summaryrefslogtreecommitdiff
path: root/tools/testing/selftests/damon/damon_nr_regions.py
blob: 2e8a74aff54314bbf30750866878e71f87f30321 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#!/usr/bin/env python3
# SPDX-License-Identifier: GPL-2.0

import subprocess
import time

import _damon_sysfs

def test_nr_regions(real_nr_regions, min_nr_regions, max_nr_regions):
    '''
    Create process of the given 'real_nr_regions' regions, monitor it using
    DAMON with given '{min,max}_nr_regions' monitoring parameter.

    Exit with non-zero return code if the given {min,max}_nr_regions is not
    kept.
    '''
    sz_region = 10 * 1024 * 1024
    proc = subprocess.Popen(['./access_memory_even', '%d' % real_nr_regions,
                             '%d' % sz_region])

    # stat every monitored regions
    kdamonds = _damon_sysfs.Kdamonds([_damon_sysfs.Kdamond(
            contexts=[_damon_sysfs.DamonCtx(
                monitoring_attrs=_damon_sysfs.DamonAttrs(
                    min_nr_regions=min_nr_regions,
                    max_nr_regions=max_nr_regions),
                ops='vaddr',
                targets=[_damon_sysfs.DamonTarget(pid=proc.pid)],
                schemes=[_damon_sysfs.Damos(action='stat',
                    )] # schemes
                )] # contexts
            )]) # kdamonds

    err = kdamonds.start()
    if err is not None:
        proc.terminate()
        print('kdamond start failed: %s' % err)
        exit(1)

    collected_nr_regions = []
    while proc.poll() is None:
        time.sleep(0.1)
        err = kdamonds.kdamonds[0].update_schemes_tried_regions()
        if err is not None:
            proc.terminate()
            print('tried regions update failed: %s' % err)
            exit(1)

        scheme = kdamonds.kdamonds[0].contexts[0].schemes[0]
        if scheme.tried_regions is None:
            proc.terminate()
            print('tried regions is not collected')
            exit(1)

        nr_tried_regions = len(scheme.tried_regions)
        if nr_tried_regions <= 0:
            proc.terminate()
            print('tried regions is not created')
            exit(1)
        collected_nr_regions.append(nr_tried_regions)
        if len(collected_nr_regions) > 10:
            break
    proc.terminate()
    kdamonds.stop()

    test_name = 'nr_regions test with %d/%d/%d real/min/max nr_regions' % (
            real_nr_regions, min_nr_regions, max_nr_regions)
    if (collected_nr_regions[0] < min_nr_regions or
        collected_nr_regions[-1] > max_nr_regions):
        print('fail %s' % test_name)
        print('number of regions that collected are:')
        for nr in collected_nr_regions:
            print(nr)
        exit(1)
    print('pass %s ' % test_name)

def main():
    # test min_nr_regions larger than real nr regions
    test_nr_regions(10, 20, 100)

    # test max_nr_regions smaller than real nr regions
    test_nr_regions(15, 3, 10)

    # test online-tuned max_nr_regions that smaller than real nr regions
    sz_region = 10 * 1024 * 1024
    proc = subprocess.Popen(['./access_memory_even', '14', '%d' % sz_region])

    # stat every monitored regions
    kdamonds = _damon_sysfs.Kdamonds([_damon_sysfs.Kdamond(
            contexts=[_damon_sysfs.DamonCtx(
                monitoring_attrs=_damon_sysfs.DamonAttrs(
                    min_nr_regions=10, max_nr_regions=1000),
                ops='vaddr',
                targets=[_damon_sysfs.DamonTarget(pid=proc.pid)],
                schemes=[_damon_sysfs.Damos(action='stat',
                    )] # schemes
                )] # contexts
            )]) # kdamonds

    err = kdamonds.start()
    if err is not None:
        proc.terminate()
        print('kdamond start failed: %s' % err)
        exit(1)

    # wait until the real regions are found
    time.sleep(3)

    attrs = kdamonds.kdamonds[0].contexts[0].monitoring_attrs
    attrs.min_nr_regions = 3
    attrs.max_nr_regions = 7
    err = kdamonds.kdamonds[0].commit()
    if err is not None:
        proc.terminate()
        print('commit failed: %s' % err)
        exit(1)
    # wait for next merge operation is executed
    time.sleep(0.3)

    err = kdamonds.kdamonds[0].update_schemes_tried_regions()
    if err is not None:
        proc.terminate()
        print('tried regions update failed: %s' % err)
        exit(1)

    scheme = kdamonds.kdamonds[0].contexts[0].schemes[0]
    if scheme.tried_regions is None:
        proc.terminate()
        print('tried regions is not collected')
        exit(1)

    nr_tried_regions = len(scheme.tried_regions)
    if nr_tried_regions <= 0:
        proc.terminate()
        print('tried regions is not created')
        exit(1)
    proc.terminate()

    if nr_tried_regions > 7:
        print('fail online-tuned max_nr_regions: %d > 7' % nr_tried_regions)
        exit(1)
    print('pass online-tuned max_nr_regions')

if __name__ == '__main__':
    main()