summaryrefslogtreecommitdiff
path: root/tools/testing/selftests/kvm/lib/x86_64/processor.c
blob: acfa1d01e7df08ec06364a945ab23c85164b55cd (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
// SPDX-License-Identifier: GPL-2.0-only
/*
 * tools/testing/selftests/kvm/lib/x86_64/processor.c
 *
 * Copyright (C) 2018, Google LLC.
 */

#include "test_util.h"
#include "kvm_util.h"
#include "processor.h"

#ifndef NUM_INTERRUPTS
#define NUM_INTERRUPTS 256
#endif

#define DEFAULT_CODE_SELECTOR 0x8
#define DEFAULT_DATA_SELECTOR 0x10

#define MAX_NR_CPUID_ENTRIES 100

vm_vaddr_t exception_handlers;

static void regs_dump(FILE *stream, struct kvm_regs *regs, uint8_t indent)
{
	fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
		"rcx: 0x%.16llx rdx: 0x%.16llx\n",
		indent, "",
		regs->rax, regs->rbx, regs->rcx, regs->rdx);
	fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
		"rsp: 0x%.16llx rbp: 0x%.16llx\n",
		indent, "",
		regs->rsi, regs->rdi, regs->rsp, regs->rbp);
	fprintf(stream, "%*sr8:  0x%.16llx r9:  0x%.16llx "
		"r10: 0x%.16llx r11: 0x%.16llx\n",
		indent, "",
		regs->r8, regs->r9, regs->r10, regs->r11);
	fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
		"r14: 0x%.16llx r15: 0x%.16llx\n",
		indent, "",
		regs->r12, regs->r13, regs->r14, regs->r15);
	fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
		indent, "",
		regs->rip, regs->rflags);
}

static void segment_dump(FILE *stream, struct kvm_segment *segment,
			 uint8_t indent)
{
	fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
		"selector: 0x%.4x type: 0x%.2x\n",
		indent, "", segment->base, segment->limit,
		segment->selector, segment->type);
	fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
		"db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
		indent, "", segment->present, segment->dpl,
		segment->db, segment->s, segment->l);
	fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
		"unusable: 0x%.2x padding: 0x%.2x\n",
		indent, "", segment->g, segment->avl,
		segment->unusable, segment->padding);
}

static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
			uint8_t indent)
{
	fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
		"padding: 0x%.4x 0x%.4x 0x%.4x\n",
		indent, "", dtable->base, dtable->limit,
		dtable->padding[0], dtable->padding[1], dtable->padding[2]);
}

static void sregs_dump(FILE *stream, struct kvm_sregs *sregs, uint8_t indent)
{
	unsigned int i;

	fprintf(stream, "%*scs:\n", indent, "");
	segment_dump(stream, &sregs->cs, indent + 2);
	fprintf(stream, "%*sds:\n", indent, "");
	segment_dump(stream, &sregs->ds, indent + 2);
	fprintf(stream, "%*ses:\n", indent, "");
	segment_dump(stream, &sregs->es, indent + 2);
	fprintf(stream, "%*sfs:\n", indent, "");
	segment_dump(stream, &sregs->fs, indent + 2);
	fprintf(stream, "%*sgs:\n", indent, "");
	segment_dump(stream, &sregs->gs, indent + 2);
	fprintf(stream, "%*sss:\n", indent, "");
	segment_dump(stream, &sregs->ss, indent + 2);
	fprintf(stream, "%*str:\n", indent, "");
	segment_dump(stream, &sregs->tr, indent + 2);
	fprintf(stream, "%*sldt:\n", indent, "");
	segment_dump(stream, &sregs->ldt, indent + 2);

	fprintf(stream, "%*sgdt:\n", indent, "");
	dtable_dump(stream, &sregs->gdt, indent + 2);
	fprintf(stream, "%*sidt:\n", indent, "");
	dtable_dump(stream, &sregs->idt, indent + 2);

	fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
		"cr3: 0x%.16llx cr4: 0x%.16llx\n",
		indent, "",
		sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
	fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
		"apic_base: 0x%.16llx\n",
		indent, "",
		sregs->cr8, sregs->efer, sregs->apic_base);

	fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
	for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
		fprintf(stream, "%*s%.16llx\n", indent + 2, "",
			sregs->interrupt_bitmap[i]);
	}
}

bool kvm_is_tdp_enabled(void)
{
	if (is_intel_cpu())
		return get_kvm_intel_param_bool("ept");
	else
		return get_kvm_amd_param_bool("npt");
}

void virt_arch_pgd_alloc(struct kvm_vm *vm)
{
	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
		"unknown or unsupported guest mode, mode: 0x%x", vm->mode);

	/* If needed, create page map l4 table. */
	if (!vm->pgd_created) {
		vm->pgd = vm_alloc_page_table(vm);
		vm->pgd_created = true;
	}
}

static void *virt_get_pte(struct kvm_vm *vm, uint64_t *parent_pte,
			  uint64_t vaddr, int level)
{
	uint64_t pt_gpa = PTE_GET_PA(*parent_pte);
	uint64_t *page_table = addr_gpa2hva(vm, pt_gpa);
	int index = (vaddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu;

	TEST_ASSERT((*parent_pte & PTE_PRESENT_MASK) || parent_pte == &vm->pgd,
		    "Parent PTE (level %d) not PRESENT for gva: 0x%08lx",
		    level + 1, vaddr);

	return &page_table[index];
}

static uint64_t *virt_create_upper_pte(struct kvm_vm *vm,
				       uint64_t *parent_pte,
				       uint64_t vaddr,
				       uint64_t paddr,
				       int current_level,
				       int target_level)
{
	uint64_t *pte = virt_get_pte(vm, parent_pte, vaddr, current_level);

	if (!(*pte & PTE_PRESENT_MASK)) {
		*pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK;
		if (current_level == target_level)
			*pte |= PTE_LARGE_MASK | (paddr & PHYSICAL_PAGE_MASK);
		else
			*pte |= vm_alloc_page_table(vm) & PHYSICAL_PAGE_MASK;
	} else {
		/*
		 * Entry already present.  Assert that the caller doesn't want
		 * a hugepage at this level, and that there isn't a hugepage at
		 * this level.
		 */
		TEST_ASSERT(current_level != target_level,
			    "Cannot create hugepage at level: %u, vaddr: 0x%lx\n",
			    current_level, vaddr);
		TEST_ASSERT(!(*pte & PTE_LARGE_MASK),
			    "Cannot create page table at level: %u, vaddr: 0x%lx\n",
			    current_level, vaddr);
	}
	return pte;
}

void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level)
{
	const uint64_t pg_size = PG_LEVEL_SIZE(level);
	uint64_t *pml4e, *pdpe, *pde;
	uint64_t *pte;

	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K,
		    "Unknown or unsupported guest mode, mode: 0x%x", vm->mode);

	TEST_ASSERT((vaddr % pg_size) == 0,
		    "Virtual address not aligned,\n"
		    "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size);
	TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)),
		    "Invalid virtual address, vaddr: 0x%lx", vaddr);
	TEST_ASSERT((paddr % pg_size) == 0,
		    "Physical address not aligned,\n"
		    "  paddr: 0x%lx page size: 0x%lx", paddr, pg_size);
	TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
		    "Physical address beyond maximum supported,\n"
		    "  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
		    paddr, vm->max_gfn, vm->page_size);

	/*
	 * Allocate upper level page tables, if not already present.  Return
	 * early if a hugepage was created.
	 */
	pml4e = virt_create_upper_pte(vm, &vm->pgd, vaddr, paddr, PG_LEVEL_512G, level);
	if (*pml4e & PTE_LARGE_MASK)
		return;

	pdpe = virt_create_upper_pte(vm, pml4e, vaddr, paddr, PG_LEVEL_1G, level);
	if (*pdpe & PTE_LARGE_MASK)
		return;

	pde = virt_create_upper_pte(vm, pdpe, vaddr, paddr, PG_LEVEL_2M, level);
	if (*pde & PTE_LARGE_MASK)
		return;

	/* Fill in page table entry. */
	pte = virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K);
	TEST_ASSERT(!(*pte & PTE_PRESENT_MASK),
		    "PTE already present for 4k page at vaddr: 0x%lx\n", vaddr);
	*pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK | (paddr & PHYSICAL_PAGE_MASK);
}

void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
{
	__virt_pg_map(vm, vaddr, paddr, PG_LEVEL_4K);
}

void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
		    uint64_t nr_bytes, int level)
{
	uint64_t pg_size = PG_LEVEL_SIZE(level);
	uint64_t nr_pages = nr_bytes / pg_size;
	int i;

	TEST_ASSERT(nr_bytes % pg_size == 0,
		    "Region size not aligned: nr_bytes: 0x%lx, page size: 0x%lx",
		    nr_bytes, pg_size);

	for (i = 0; i < nr_pages; i++) {
		__virt_pg_map(vm, vaddr, paddr, level);

		vaddr += pg_size;
		paddr += pg_size;
	}
}

static bool vm_is_target_pte(uint64_t *pte, int *level, int current_level)
{
	if (*pte & PTE_LARGE_MASK) {
		TEST_ASSERT(*level == PG_LEVEL_NONE ||
			    *level == current_level,
			    "Unexpected hugepage at level %d\n", current_level);
		*level = current_level;
	}

	return *level == current_level;
}

uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
				    int *level)
{
	uint64_t *pml4e, *pdpe, *pde;

	TEST_ASSERT(*level >= PG_LEVEL_NONE && *level < PG_LEVEL_NUM,
		    "Invalid PG_LEVEL_* '%d'", *level);

	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
		"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
	TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
		(vaddr >> vm->page_shift)),
		"Invalid virtual address, vaddr: 0x%lx",
		vaddr);
	/*
	 * Based on the mode check above there are 48 bits in the vaddr, so
	 * shift 16 to sign extend the last bit (bit-47),
	 */
	TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16),
		"Canonical check failed.  The virtual address is invalid.");

	pml4e = virt_get_pte(vm, &vm->pgd, vaddr, PG_LEVEL_512G);
	if (vm_is_target_pte(pml4e, level, PG_LEVEL_512G))
		return pml4e;

	pdpe = virt_get_pte(vm, pml4e, vaddr, PG_LEVEL_1G);
	if (vm_is_target_pte(pdpe, level, PG_LEVEL_1G))
		return pdpe;

	pde = virt_get_pte(vm, pdpe, vaddr, PG_LEVEL_2M);
	if (vm_is_target_pte(pde, level, PG_LEVEL_2M))
		return pde;

	return virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K);
}

uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr)
{
	int level = PG_LEVEL_4K;

	return __vm_get_page_table_entry(vm, vaddr, &level);
}

void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
{
	uint64_t *pml4e, *pml4e_start;
	uint64_t *pdpe, *pdpe_start;
	uint64_t *pde, *pde_start;
	uint64_t *pte, *pte_start;

	if (!vm->pgd_created)
		return;

	fprintf(stream, "%*s                                          "
		"                no\n", indent, "");
	fprintf(stream, "%*s      index hvaddr         gpaddr         "
		"addr         w exec dirty\n",
		indent, "");
	pml4e_start = (uint64_t *) addr_gpa2hva(vm, vm->pgd);
	for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
		pml4e = &pml4e_start[n1];
		if (!(*pml4e & PTE_PRESENT_MASK))
			continue;
		fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10llx %u "
			" %u\n",
			indent, "",
			pml4e - pml4e_start, pml4e,
			addr_hva2gpa(vm, pml4e), PTE_GET_PFN(*pml4e),
			!!(*pml4e & PTE_WRITABLE_MASK), !!(*pml4e & PTE_NX_MASK));

		pdpe_start = addr_gpa2hva(vm, *pml4e & PHYSICAL_PAGE_MASK);
		for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
			pdpe = &pdpe_start[n2];
			if (!(*pdpe & PTE_PRESENT_MASK))
				continue;
			fprintf(stream, "%*spdpe  0x%-3zx %p 0x%-12lx 0x%-10llx "
				"%u  %u\n",
				indent, "",
				pdpe - pdpe_start, pdpe,
				addr_hva2gpa(vm, pdpe),
				PTE_GET_PFN(*pdpe), !!(*pdpe & PTE_WRITABLE_MASK),
				!!(*pdpe & PTE_NX_MASK));

			pde_start = addr_gpa2hva(vm, *pdpe & PHYSICAL_PAGE_MASK);
			for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
				pde = &pde_start[n3];
				if (!(*pde & PTE_PRESENT_MASK))
					continue;
				fprintf(stream, "%*spde   0x%-3zx %p "
					"0x%-12lx 0x%-10llx %u  %u\n",
					indent, "", pde - pde_start, pde,
					addr_hva2gpa(vm, pde),
					PTE_GET_PFN(*pde), !!(*pde & PTE_WRITABLE_MASK),
					!!(*pde & PTE_NX_MASK));

				pte_start = addr_gpa2hva(vm, *pde & PHYSICAL_PAGE_MASK);
				for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
					pte = &pte_start[n4];
					if (!(*pte & PTE_PRESENT_MASK))
						continue;
					fprintf(stream, "%*spte   0x%-3zx %p "
						"0x%-12lx 0x%-10llx %u  %u "
						"    %u    0x%-10lx\n",
						indent, "",
						pte - pte_start, pte,
						addr_hva2gpa(vm, pte),
						PTE_GET_PFN(*pte),
						!!(*pte & PTE_WRITABLE_MASK),
						!!(*pte & PTE_NX_MASK),
						!!(*pte & PTE_DIRTY_MASK),
						((uint64_t) n1 << 27)
							| ((uint64_t) n2 << 18)
							| ((uint64_t) n3 << 9)
							| ((uint64_t) n4));
				}
			}
		}
	}
}

/*
 * Set Unusable Segment
 *
 * Input Args: None
 *
 * Output Args:
 *   segp - Pointer to segment register
 *
 * Return: None
 *
 * Sets the segment register pointed to by @segp to an unusable state.
 */
static void kvm_seg_set_unusable(struct kvm_segment *segp)
{
	memset(segp, 0, sizeof(*segp));
	segp->unusable = true;
}

static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
{
	void *gdt = addr_gva2hva(vm, vm->gdt);
	struct desc64 *desc = gdt + (segp->selector >> 3) * 8;

	desc->limit0 = segp->limit & 0xFFFF;
	desc->base0 = segp->base & 0xFFFF;
	desc->base1 = segp->base >> 16;
	desc->type = segp->type;
	desc->s = segp->s;
	desc->dpl = segp->dpl;
	desc->p = segp->present;
	desc->limit1 = segp->limit >> 16;
	desc->avl = segp->avl;
	desc->l = segp->l;
	desc->db = segp->db;
	desc->g = segp->g;
	desc->base2 = segp->base >> 24;
	if (!segp->s)
		desc->base3 = segp->base >> 32;
}


/*
 * Set Long Mode Flat Kernel Code Segment
 *
 * Input Args:
 *   vm - VM whose GDT is being filled, or NULL to only write segp
 *   selector - selector value
 *
 * Output Args:
 *   segp - Pointer to KVM segment
 *
 * Return: None
 *
 * Sets up the KVM segment pointed to by @segp, to be a code segment
 * with the selector value given by @selector.
 */
static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector,
	struct kvm_segment *segp)
{
	memset(segp, 0, sizeof(*segp));
	segp->selector = selector;
	segp->limit = 0xFFFFFFFFu;
	segp->s = 0x1; /* kTypeCodeData */
	segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
					  * | kFlagCodeReadable
					  */
	segp->g = true;
	segp->l = true;
	segp->present = 1;
	if (vm)
		kvm_seg_fill_gdt_64bit(vm, segp);
}

/*
 * Set Long Mode Flat Kernel Data Segment
 *
 * Input Args:
 *   vm - VM whose GDT is being filled, or NULL to only write segp
 *   selector - selector value
 *
 * Output Args:
 *   segp - Pointer to KVM segment
 *
 * Return: None
 *
 * Sets up the KVM segment pointed to by @segp, to be a data segment
 * with the selector value given by @selector.
 */
static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector,
	struct kvm_segment *segp)
{
	memset(segp, 0, sizeof(*segp));
	segp->selector = selector;
	segp->limit = 0xFFFFFFFFu;
	segp->s = 0x1; /* kTypeCodeData */
	segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
					  * | kFlagDataWritable
					  */
	segp->g = true;
	segp->present = true;
	if (vm)
		kvm_seg_fill_gdt_64bit(vm, segp);
}

vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
{
	int level = PG_LEVEL_NONE;
	uint64_t *pte = __vm_get_page_table_entry(vm, gva, &level);

	TEST_ASSERT(*pte & PTE_PRESENT_MASK,
		    "Leaf PTE not PRESENT for gva: 0x%08lx", gva);

	/*
	 * No need for a hugepage mask on the PTE, x86-64 requires the "unused"
	 * address bits to be zero.
	 */
	return PTE_GET_PA(*pte) | (gva & ~HUGEPAGE_MASK(level));
}

static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt)
{
	if (!vm->gdt)
		vm->gdt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);

	dt->base = vm->gdt;
	dt->limit = getpagesize();
}

static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp,
				int selector)
{
	if (!vm->tss)
		vm->tss = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);

	memset(segp, 0, sizeof(*segp));
	segp->base = vm->tss;
	segp->limit = 0x67;
	segp->selector = selector;
	segp->type = 0xb;
	segp->present = 1;
	kvm_seg_fill_gdt_64bit(vm, segp);
}

static void vcpu_setup(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
{
	struct kvm_sregs sregs;

	/* Set mode specific system register values. */
	vcpu_sregs_get(vcpu, &sregs);

	sregs.idt.limit = 0;

	kvm_setup_gdt(vm, &sregs.gdt);

	switch (vm->mode) {
	case VM_MODE_PXXV48_4K:
		sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
		sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
		sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);

		kvm_seg_set_unusable(&sregs.ldt);
		kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs);
		kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds);
		kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es);
		kvm_setup_tss_64bit(vm, &sregs.tr, 0x18);
		break;

	default:
		TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
	}

	sregs.cr3 = vm->pgd;
	vcpu_sregs_set(vcpu, &sregs);
}

void kvm_arch_vm_post_create(struct kvm_vm *vm)
{
	vm_create_irqchip(vm);
}

struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
				  void *guest_code)
{
	struct kvm_mp_state mp_state;
	struct kvm_regs regs;
	vm_vaddr_t stack_vaddr;
	struct kvm_vcpu *vcpu;

	stack_vaddr = __vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
				       DEFAULT_GUEST_STACK_VADDR_MIN,
				       MEM_REGION_DATA);

	vcpu = __vm_vcpu_add(vm, vcpu_id);
	vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid());
	vcpu_setup(vm, vcpu);

	/* Setup guest general purpose registers */
	vcpu_regs_get(vcpu, &regs);
	regs.rflags = regs.rflags | 0x2;
	regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize());
	regs.rip = (unsigned long) guest_code;
	vcpu_regs_set(vcpu, &regs);

	/* Setup the MP state */
	mp_state.mp_state = 0;
	vcpu_mp_state_set(vcpu, &mp_state);

	return vcpu;
}

struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id)
{
	struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id);

	vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid());

	return vcpu;
}

void vcpu_arch_free(struct kvm_vcpu *vcpu)
{
	if (vcpu->cpuid)
		free(vcpu->cpuid);
}

/* Do not use kvm_supported_cpuid directly except for validity checks. */
static void *kvm_supported_cpuid;

const struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
{
	int kvm_fd;

	if (kvm_supported_cpuid)
		return kvm_supported_cpuid;

	kvm_supported_cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
	kvm_fd = open_kvm_dev_path_or_exit();

	kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID,
		  (struct kvm_cpuid2 *)kvm_supported_cpuid);

	close(kvm_fd);
	return kvm_supported_cpuid;
}

static uint32_t __kvm_cpu_has(const struct kvm_cpuid2 *cpuid,
			      uint32_t function, uint32_t index,
			      uint8_t reg, uint8_t lo, uint8_t hi)
{
	const struct kvm_cpuid_entry2 *entry;
	int i;

	for (i = 0; i < cpuid->nent; i++) {
		entry = &cpuid->entries[i];

		/*
		 * The output registers in kvm_cpuid_entry2 are in alphabetical
		 * order, but kvm_x86_cpu_feature matches that mess, so yay
		 * pointer shenanigans!
		 */
		if (entry->function == function && entry->index == index)
			return ((&entry->eax)[reg] & GENMASK(hi, lo)) >> lo;
	}

	return 0;
}

bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
		   struct kvm_x86_cpu_feature feature)
{
	return __kvm_cpu_has(cpuid, feature.function, feature.index,
			     feature.reg, feature.bit, feature.bit);
}

uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
			    struct kvm_x86_cpu_property property)
{
	return __kvm_cpu_has(cpuid, property.function, property.index,
			     property.reg, property.lo_bit, property.hi_bit);
}

uint64_t kvm_get_feature_msr(uint64_t msr_index)
{
	struct {
		struct kvm_msrs header;
		struct kvm_msr_entry entry;
	} buffer = {};
	int r, kvm_fd;

	buffer.header.nmsrs = 1;
	buffer.entry.index = msr_index;
	kvm_fd = open_kvm_dev_path_or_exit();

	r = __kvm_ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header);
	TEST_ASSERT(r == 1, KVM_IOCTL_ERROR(KVM_GET_MSRS, r));

	close(kvm_fd);
	return buffer.entry.data;
}

void __vm_xsave_require_permission(int bit, const char *name)
{
	int kvm_fd;
	u64 bitmask;
	long rc;
	struct kvm_device_attr attr = {
		.group = 0,
		.attr = KVM_X86_XCOMP_GUEST_SUPP,
		.addr = (unsigned long) &bitmask
	};

	TEST_ASSERT(!kvm_supported_cpuid,
		    "kvm_get_supported_cpuid() cannot be used before ARCH_REQ_XCOMP_GUEST_PERM");

	kvm_fd = open_kvm_dev_path_or_exit();
	rc = __kvm_ioctl(kvm_fd, KVM_GET_DEVICE_ATTR, &attr);
	close(kvm_fd);

	if (rc == -1 && (errno == ENXIO || errno == EINVAL))
		__TEST_REQUIRE(0, "KVM_X86_XCOMP_GUEST_SUPP not supported");

	TEST_ASSERT(rc == 0, "KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) error: %ld", rc);

	__TEST_REQUIRE(bitmask & (1ULL << bit),
		       "Required XSAVE feature '%s' not supported", name);

	TEST_REQUIRE(!syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit));

	rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask);
	TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc);
	TEST_ASSERT(bitmask & (1ULL << bit),
		    "prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure bitmask=0x%lx",
		    bitmask);
}

void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid)
{
	TEST_ASSERT(cpuid != vcpu->cpuid, "@cpuid can't be the vCPU's CPUID");

	/* Allow overriding the default CPUID. */
	if (vcpu->cpuid && vcpu->cpuid->nent < cpuid->nent) {
		free(vcpu->cpuid);
		vcpu->cpuid = NULL;
	}

	if (!vcpu->cpuid)
		vcpu->cpuid = allocate_kvm_cpuid2(cpuid->nent);

	memcpy(vcpu->cpuid, cpuid, kvm_cpuid2_size(cpuid->nent));
	vcpu_set_cpuid(vcpu);
}

void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr)
{
	struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, 0x80000008);

	entry->eax = (entry->eax & ~0xff) | maxphyaddr;
	vcpu_set_cpuid(vcpu);
}

void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function)
{
	struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, function);

	entry->eax = 0;
	entry->ebx = 0;
	entry->ecx = 0;
	entry->edx = 0;
	vcpu_set_cpuid(vcpu);
}

void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
				     struct kvm_x86_cpu_feature feature,
				     bool set)
{
	struct kvm_cpuid_entry2 *entry;
	u32 *reg;

	entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
	reg = (&entry->eax) + feature.reg;

	if (set)
		*reg |= BIT(feature.bit);
	else
		*reg &= ~BIT(feature.bit);

	vcpu_set_cpuid(vcpu);
}

uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index)
{
	struct {
		struct kvm_msrs header;
		struct kvm_msr_entry entry;
	} buffer = {};

	buffer.header.nmsrs = 1;
	buffer.entry.index = msr_index;

	vcpu_msrs_get(vcpu, &buffer.header);

	return buffer.entry.data;
}

int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value)
{
	struct {
		struct kvm_msrs header;
		struct kvm_msr_entry entry;
	} buffer = {};

	memset(&buffer, 0, sizeof(buffer));
	buffer.header.nmsrs = 1;
	buffer.entry.index = msr_index;
	buffer.entry.data = msr_value;

	return __vcpu_ioctl(vcpu, KVM_SET_MSRS, &buffer.header);
}

void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
{
	va_list ap;
	struct kvm_regs regs;

	TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
		    "  num: %u\n",
		    num);

	va_start(ap, num);
	vcpu_regs_get(vcpu, &regs);

	if (num >= 1)
		regs.rdi = va_arg(ap, uint64_t);

	if (num >= 2)
		regs.rsi = va_arg(ap, uint64_t);

	if (num >= 3)
		regs.rdx = va_arg(ap, uint64_t);

	if (num >= 4)
		regs.rcx = va_arg(ap, uint64_t);

	if (num >= 5)
		regs.r8 = va_arg(ap, uint64_t);

	if (num >= 6)
		regs.r9 = va_arg(ap, uint64_t);

	vcpu_regs_set(vcpu, &regs);
	va_end(ap);
}

void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
{
	struct kvm_regs regs;
	struct kvm_sregs sregs;

	fprintf(stream, "%*svCPU ID: %u\n", indent, "", vcpu->id);

	fprintf(stream, "%*sregs:\n", indent + 2, "");
	vcpu_regs_get(vcpu, &regs);
	regs_dump(stream, &regs, indent + 4);

	fprintf(stream, "%*ssregs:\n", indent + 2, "");
	vcpu_sregs_get(vcpu, &sregs);
	sregs_dump(stream, &sregs, indent + 4);
}

static struct kvm_msr_list *__kvm_get_msr_index_list(bool feature_msrs)
{
	struct kvm_msr_list *list;
	struct kvm_msr_list nmsrs;
	int kvm_fd, r;

	kvm_fd = open_kvm_dev_path_or_exit();

	nmsrs.nmsrs = 0;
	if (!feature_msrs)
		r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
	else
		r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, &nmsrs);

	TEST_ASSERT(r == -1 && errno == E2BIG,
		    "Expected -E2BIG, got rc: %i errno: %i (%s)",
		    r, errno, strerror(errno));

	list = malloc(sizeof(*list) + nmsrs.nmsrs * sizeof(list->indices[0]));
	TEST_ASSERT(list, "-ENOMEM when allocating MSR index list");
	list->nmsrs = nmsrs.nmsrs;

	if (!feature_msrs)
		kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
	else
		kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, list);
	close(kvm_fd);

	TEST_ASSERT(list->nmsrs == nmsrs.nmsrs,
		    "Number of MSRs in list changed, was %d, now %d",
		    nmsrs.nmsrs, list->nmsrs);
	return list;
}

const struct kvm_msr_list *kvm_get_msr_index_list(void)
{
	static const struct kvm_msr_list *list;

	if (!list)
		list = __kvm_get_msr_index_list(false);
	return list;
}


const struct kvm_msr_list *kvm_get_feature_msr_index_list(void)
{
	static const struct kvm_msr_list *list;

	if (!list)
		list = __kvm_get_msr_index_list(true);
	return list;
}

bool kvm_msr_is_in_save_restore_list(uint32_t msr_index)
{
	const struct kvm_msr_list *list = kvm_get_msr_index_list();
	int i;

	for (i = 0; i < list->nmsrs; ++i) {
		if (list->indices[i] == msr_index)
			return true;
	}

	return false;
}

static void vcpu_save_xsave_state(struct kvm_vcpu *vcpu,
				  struct kvm_x86_state *state)
{
	int size = vm_check_cap(vcpu->vm, KVM_CAP_XSAVE2);

	if (size) {
		state->xsave = malloc(size);
		vcpu_xsave2_get(vcpu, state->xsave);
	} else {
		state->xsave = malloc(sizeof(struct kvm_xsave));
		vcpu_xsave_get(vcpu, state->xsave);
	}
}

struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu)
{
	const struct kvm_msr_list *msr_list = kvm_get_msr_index_list();
	struct kvm_x86_state *state;
	int i;

	static int nested_size = -1;

	if (nested_size == -1) {
		nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
		TEST_ASSERT(nested_size <= sizeof(state->nested_),
			    "Nested state size too big, %i > %zi",
			    nested_size, sizeof(state->nested_));
	}

	/*
	 * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees
	 * guest state is consistent only after userspace re-enters the
	 * kernel with KVM_RUN.  Complete IO prior to migrating state
	 * to a new VM.
	 */
	vcpu_run_complete_io(vcpu);

	state = malloc(sizeof(*state) + msr_list->nmsrs * sizeof(state->msrs.entries[0]));

	vcpu_events_get(vcpu, &state->events);
	vcpu_mp_state_get(vcpu, &state->mp_state);
	vcpu_regs_get(vcpu, &state->regs);
	vcpu_save_xsave_state(vcpu, state);

	if (kvm_has_cap(KVM_CAP_XCRS))
		vcpu_xcrs_get(vcpu, &state->xcrs);

	vcpu_sregs_get(vcpu, &state->sregs);

	if (nested_size) {
		state->nested.size = sizeof(state->nested_);

		vcpu_nested_state_get(vcpu, &state->nested);
		TEST_ASSERT(state->nested.size <= nested_size,
			    "Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
			    state->nested.size, nested_size);
	} else {
		state->nested.size = 0;
	}

	state->msrs.nmsrs = msr_list->nmsrs;
	for (i = 0; i < msr_list->nmsrs; i++)
		state->msrs.entries[i].index = msr_list->indices[i];
	vcpu_msrs_get(vcpu, &state->msrs);

	vcpu_debugregs_get(vcpu, &state->debugregs);

	return state;
}

void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state)
{
	vcpu_sregs_set(vcpu, &state->sregs);
	vcpu_msrs_set(vcpu, &state->msrs);

	if (kvm_has_cap(KVM_CAP_XCRS))
		vcpu_xcrs_set(vcpu, &state->xcrs);

	vcpu_xsave_set(vcpu,  state->xsave);
	vcpu_events_set(vcpu, &state->events);
	vcpu_mp_state_set(vcpu, &state->mp_state);
	vcpu_debugregs_set(vcpu, &state->debugregs);
	vcpu_regs_set(vcpu, &state->regs);

	if (state->nested.size)
		vcpu_nested_state_set(vcpu, &state->nested);
}

void kvm_x86_state_cleanup(struct kvm_x86_state *state)
{
	free(state->xsave);
	free(state);
}

static bool cpu_vendor_string_is(const char *vendor)
{
	const uint32_t *chunk = (const uint32_t *)vendor;
	uint32_t eax, ebx, ecx, edx;

	cpuid(0, &eax, &ebx, &ecx, &edx);
	return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
}

bool is_intel_cpu(void)
{
	return cpu_vendor_string_is("GenuineIntel");
}

/*
 * Exclude early K5 samples with a vendor string of "AMDisbetter!"
 */
bool is_amd_cpu(void)
{
	return cpu_vendor_string_is("AuthenticAMD");
}

void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits)
{
	if (!kvm_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR)) {
		*pa_bits = kvm_cpu_has(X86_FEATURE_PAE) ? 36 : 32;
		*va_bits = 32;
	} else {
		*pa_bits = kvm_cpu_property(X86_PROPERTY_MAX_PHY_ADDR);
		*va_bits = kvm_cpu_property(X86_PROPERTY_MAX_VIRT_ADDR);
	}
}

static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr,
			  int dpl, unsigned short selector)
{
	struct idt_entry *base =
		(struct idt_entry *)addr_gva2hva(vm, vm->idt);
	struct idt_entry *e = &base[vector];

	memset(e, 0, sizeof(*e));
	e->offset0 = addr;
	e->selector = selector;
	e->ist = 0;
	e->type = 14;
	e->dpl = dpl;
	e->p = 1;
	e->offset1 = addr >> 16;
	e->offset2 = addr >> 32;
}


static bool kvm_fixup_exception(struct ex_regs *regs)
{
	if (regs->r9 != KVM_EXCEPTION_MAGIC || regs->rip != regs->r10)
		return false;

	if (regs->vector == DE_VECTOR)
		return false;

	regs->rip = regs->r11;
	regs->r9 = regs->vector;
	regs->r10 = regs->error_code;
	return true;
}

void kvm_exit_unexpected_vector(uint32_t value)
{
	ucall(UCALL_UNHANDLED, 1, value);
}

void route_exception(struct ex_regs *regs)
{
	typedef void(*handler)(struct ex_regs *);
	handler *handlers = (handler *)exception_handlers;

	if (handlers && handlers[regs->vector]) {
		handlers[regs->vector](regs);
		return;
	}

	if (kvm_fixup_exception(regs))
		return;

	kvm_exit_unexpected_vector(regs->vector);
}

void vm_init_descriptor_tables(struct kvm_vm *vm)
{
	extern void *idt_handlers;
	int i;

	vm->idt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
	vm->handlers = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
	/* Handlers have the same address in both address spaces.*/
	for (i = 0; i < NUM_INTERRUPTS; i++)
		set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0,
			DEFAULT_CODE_SELECTOR);
}

void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu)
{
	struct kvm_vm *vm = vcpu->vm;
	struct kvm_sregs sregs;

	vcpu_sregs_get(vcpu, &sregs);
	sregs.idt.base = vm->idt;
	sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1;
	sregs.gdt.base = vm->gdt;
	sregs.gdt.limit = getpagesize() - 1;
	kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs);
	vcpu_sregs_set(vcpu, &sregs);
	*(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
}

void vm_install_exception_handler(struct kvm_vm *vm, int vector,
			       void (*handler)(struct ex_regs *))
{
	vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers);

	handlers[vector] = (vm_vaddr_t)handler;
}

void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
{
	struct ucall uc;

	if (get_ucall(vcpu, &uc) == UCALL_UNHANDLED) {
		uint64_t vector = uc.args[0];

		TEST_FAIL("Unexpected vectored event in guest (vector:0x%lx)",
			  vector);
	}
}

const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
					       uint32_t function, uint32_t index)
{
	int i;

	for (i = 0; i < cpuid->nent; i++) {
		if (cpuid->entries[i].function == function &&
		    cpuid->entries[i].index == index)
			return &cpuid->entries[i];
	}

	TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index);

	return NULL;
}

uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
		       uint64_t a3)
{
	uint64_t r;

	asm volatile("vmcall"
		     : "=a"(r)
		     : "a"(nr), "b"(a0), "c"(a1), "d"(a2), "S"(a3));
	return r;
}

const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void)
{
	static struct kvm_cpuid2 *cpuid;
	int kvm_fd;

	if (cpuid)
		return cpuid;

	cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
	kvm_fd = open_kvm_dev_path_or_exit();

	kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid);

	close(kvm_fd);
	return cpuid;
}

void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu)
{
	static struct kvm_cpuid2 *cpuid_full;
	const struct kvm_cpuid2 *cpuid_sys, *cpuid_hv;
	int i, nent = 0;

	if (!cpuid_full) {
		cpuid_sys = kvm_get_supported_cpuid();
		cpuid_hv = kvm_get_supported_hv_cpuid();

		cpuid_full = allocate_kvm_cpuid2(cpuid_sys->nent + cpuid_hv->nent);
		if (!cpuid_full) {
			perror("malloc");
			abort();
		}

		/* Need to skip KVM CPUID leaves 0x400000xx */
		for (i = 0; i < cpuid_sys->nent; i++) {
			if (cpuid_sys->entries[i].function >= 0x40000000 &&
			    cpuid_sys->entries[i].function < 0x40000100)
				continue;
			cpuid_full->entries[nent] = cpuid_sys->entries[i];
			nent++;
		}

		memcpy(&cpuid_full->entries[nent], cpuid_hv->entries,
		       cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2));
		cpuid_full->nent = nent + cpuid_hv->nent;
	}

	vcpu_init_cpuid(vcpu, cpuid_full);
}

const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu)
{
	struct kvm_cpuid2 *cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);

	vcpu_ioctl(vcpu, KVM_GET_SUPPORTED_HV_CPUID, cpuid);

	return cpuid;
}

unsigned long vm_compute_max_gfn(struct kvm_vm *vm)
{
	const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */
	unsigned long ht_gfn, max_gfn, max_pfn;
	uint8_t maxphyaddr;

	max_gfn = (1ULL << (vm->pa_bits - vm->page_shift)) - 1;

	/* Avoid reserved HyperTransport region on AMD processors.  */
	if (!is_amd_cpu())
		return max_gfn;

	/* On parts with <40 physical address bits, the area is fully hidden */
	if (vm->pa_bits < 40)
		return max_gfn;

	/* Before family 17h, the HyperTransport area is just below 1T.  */
	ht_gfn = (1 << 28) - num_ht_pages;
	if (this_cpu_family() < 0x17)
		goto done;

	/*
	 * Otherwise it's at the top of the physical address space, possibly
	 * reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX.  Use
	 * the old conservative value if MAXPHYADDR is not enumerated.
	 */
	if (!this_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR))
		goto done;

	maxphyaddr = this_cpu_property(X86_PROPERTY_MAX_PHY_ADDR);
	max_pfn = (1ULL << (maxphyaddr - vm->page_shift)) - 1;

	if (this_cpu_has_p(X86_PROPERTY_PHYS_ADDR_REDUCTION))
		max_pfn >>= this_cpu_property(X86_PROPERTY_PHYS_ADDR_REDUCTION);

	ht_gfn = max_pfn - num_ht_pages;
done:
	return min(max_gfn, ht_gfn - 1);
}

/* Returns true if kvm_intel was loaded with unrestricted_guest=1. */
bool vm_is_unrestricted_guest(struct kvm_vm *vm)
{
	/* Ensure that a KVM vendor-specific module is loaded. */
	if (vm == NULL)
		close(open_kvm_dev_path_or_exit());

	return get_kvm_intel_param_bool("unrestricted_guest");
}