summaryrefslogtreecommitdiff
path: root/mm/shrinker.c
blob: dc5d2a6fcfc414131e71ef5840bfc780533ddfd7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
// SPDX-License-Identifier: GPL-2.0
#include <linux/memcontrol.h>
#include <linux/rwsem.h>
#include <linux/shrinker.h>
#include <linux/rculist.h>
#include <trace/events/vmscan.h>

#include "internal.h"

LIST_HEAD(shrinker_list);
DEFINE_MUTEX(shrinker_mutex);

#ifdef CONFIG_MEMCG
static int shrinker_nr_max;

static inline int shrinker_unit_size(int nr_items)
{
	return (DIV_ROUND_UP(nr_items, SHRINKER_UNIT_BITS) * sizeof(struct shrinker_info_unit *));
}

static inline void shrinker_unit_free(struct shrinker_info *info, int start)
{
	struct shrinker_info_unit **unit;
	int nr, i;

	if (!info)
		return;

	unit = info->unit;
	nr = DIV_ROUND_UP(info->map_nr_max, SHRINKER_UNIT_BITS);

	for (i = start; i < nr; i++) {
		if (!unit[i])
			break;

		kfree(unit[i]);
		unit[i] = NULL;
	}
}

static inline int shrinker_unit_alloc(struct shrinker_info *new,
				       struct shrinker_info *old, int nid)
{
	struct shrinker_info_unit *unit;
	int nr = DIV_ROUND_UP(new->map_nr_max, SHRINKER_UNIT_BITS);
	int start = old ? DIV_ROUND_UP(old->map_nr_max, SHRINKER_UNIT_BITS) : 0;
	int i;

	for (i = start; i < nr; i++) {
		unit = kzalloc_node(sizeof(*unit), GFP_KERNEL, nid);
		if (!unit) {
			shrinker_unit_free(new, start);
			return -ENOMEM;
		}

		new->unit[i] = unit;
	}

	return 0;
}

void free_shrinker_info(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct shrinker_info *info;
	int nid;

	for_each_node(nid) {
		pn = memcg->nodeinfo[nid];
		info = rcu_dereference_protected(pn->shrinker_info, true);
		shrinker_unit_free(info, 0);
		kvfree(info);
		rcu_assign_pointer(pn->shrinker_info, NULL);
	}
}

int alloc_shrinker_info(struct mem_cgroup *memcg)
{
	struct shrinker_info *info;
	int nid, ret = 0;
	int array_size = 0;

	mutex_lock(&shrinker_mutex);
	array_size = shrinker_unit_size(shrinker_nr_max);
	for_each_node(nid) {
		info = kvzalloc_node(sizeof(*info) + array_size, GFP_KERNEL, nid);
		if (!info)
			goto err;
		info->map_nr_max = shrinker_nr_max;
		if (shrinker_unit_alloc(info, NULL, nid))
			goto err;
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
	}
	mutex_unlock(&shrinker_mutex);

	return ret;

err:
	mutex_unlock(&shrinker_mutex);
	free_shrinker_info(memcg);
	return -ENOMEM;
}

static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
						     int nid)
{
	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
					 lockdep_is_held(&shrinker_mutex));
}

static int expand_one_shrinker_info(struct mem_cgroup *memcg, int new_size,
				    int old_size, int new_nr_max)
{
	struct shrinker_info *new, *old;
	struct mem_cgroup_per_node *pn;
	int nid;

	for_each_node(nid) {
		pn = memcg->nodeinfo[nid];
		old = shrinker_info_protected(memcg, nid);
		/* Not yet online memcg */
		if (!old)
			return 0;

		/* Already expanded this shrinker_info */
		if (new_nr_max <= old->map_nr_max)
			continue;

		new = kvzalloc_node(sizeof(*new) + new_size, GFP_KERNEL, nid);
		if (!new)
			return -ENOMEM;

		new->map_nr_max = new_nr_max;

		memcpy(new->unit, old->unit, old_size);
		if (shrinker_unit_alloc(new, old, nid)) {
			kvfree(new);
			return -ENOMEM;
		}

		rcu_assign_pointer(pn->shrinker_info, new);
		kvfree_rcu(old, rcu);
	}

	return 0;
}

static int expand_shrinker_info(int new_id)
{
	int ret = 0;
	int new_nr_max = round_up(new_id + 1, SHRINKER_UNIT_BITS);
	int new_size, old_size = 0;
	struct mem_cgroup *memcg;

	if (!root_mem_cgroup)
		goto out;

	lockdep_assert_held(&shrinker_mutex);

	new_size = shrinker_unit_size(new_nr_max);
	old_size = shrinker_unit_size(shrinker_nr_max);

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
		ret = expand_one_shrinker_info(memcg, new_size, old_size,
					       new_nr_max);
		if (ret) {
			mem_cgroup_iter_break(NULL, memcg);
			goto out;
		}
	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
out:
	if (!ret)
		shrinker_nr_max = new_nr_max;

	return ret;
}

static inline int shrinker_id_to_index(int shrinker_id)
{
	return shrinker_id / SHRINKER_UNIT_BITS;
}

static inline int shrinker_id_to_offset(int shrinker_id)
{
	return shrinker_id % SHRINKER_UNIT_BITS;
}

static inline int calc_shrinker_id(int index, int offset)
{
	return index * SHRINKER_UNIT_BITS + offset;
}

void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct shrinker_info *info;
		struct shrinker_info_unit *unit;

		rcu_read_lock();
		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
		unit = info->unit[shrinker_id_to_index(shrinker_id)];
		if (!WARN_ON_ONCE(shrinker_id >= info->map_nr_max)) {
			/* Pairs with smp mb in shrink_slab() */
			smp_mb__before_atomic();
			set_bit(shrinker_id_to_offset(shrinker_id), unit->map);
		}
		rcu_read_unlock();
	}
}

static DEFINE_IDR(shrinker_idr);

static int shrinker_memcg_alloc(struct shrinker *shrinker)
{
	int id, ret = -ENOMEM;

	if (mem_cgroup_disabled())
		return -ENOSYS;

	mutex_lock(&shrinker_mutex);
	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
	if (id < 0)
		goto unlock;

	if (id >= shrinker_nr_max) {
		if (expand_shrinker_info(id)) {
			idr_remove(&shrinker_idr, id);
			goto unlock;
		}
	}
	shrinker->id = id;
	ret = 0;
unlock:
	mutex_unlock(&shrinker_mutex);
	return ret;
}

static void shrinker_memcg_remove(struct shrinker *shrinker)
{
	int id = shrinker->id;

	BUG_ON(id < 0);

	lockdep_assert_held(&shrinker_mutex);

	idr_remove(&shrinker_idr, id);
}

static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
				   struct mem_cgroup *memcg)
{
	struct shrinker_info *info;
	struct shrinker_info_unit *unit;
	long nr_deferred;

	rcu_read_lock();
	info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
	unit = info->unit[shrinker_id_to_index(shrinker->id)];
	nr_deferred = atomic_long_xchg(&unit->nr_deferred[shrinker_id_to_offset(shrinker->id)], 0);
	rcu_read_unlock();

	return nr_deferred;
}

static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
				  struct mem_cgroup *memcg)
{
	struct shrinker_info *info;
	struct shrinker_info_unit *unit;
	long nr_deferred;

	rcu_read_lock();
	info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
	unit = info->unit[shrinker_id_to_index(shrinker->id)];
	nr_deferred =
		atomic_long_add_return(nr, &unit->nr_deferred[shrinker_id_to_offset(shrinker->id)]);
	rcu_read_unlock();

	return nr_deferred;
}

void reparent_shrinker_deferred(struct mem_cgroup *memcg)
{
	int nid, index, offset;
	long nr;
	struct mem_cgroup *parent;
	struct shrinker_info *child_info, *parent_info;
	struct shrinker_info_unit *child_unit, *parent_unit;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/* Prevent from concurrent shrinker_info expand */
	mutex_lock(&shrinker_mutex);
	for_each_node(nid) {
		child_info = shrinker_info_protected(memcg, nid);
		parent_info = shrinker_info_protected(parent, nid);
		for (index = 0; index < shrinker_id_to_index(child_info->map_nr_max); index++) {
			child_unit = child_info->unit[index];
			parent_unit = parent_info->unit[index];
			for (offset = 0; offset < SHRINKER_UNIT_BITS; offset++) {
				nr = atomic_long_read(&child_unit->nr_deferred[offset]);
				atomic_long_add(nr, &parent_unit->nr_deferred[offset]);
			}
		}
	}
	mutex_unlock(&shrinker_mutex);
}
#else
static int shrinker_memcg_alloc(struct shrinker *shrinker)
{
	return -ENOSYS;
}

static void shrinker_memcg_remove(struct shrinker *shrinker)
{
}

static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
				   struct mem_cgroup *memcg)
{
	return 0;
}

static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
				  struct mem_cgroup *memcg)
{
	return 0;
}
#endif /* CONFIG_MEMCG */

static long xchg_nr_deferred(struct shrinker *shrinker,
			     struct shrink_control *sc)
{
	int nid = sc->nid;

	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
		nid = 0;

	if (sc->memcg &&
	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
		return xchg_nr_deferred_memcg(nid, shrinker,
					      sc->memcg);

	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
}


static long add_nr_deferred(long nr, struct shrinker *shrinker,
			    struct shrink_control *sc)
{
	int nid = sc->nid;

	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
		nid = 0;

	if (sc->memcg &&
	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
		return add_nr_deferred_memcg(nr, nid, shrinker,
					     sc->memcg);

	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
}

#define SHRINK_BATCH 128

static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
				    struct shrinker *shrinker, int priority)
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
	long freeable;
	long nr;
	long new_nr;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
	long scanned = 0, next_deferred;

	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0 || freeable == SHRINK_EMPTY)
		return freeable;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = xchg_nr_deferred(shrinker, shrinkctl);

	if (shrinker->seeks) {
		delta = freeable >> priority;
		delta *= 4;
		do_div(delta, shrinker->seeks);
	} else {
		/*
		 * These objects don't require any IO to create. Trim
		 * them aggressively under memory pressure to keep
		 * them from causing refetches in the IO caches.
		 */
		delta = freeable / 2;
	}

	total_scan = nr >> priority;
	total_scan += delta;
	total_scan = min(total_scan, (2 * freeable));

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
				   freeable, delta, total_scan, priority);

	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
	 * than the total number of objects on slab (freeable), we must be
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
	       total_scan >= freeable) {
		unsigned long ret;
		unsigned long nr_to_scan = min(batch_size, total_scan);

		shrinkctl->nr_to_scan = nr_to_scan;
		shrinkctl->nr_scanned = nr_to_scan;
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;

		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
		total_scan -= shrinkctl->nr_scanned;
		scanned += shrinkctl->nr_scanned;

		cond_resched();
	}

	/*
	 * The deferred work is increased by any new work (delta) that wasn't
	 * done, decreased by old deferred work that was done now.
	 *
	 * And it is capped to two times of the freeable items.
	 */
	next_deferred = max_t(long, (nr + delta - scanned), 0);
	next_deferred = min(next_deferred, (2 * freeable));

	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates.
	 */
	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);

	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
	return freed;
}

#ifdef CONFIG_MEMCG
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	struct shrinker_info *info;
	unsigned long ret, freed = 0;
	int offset, index = 0;

	if (!mem_cgroup_online(memcg))
		return 0;

	/*
	 * lockless algorithm of memcg shrink.
	 *
	 * The shrinker_info may be freed asynchronously via RCU in the
	 * expand_one_shrinker_info(), so the rcu_read_lock() needs to be used
	 * to ensure the existence of the shrinker_info.
	 *
	 * The shrinker_info_unit is never freed unless its corresponding memcg
	 * is destroyed. Here we already hold the refcount of memcg, so the
	 * memcg will not be destroyed, and of course shrinker_info_unit will
	 * not be freed.
	 *
	 * So in the memcg shrink:
	 *  step 1: use rcu_read_lock() to guarantee existence of the
	 *          shrinker_info.
	 *  step 2: after getting shrinker_info_unit we can safely release the
	 *          RCU lock.
	 *  step 3: traverse the bitmap and calculate shrinker_id
	 *  step 4: use rcu_read_lock() to guarantee existence of the shrinker.
	 *  step 5: use shrinker_id to find the shrinker, then use
	 *          shrinker_try_get() to guarantee existence of the shrinker,
	 *          then we can release the RCU lock to do do_shrink_slab() that
	 *          may sleep.
	 *  step 6: do shrinker_put() paired with step 5 to put the refcount,
	 *          if the refcount reaches 0, then wake up the waiter in
	 *          shrinker_free() by calling complete().
	 *          Note: here is different from the global shrink, we don't
	 *                need to acquire the RCU lock to guarantee existence of
	 *                the shrinker, because we don't need to use this
	 *                shrinker to traverse the next shrinker in the bitmap.
	 *  step 7: we have already exited the read-side of rcu critical section
	 *          before calling do_shrink_slab(), the shrinker_info may be
	 *          released in expand_one_shrinker_info(), so go back to step 1
	 *          to reacquire the shrinker_info.
	 */
again:
	rcu_read_lock();
	info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
	if (unlikely(!info))
		goto unlock;

	if (index < shrinker_id_to_index(info->map_nr_max)) {
		struct shrinker_info_unit *unit;

		unit = info->unit[index];

		rcu_read_unlock();

		for_each_set_bit(offset, unit->map, SHRINKER_UNIT_BITS) {
			struct shrink_control sc = {
				.gfp_mask = gfp_mask,
				.nid = nid,
				.memcg = memcg,
			};
			struct shrinker *shrinker;
			int shrinker_id = calc_shrinker_id(index, offset);

			rcu_read_lock();
			shrinker = idr_find(&shrinker_idr, shrinker_id);
			if (unlikely(!shrinker || !shrinker_try_get(shrinker))) {
				clear_bit(offset, unit->map);
				rcu_read_unlock();
				continue;
			}
			rcu_read_unlock();

			/* Call non-slab shrinkers even though kmem is disabled */
			if (!memcg_kmem_online() &&
			    !(shrinker->flags & SHRINKER_NONSLAB))
				continue;

			ret = do_shrink_slab(&sc, shrinker, priority);
			if (ret == SHRINK_EMPTY) {
				clear_bit(offset, unit->map);
				/*
				 * After the shrinker reported that it had no objects to
				 * free, but before we cleared the corresponding bit in
				 * the memcg shrinker map, a new object might have been
				 * added. To make sure, we have the bit set in this
				 * case, we invoke the shrinker one more time and reset
				 * the bit if it reports that it is not empty anymore.
				 * The memory barrier here pairs with the barrier in
				 * set_shrinker_bit():
				 *
				 * list_lru_add()     shrink_slab_memcg()
				 *   list_add_tail()    clear_bit()
				 *   <MB>               <MB>
				 *   set_bit()          do_shrink_slab()
				 */
				smp_mb__after_atomic();
				ret = do_shrink_slab(&sc, shrinker, priority);
				if (ret == SHRINK_EMPTY)
					ret = 0;
				else
					set_shrinker_bit(memcg, nid, shrinker_id);
			}
			freed += ret;
			shrinker_put(shrinker);
		}

		index++;
		goto again;
	}
unlock:
	rcu_read_unlock();
	return freed;
}
#else /* !CONFIG_MEMCG */
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	return 0;
}
#endif /* CONFIG_MEMCG */

/**
 * shrink_slab - shrink slab caches
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
 * @memcg: memory cgroup whose slab caches to target
 * @priority: the reclaim priority
 *
 * Call the shrink functions to age shrinkable caches.
 *
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
 *
 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 * are called only if it is the root cgroup.
 *
 * @priority is sc->priority, we take the number of objects and >> by priority
 * in order to get the scan target.
 *
 * Returns the number of reclaimed slab objects.
 */
unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg,
			  int priority)
{
	unsigned long ret, freed = 0;
	struct shrinker *shrinker;

	/*
	 * The root memcg might be allocated even though memcg is disabled
	 * via "cgroup_disable=memory" boot parameter.  This could make
	 * mem_cgroup_is_root() return false, then just run memcg slab
	 * shrink, but skip global shrink.  This may result in premature
	 * oom.
	 */
	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);

	/*
	 * lockless algorithm of global shrink.
	 *
	 * In the unregistration setp, the shrinker will be freed asynchronously
	 * via RCU after its refcount reaches 0. So both rcu_read_lock() and
	 * shrinker_try_get() can be used to ensure the existence of the shrinker.
	 *
	 * So in the global shrink:
	 *  step 1: use rcu_read_lock() to guarantee existence of the shrinker
	 *          and the validity of the shrinker_list walk.
	 *  step 2: use shrinker_try_get() to try get the refcount, if successful,
	 *          then the existence of the shrinker can also be guaranteed,
	 *          so we can release the RCU lock to do do_shrink_slab() that
	 *          may sleep.
	 *  step 3: *MUST* to reacquire the RCU lock before calling shrinker_put(),
	 *          which ensures that neither this shrinker nor the next shrinker
	 *          will be freed in the next traversal operation.
	 *  step 4: do shrinker_put() paired with step 2 to put the refcount,
	 *          if the refcount reaches 0, then wake up the waiter in
	 *          shrinker_free() by calling complete().
	 */
	rcu_read_lock();
	list_for_each_entry_rcu(shrinker, &shrinker_list, list) {
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
			.memcg = memcg,
		};

		if (!shrinker_try_get(shrinker))
			continue;

		rcu_read_unlock();

		ret = do_shrink_slab(&sc, shrinker, priority);
		if (ret == SHRINK_EMPTY)
			ret = 0;
		freed += ret;

		rcu_read_lock();
		shrinker_put(shrinker);
	}

	rcu_read_unlock();
	cond_resched();
	return freed;
}

struct shrinker *shrinker_alloc(unsigned int flags, const char *fmt, ...)
{
	struct shrinker *shrinker;
	unsigned int size;
	va_list ap;
	int err;

	shrinker = kzalloc(sizeof(struct shrinker), GFP_KERNEL);
	if (!shrinker)
		return NULL;

	va_start(ap, fmt);
	err = shrinker_debugfs_name_alloc(shrinker, fmt, ap);
	va_end(ap);
	if (err)
		goto err_name;

	shrinker->flags = flags | SHRINKER_ALLOCATED;
	shrinker->seeks = DEFAULT_SEEKS;

	if (flags & SHRINKER_MEMCG_AWARE) {
		err = shrinker_memcg_alloc(shrinker);
		if (err == -ENOSYS) {
			/* Memcg is not supported, fallback to non-memcg-aware shrinker. */
			shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
			goto non_memcg;
		}

		if (err)
			goto err_flags;

		return shrinker;
	}

non_memcg:
	/*
	 * The nr_deferred is available on per memcg level for memcg aware
	 * shrinkers, so only allocate nr_deferred in the following cases:
	 *  - non-memcg-aware shrinkers
	 *  - !CONFIG_MEMCG
	 *  - memcg is disabled by kernel command line
	 */
	size = sizeof(*shrinker->nr_deferred);
	if (flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		goto err_flags;

	return shrinker;

err_flags:
	shrinker_debugfs_name_free(shrinker);
err_name:
	kfree(shrinker);
	return NULL;
}
EXPORT_SYMBOL_GPL(shrinker_alloc);

void shrinker_register(struct shrinker *shrinker)
{
	if (unlikely(!(shrinker->flags & SHRINKER_ALLOCATED))) {
		pr_warn("Must use shrinker_alloc() to dynamically allocate the shrinker");
		return;
	}

	mutex_lock(&shrinker_mutex);
	list_add_tail_rcu(&shrinker->list, &shrinker_list);
	shrinker->flags |= SHRINKER_REGISTERED;
	shrinker_debugfs_add(shrinker);
	mutex_unlock(&shrinker_mutex);

	init_completion(&shrinker->done);
	/*
	 * Now the shrinker is fully set up, take the first reference to it to
	 * indicate that lookup operations are now allowed to use it via
	 * shrinker_try_get().
	 */
	refcount_set(&shrinker->refcount, 1);
}
EXPORT_SYMBOL_GPL(shrinker_register);

static void shrinker_free_rcu_cb(struct rcu_head *head)
{
	struct shrinker *shrinker = container_of(head, struct shrinker, rcu);

	kfree(shrinker->nr_deferred);
	kfree(shrinker);
}

void shrinker_free(struct shrinker *shrinker)
{
	struct dentry *debugfs_entry = NULL;
	int debugfs_id;

	if (!shrinker)
		return;

	if (shrinker->flags & SHRINKER_REGISTERED) {
		/* drop the initial refcount */
		shrinker_put(shrinker);
		/*
		 * Wait for all lookups of the shrinker to complete, after that,
		 * no shrinker is running or will run again, then we can safely
		 * free it asynchronously via RCU and safely free the structure
		 * where the shrinker is located, such as super_block etc.
		 */
		wait_for_completion(&shrinker->done);
	}

	mutex_lock(&shrinker_mutex);
	if (shrinker->flags & SHRINKER_REGISTERED) {
		/*
		 * Now we can safely remove it from the shrinker_list and then
		 * free it.
		 */
		list_del_rcu(&shrinker->list);
		debugfs_entry = shrinker_debugfs_detach(shrinker, &debugfs_id);
		shrinker->flags &= ~SHRINKER_REGISTERED;
	}

	shrinker_debugfs_name_free(shrinker);

	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		shrinker_memcg_remove(shrinker);
	mutex_unlock(&shrinker_mutex);

	if (debugfs_entry)
		shrinker_debugfs_remove(debugfs_entry, debugfs_id);

	call_rcu(&shrinker->rcu, shrinker_free_rcu_cb);
}
EXPORT_SYMBOL_GPL(shrinker_free);