without dirty tracking turns off migration mode"
);
/* ESSA instructions should still execute fine */
vcpu->run->psw_addr = orig_psw;
vcpu_run(vcpu);
assert_exit_was_hypercall(vcpu);
/*
* Turn on dirty tracking on the new memslot.
* It should be possible to turn migration mode back on again.
*/
vm_mem_region_set_flags(vm, TEST_DATA_TWO_MEMSLOT, KVM_MEM_LOG_DIRTY_PAGES);
rc = __enable_migration_mode(vm);
TEST_ASSERT_EQ(rc, 0);
TEST_ASSERT(is_migration_mode_on(vm), "migration mode should be on");
errno = 0;
/*
* Turn off dirty tracking again, this time with just a flag change.
* Again, migration mode should turn off.
*/
TEST_ASSERT(is_migration_mode_on(vm), "migration mode should be on");
vm_mem_region_set_flags(vm, TEST_DATA_TWO_MEMSLOT, 0);
TEST_ASSERT(!is_migration_mode_on(vm),
"disabling dirty tracking should turn off migration mode"
);
/* ESSA instructions should still execute fine */
vcpu->run->psw_addr = orig_psw;
vcpu_run(vcpu);
assert_exit_was_hypercall(vcpu);
kvm_vm_free(vm);
}
/**
* Given a VM with the MAIN and TEST_DATA memslot, assert that both slots have
* CMMA attributes of all pages in both memslots and nothing more dirty.
* This has the useful side effect of ensuring nothing is CMMA dirty after this
* function.
*/
static void assert_all_slots_cmma_dirty(struct kvm_vm *vm)
{
struct kvm_s390_cmma_log args;
/*
* First iteration - everything should be dirty.
* Start at the main memslot...
*/
args = (struct kvm_s390_cmma_log){
.start_gfn = 0,
.count = sizeof(cmma_value_buf),
.flags = 0,
.values = (__u64)&cmma_value_buf[0]
};
memset(cmma_value_buf, 0xff, sizeof(cmma_value_buf));
vm_ioctl(vm, KVM_S390_GET_CMMA_BITS, &args);
TEST_ASSERT_EQ(args.count, MAIN_PAGE_COUNT);
TEST_ASSERT_EQ(args.remaining, TEST_DATA_PAGE_COUNT);
TEST_ASSERT_EQ(args.start_gfn, 0);
/* ...and then - after a hole - the TEST_DATA memslot should follow */
args = (struct kvm_s390_cmma_log){
.start_gfn = MAIN_PAGE_COUNT,
.count = sizeof(cmma_value_buf),
.flags = 0,
.values = (__u64)&cmma_value_buf[0]
};
memset(cmma_value_buf, 0xff, sizeof(cmma_value_buf));
vm_ioctl(vm, KVM_S390_GET_CMMA_BITS, &args);
TEST_ASSERT_EQ(args.count, TEST_DATA_PAGE_COUNT);
TEST_ASSERT_EQ(args.start_gfn, TEST_DATA_START_GFN);
TEST_ASSERT_EQ(args.remaining, 0);
/* ...and nothing else should be there */
args = (struct kvm_s390_cmma_log){
.start_gfn = TEST_DATA_START_GFN + TEST_DATA_PAGE_COUNT,
.count = sizeof(cmma_value_buf),
.flags = 0,
.values = (__u64)&cmma_value_buf[0]
};
memset(cmma_value_buf, 0xff, sizeof(cmma_value_buf));
vm_ioctl(vm, KVM_S390_GET_CMMA_BITS, &args);
TEST_ASSERT_EQ(args.count, 0);
TEST_ASSERT_EQ(args.start_gfn, 0);
TEST_ASSERT_EQ(args.remaining, 0);
}
/**
* Given a VM, assert no pages are CMMA dirty.
*/
static void assert_no_pages_cmma_dirty(struct kvm_vm *vm)
{
struct kvm_s390_cmma_log args;
/* If we start from GFN 0 again, nothing should be dirty. */
args = (struct kvm_s390_cmma_log){
.start_gfn = 0,
.count = sizeof(cmma_value_buf),
.flags = 0,
.values = (__u64)&cmma_value_buf[0]
};
memset(cmma_value_buf, 0xff, sizeof(cmma_value_buf));
vm_ioctl(vm, KVM_S390_GET_CMMA_BITS, &args);
if (args.count || args.remaining || args.start_gfn)
TEST_FAIL("pages are still dirty start_gfn=0x%llx count=%u remaining=%llu",
args.start_gfn,
args.count,
args.remaining
);
}
static void test_get_inital_dirty(void)
{
struct kvm_vm *vm = create_vm_two_memslots();
struct kvm_vcpu *vcpu;
enable_cmma(vm);
vcpu = vm_vcpu_add(vm, 1, guest_do_one_essa);
/*
* Execute one essa instruction in the guest. Otherwise the guest will
* not have use_cmm enabled and GET_CMMA_BITS will return no pages.
*/
vcpu_run(vcpu);
assert_exit_was_hypercall(vcpu);
enable_dirty_tracking(vm);
enable_migration_mode(vm);
assert_all_slots_cmma_dirty(vm);
/* Start from the beginning again and make sure nothing else is dirty */
assert_no_pages_cmma_dirty(vm);
kvm_vm_free(vm);
}
static void query_cmma_range(struct kvm_vm *vm,
u64 start_gfn, u64 gfn_count,
struct kvm_s390_cmma_log *res_out)
{
*res_out = (struct kvm_s390_cmma_log){
.start_gfn = start_gfn,
.count = gfn_count,
.flags = 0,
.values = (__u64)&cmma_value_buf[0]
};
memset(cmma_value_buf, 0xff, sizeof(cmma_value_buf));
vm_ioctl(vm, KVM_S390_GET_CMMA_BITS, res_out);
}
/**
* Assert the given cmma_log struct that was executed by query_cmma_range()
* indicates the first dirty gfn is at first_dirty_gfn and contains exactly
* dirty_gfn_count CMMA values.
*/
static void assert_cmma_dirty(u64 first_dirty_gfn,
u64 dirty_gfn_count,
const struct kvm_s390_cmma_log *res)
{
TEST_ASSERT_EQ(res->start_gfn, first_dirty_gfn);
TEST_ASSERT_EQ(res->count, dirty_gfn_count);
for (size_t i = 0; i < dirty_gfn_count; i++)
TEST_ASSERT_EQ(cmma_value_buf[0], 0x0); /* stable state */
TEST_ASSERT_EQ(cmma_value_buf[dirty_gfn_count], 0xff); /* not touched */
}
static void test_get_skip_holes(void)
{
size_t gfn_offset;
struct kvm_vm *vm = create_vm_two_memslots();
struct kvm_s390_cmma_log log;
struct kvm_vcpu *vcpu;
u64 orig_psw;
enable_cmma(vm);
vcpu = vm_vcpu_add(vm, 1, guest_dirty_test_data);
orig_psw = vcpu->run->psw_addr;
/*
* Execute some essa instructions in the guest. Otherwise the guest will
* not have use_cmm enabled and GET_CMMA_BITS will return no pages.
*/
vcpu_run(vcpu);
assert_exit_was_hypercall(vcpu);
enable_dirty_tracking(vm);
enable_migration_mode(vm);
/* un-dirty all pages */
assert_all_slots_cmma_dirty(vm);
/* Then, dirty just the TEST_DATA memslot */
vcpu->run->psw_addr = orig_psw;
vcpu_run(vcpu);
gfn_offset = TEST_DATA_START_GFN;
/**
* Query CMMA attributes of one page, starting at page 0. Since the
* main memslot was not touched by the VM, this should yield the first
* page of the TEST_DATA memslot.
* The dirty bitmap should now look like this:
* 0: not dirty
* [0x1, 0x200): dirty
*/
query_cmma_range(vm, 0, 1, &log);
assert_cmma_dirty(gfn_offset, 1, &log);
gfn_offset++;
/**
* Query CMMA attributes of 32 (0x20) pages past the end of the TEST_DATA
* memslot. This should wrap back to the beginning of the TEST_DATA
* memslot, page 1.
* The dirty bitmap should now look like this:
* [0, 0x21): not dirty
* [0x21, 0x200): dirty
*/
query_cmma_range(vm, TEST_DATA_START_GFN + TEST_DATA_PAGE_COUNT, 0x20, &log);
assert_cmma_dirty(gfn_offset, 0x20, &log);
gfn_offset += 0x20;
/* Skip 32 pages */
gfn_offset += 0x20;
/**
* After skipping 32 pages, query the next 32 (0x20) pages.
* The dirty bitmap should now look like this:
* [0, 0x21): not dirty
* [0x21, 0x41): dirty
* [0x41, 0x61): not dirty
* [0x61, 0x200): dirty
*/
query_cmma_range(vm, gfn_offset, 0x20, &log);
assert_cmma_dirty(gfn_offset, 0x20, &log);
gfn_offset += 0x20;
/**
* Query 1 page from the beginning of the TEST_DATA memslot. This should
* yield page 0x21.
* The dirty bitmap should now look like this:
* [0, 0x22): not dirty
* [0x22, 0x41): dirty
* [0x41, 0x61): not dirty
* [0x61, 0x200): dirty
*/
query_cmma_range(vm, TEST_DATA_START_GFN, 1, &log);
assert_cmma_dirty(TEST_DATA_START_GFN + 0x21, 1, &log);
gfn_offset++;
/**
* Query 15 (0xF) pages from page 0x23 in TEST_DATA memslot.
* This should yield pages [0x23, 0x33).
* The dirty bitmap should now look like this:
* [0, 0x22): not dirty
* 0x22: dirty
* [0x23, 0x33): not dirty
* [0x33, 0x41): dirty
* [0x41, 0x61): not dirty
* [0x61, 0x200): dirty
*/
gfn_offset = TEST_DATA_START_GFN + 0x23;
query_cmma_range(vm, gfn_offset, 15, &log);
assert_cmma_dirty(gfn_offset, 15, &log);
/**
* Query 17 (0x11) pages from page 0x22 in TEST_DATA memslot.
* This should yield page [0x22, 0x33)
* The dirty bitmap should now look like this:
* [0, 0x33): not dirty
* [0x33, 0x41): dirty
* [0x41, 0x61): not dirty
* [0x61, 0x200): dirty
*/
gfn_offset = TEST_DATA_START_GFN + 0x22;
query_cmma_range(vm, gfn_offset, 17, &log);
assert_cmma_dirty(gfn_offset, 17, &log);
/**
* Query 25 (0x19) pages from page 0x40 in TEST_DATA memslot.
* This should yield page 0x40 and nothing more, since there are more
* than 16 non-dirty pages after page 0x40.
* The dirty bitmap should now look like this:
* [0, 0x33): not dirty
* [0x33, 0x40): dirty
* [0x40, 0x61): not dirty
* [0x61, 0x200): dirty
*/
gfn_offset = TEST_DATA_START_GFN + 0x40;
query_cmma_range(vm, gfn_offset, 25, &log);
assert_cmma_dirty(gfn_offset, 1, &log);
/**
* Query pages [0x33, 0x40).
* The dirty bitmap should now look like this:
* [0, 0x61): not dirty
* [0x61, 0x200): dirty
*/
gfn_offset = TEST_DATA_START_GFN + 0x33;
query_cmma_range(vm, gfn_offset, 0x40 - 0x33, &log);
assert_cmma_dirty(gfn_offset, 0x40 - 0x33, &log);
/**
* Query the remaining pages [0x61, 0x200).
*/
gfn_offset = TEST_DATA_START_GFN;
query_cmma_range(vm, gfn_offset, TEST_DATA_PAGE_COUNT - 0x61, &log);
assert_cmma_dirty(TEST_DATA_START_GFN + 0x61, TEST_DATA_PAGE_COUNT - 0x61, &log);
assert_no_pages_cmma_dirty(vm);
}
struct testdef {
const char *name;
void (*test)(void);
} testlist[] = {
{ "migration mode and dirty tracking", test_migration_mode },
{ "GET_CMMA_BITS: basic calls", test_get_cmma_basic },
{ "GET_CMMA_BITS: all pages are dirty initally", test_get_inital_dirty },
{ "GET_CMMA_BITS: holes are skipped", test_get_skip_holes },
};
/**
* The kernel may support CMMA, but the machine may not (i.e. if running as
* guest-3).
*
* In this case, the CMMA capabilities are all there, but the CMMA-related
* ioctls fail. To find out whether the machine supports CMMA, create a
* temporary VM and then query the CMMA feature of the VM.
*/
static int machine_has_cmma(void)
{
struct kvm_vm *vm = vm_create_barebones();
int r;
r = !__kvm_has_device_attr(vm->fd, KVM_S390_VM_MEM_CTRL, KVM_S390_VM_MEM_ENABLE_CMMA);
kvm_vm_free(vm);
return r;
}
int main(int argc, char *argv[])
{
int idx;
TEST_REQUIRE(kvm_has_cap(KVM_CAP_SYNC_REGS));
TEST_REQUIRE(kvm_has_cap(KVM_CAP_S390_CMMA_MIGRATION));
TEST_REQUIRE(machine_has_cmma());
ksft_print_header();
ksft_set_plan(ARRAY_SIZE(testlist));
for (idx = 0; idx < ARRAY_SIZE(testlist); idx++) {
testlist[idx].test();
ksft_test_result_pass("%s\n", testlist[idx].name);
}
ksft_finished(); /* Print results and exit() accordingly */
}
|