summaryrefslogtreecommitdiff
path: root/sound/isa/gus/gus_dma.c
blob: f45f6116c77ab03d7f171717617f5569a0f4127c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
/*
 *  Routines for GF1 DMA control
 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
 *
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 *
 */

#include <asm/dma.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/gus.h>

static void snd_gf1_dma_ack(struct snd_gus_card * gus)
{
	unsigned long flags;

	spin_lock_irqsave(&gus->reg_lock, flags);
	snd_gf1_write8(gus, SNDRV_GF1_GB_DRAM_DMA_CONTROL, 0x00);
	snd_gf1_look8(gus, SNDRV_GF1_GB_DRAM_DMA_CONTROL);
	spin_unlock_irqrestore(&gus->reg_lock, flags);
}

static void snd_gf1_dma_program(struct snd_gus_card * gus,
				unsigned int addr,
				unsigned long buf_addr,
				unsigned int count,
				unsigned int cmd)
{
	unsigned long flags;
	unsigned int address;
	unsigned char dma_cmd;
	unsigned int address_high;

	// snd_printk("dma_transfer: addr=0x%x, buf=0x%lx, count=0x%x\n", addr, (long) buf, count);

	if (gus->gf1.dma1 > 3) {
		if (gus->gf1.enh_mode) {
			address = addr >> 1;
		} else {
			if (addr & 0x1f) {
				snd_printd("snd_gf1_dma_transfer: unaligned address (0x%x)?\n", addr);
				return;
			}
			address = (addr & 0x000c0000) | ((addr & 0x0003ffff) >> 1);
		}
	} else {
		address = addr;
	}

	dma_cmd = SNDRV_GF1_DMA_ENABLE | (unsigned short) cmd;
#if 0
	dma_cmd |= 0x08;
#endif
	if (dma_cmd & SNDRV_GF1_DMA_16BIT) {
		count++;
		count &= ~1;	/* align */
	}
	if (gus->gf1.dma1 > 3) {
		dma_cmd |= SNDRV_GF1_DMA_WIDTH16;
		count++;
		count &= ~1;	/* align */
	}
	snd_gf1_dma_ack(gus);
	snd_dma_program(gus->gf1.dma1, buf_addr, count, dma_cmd & SNDRV_GF1_DMA_READ ? DMA_MODE_READ : DMA_MODE_WRITE);
#if 0
	snd_printk("address = 0x%x, count = 0x%x, dma_cmd = 0x%x\n", address << 1, count, dma_cmd);
#endif
	spin_lock_irqsave(&gus->reg_lock, flags);
	if (gus->gf1.enh_mode) {
		address_high = ((address >> 16) & 0x000000f0) | (address & 0x0000000f);
		snd_gf1_write16(gus, SNDRV_GF1_GW_DRAM_DMA_LOW, (unsigned short) (address >> 4));
		snd_gf1_write8(gus, SNDRV_GF1_GB_DRAM_DMA_HIGH, (unsigned char) address_high);
	} else
		snd_gf1_write16(gus, SNDRV_GF1_GW_DRAM_DMA_LOW, (unsigned short) (address >> 4));
	snd_gf1_write8(gus, SNDRV_GF1_GB_DRAM_DMA_CONTROL, dma_cmd);
	spin_unlock_irqrestore(&gus->reg_lock, flags);
}

static struct snd_gf1_dma_block *snd_gf1_dma_next_block(struct snd_gus_card * gus)
{
	struct snd_gf1_dma_block *block;

	/* PCM block have bigger priority than synthesizer one */
	if (gus->gf1.dma_data_pcm) {
		block = gus->gf1.dma_data_pcm;
		if (gus->gf1.dma_data_pcm_last == block) {
			gus->gf1.dma_data_pcm =
			gus->gf1.dma_data_pcm_last = NULL;
		} else {
			gus->gf1.dma_data_pcm = block->next;
		}
	} else if (gus->gf1.dma_data_synth) {
		block = gus->gf1.dma_data_synth;
		if (gus->gf1.dma_data_synth_last == block) {
			gus->gf1.dma_data_synth =
			gus->gf1.dma_data_synth_last = NULL;
		} else {
			gus->gf1.dma_data_synth = block->next;
		}
	} else {
		block = NULL;
	}
	if (block) {
		gus->gf1.dma_ack = block->ack;
		gus->gf1.dma_private_data = block->private_data;
	}
	return block;
}


static void snd_gf1_dma_interrupt(struct snd_gus_card * gus)
{
	struct snd_gf1_dma_block *block;

	snd_gf1_dma_ack(gus);
	if (gus->gf1.dma_ack)
		gus->gf1.dma_ack(gus, gus->gf1.dma_private_data);
	spin_lock(&gus->dma_lock);
	if (gus->gf1.dma_data_pcm == NULL &&
	    gus->gf1.dma_data_synth == NULL) {
	    	gus->gf1.dma_ack = NULL;
		gus->gf1.dma_flags &= ~SNDRV_GF1_DMA_TRIGGER;
		spin_unlock(&gus->dma_lock);
		return;
	}
	block = snd_gf1_dma_next_block(gus);
	spin_unlock(&gus->dma_lock);
	snd_gf1_dma_program(gus, block->addr, block->buf_addr, block->count, (unsigned short) block->cmd);
	kfree(block);
#if 0
	printk("program dma (IRQ) - addr = 0x%x, buffer = 0x%lx, count = 0x%x, cmd = 0x%x\n", addr, (long) buffer, count, cmd);
#endif
}

int snd_gf1_dma_init(struct snd_gus_card * gus)
{
	mutex_lock(&gus->dma_mutex);
	gus->gf1.dma_shared++;
	if (gus->gf1.dma_shared > 1) {
		mutex_unlock(&gus->dma_mutex);
		return 0;
	}
	gus->gf1.interrupt_handler_dma_write = snd_gf1_dma_interrupt;
	gus->gf1.dma_data_pcm = 
	gus->gf1.dma_data_pcm_last =
	gus->gf1.dma_data_synth = 
	gus->gf1.dma_data_synth_last = NULL;
	mutex_unlock(&gus->dma_mutex);
	return 0;
}

int snd_gf1_dma_done(struct snd_gus_card * gus)
{
	struct snd_gf1_dma_block *block;

	mutex_lock(&gus->dma_mutex);
	gus->gf1.dma_shared--;
	if (!gus->gf1.dma_shared) {
		snd_dma_disable(gus->gf1.dma1);
		snd_gf1_set_default_handlers(gus, SNDRV_GF1_HANDLER_DMA_WRITE);
		snd_gf1_dma_ack(gus);
		while ((block = gus->gf1.dma_data_pcm)) {
			gus->gf1.dma_data_pcm = block->next;
			kfree(block);
		}
		while ((block = gus->gf1.dma_data_synth)) {
			gus->gf1.dma_data_synth = block->next;
			kfree(block);
		}
		gus->gf1.dma_data_pcm_last =
		gus->gf1.dma_data_synth_last = NULL;
	}
	mutex_unlock(&gus->dma_mutex);
	return 0;
}

int snd_gf1_dma_transfer_block(struct snd_gus_card * gus,
			       struct snd_gf1_dma_block * __block,
			       int atomic,
			       int synth)
{
	unsigned long flags;
	struct snd_gf1_dma_block *block;

	block = kmalloc(sizeof(*block), atomic ? GFP_ATOMIC : GFP_KERNEL);
	if (block == NULL) {
		snd_printk(KERN_ERR "gf1: DMA transfer failure; not enough memory\n");
		return -ENOMEM;
	}
	*block = *__block;
	block->next = NULL;
#if 0
	printk("addr = 0x%x, buffer = 0x%lx, count = 0x%x, cmd = 0x%x\n", block->addr, (long) block->buffer, block->count, block->cmd);
#endif
#if 0
	printk("gus->gf1.dma_data_pcm_last = 0x%lx\n", (long)gus->gf1.dma_data_pcm_last);
	printk("gus->gf1.dma_data_pcm = 0x%lx\n", (long)gus->gf1.dma_data_pcm);
#endif
	spin_lock_irqsave(&gus->dma_lock, flags);
	if (synth) {
		if (gus->gf1.dma_data_synth_last) {
			gus->gf1.dma_data_synth_last->next = block;
			gus->gf1.dma_data_synth_last = block;
		} else {
			gus->gf1.dma_data_synth = 
			gus->gf1.dma_data_synth_last = block;
		}
	} else {
		if (gus->gf1.dma_data_pcm_last) {
			gus->gf1.dma_data_pcm_last->next = block;
			gus->gf1.dma_data_pcm_last = block;
		} else {
			gus->gf1.dma_data_pcm = 
			gus->gf1.dma_data_pcm_last = block;
		}
	}
	if (!(gus->gf1.dma_flags & SNDRV_GF1_DMA_TRIGGER)) {
		gus->gf1.dma_flags |= SNDRV_GF1_DMA_TRIGGER;
		block = snd_gf1_dma_next_block(gus);
		spin_unlock_irqrestore(&gus->dma_lock, flags);
		if (block == NULL)
			return 0;
		snd_gf1_dma_program(gus, block->addr, block->buf_addr, block->count, (unsigned short) block->cmd);
		kfree(block);
		return 0;
	}
	spin_unlock_irqrestore(&gus->dma_lock, flags);
	return 0;
}