summaryrefslogtreecommitdiff
path: root/mm/readahead.c
blob: b10f0cf81d804ea62aba61ce46b1b1ff60d95a9c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
// SPDX-License-Identifier: GPL-2.0-only
/*
 * mm/readahead.c - address_space-level file readahead.
 *
 * Copyright (C) 2002, Linus Torvalds
 *
 * 09Apr2002	Andrew Morton
 *		Initial version.
 */

/**
 * DOC: Readahead Overview
 *
 * Readahead is used to read content into the page cache before it is
 * explicitly requested by the application.  Readahead only ever
 * attempts to read folios that are not yet in the page cache.  If a
 * folio is present but not up-to-date, readahead will not try to read
 * it. In that case a simple ->read_folio() will be requested.
 *
 * Readahead is triggered when an application read request (whether a
 * system call or a page fault) finds that the requested folio is not in
 * the page cache, or that it is in the page cache and has the
 * readahead flag set.  This flag indicates that the folio was read
 * as part of a previous readahead request and now that it has been
 * accessed, it is time for the next readahead.
 *
 * Each readahead request is partly synchronous read, and partly async
 * readahead.  This is reflected in the struct file_ra_state which
 * contains ->size being the total number of pages, and ->async_size
 * which is the number of pages in the async section.  The readahead
 * flag will be set on the first folio in this async section to trigger
 * a subsequent readahead.  Once a series of sequential reads has been
 * established, there should be no need for a synchronous component and
 * all readahead request will be fully asynchronous.
 *
 * When either of the triggers causes a readahead, three numbers need
 * to be determined: the start of the region to read, the size of the
 * region, and the size of the async tail.
 *
 * The start of the region is simply the first page address at or after
 * the accessed address, which is not currently populated in the page
 * cache.  This is found with a simple search in the page cache.
 *
 * The size of the async tail is determined by subtracting the size that
 * was explicitly requested from the determined request size, unless
 * this would be less than zero - then zero is used.  NOTE THIS
 * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED
 * PAGE.  ALSO THIS CALCULATION IS NOT USED CONSISTENTLY.
 *
 * The size of the region is normally determined from the size of the
 * previous readahead which loaded the preceding pages.  This may be
 * discovered from the struct file_ra_state for simple sequential reads,
 * or from examining the state of the page cache when multiple
 * sequential reads are interleaved.  Specifically: where the readahead
 * was triggered by the readahead flag, the size of the previous
 * readahead is assumed to be the number of pages from the triggering
 * page to the start of the new readahead.  In these cases, the size of
 * the previous readahead is scaled, often doubled, for the new
 * readahead, though see get_next_ra_size() for details.
 *
 * If the size of the previous read cannot be determined, the number of
 * preceding pages in the page cache is used to estimate the size of
 * a previous read.  This estimate could easily be misled by random
 * reads being coincidentally adjacent, so it is ignored unless it is
 * larger than the current request, and it is not scaled up, unless it
 * is at the start of file.
 *
 * In general readahead is accelerated at the start of the file, as
 * reads from there are often sequential.  There are other minor
 * adjustments to the readahead size in various special cases and these
 * are best discovered by reading the code.
 *
 * The above calculation, based on the previous readahead size,
 * determines the size of the readahead, to which any requested read
 * size may be added.
 *
 * Readahead requests are sent to the filesystem using the ->readahead()
 * address space operation, for which mpage_readahead() is a canonical
 * implementation.  ->readahead() should normally initiate reads on all
 * folios, but may fail to read any or all folios without causing an I/O
 * error.  The page cache reading code will issue a ->read_folio() request
 * for any folio which ->readahead() did not read, and only an error
 * from this will be final.
 *
 * ->readahead() will generally call readahead_folio() repeatedly to get
 * each folio from those prepared for readahead.  It may fail to read a
 * folio by:
 *
 * * not calling readahead_folio() sufficiently many times, effectively
 *   ignoring some folios, as might be appropriate if the path to
 *   storage is congested.
 *
 * * failing to actually submit a read request for a given folio,
 *   possibly due to insufficient resources, or
 *
 * * getting an error during subsequent processing of a request.
 *
 * In the last two cases, the folio should be unlocked by the filesystem
 * to indicate that the read attempt has failed.  In the first case the
 * folio will be unlocked by the VFS.
 *
 * Those folios not in the final ``async_size`` of the request should be
 * considered to be important and ->readahead() should not fail them due
 * to congestion or temporary resource unavailability, but should wait
 * for necessary resources (e.g.  memory or indexing information) to
 * become available.  Folios in the final ``async_size`` may be
 * considered less urgent and failure to read them is more acceptable.
 * In this case it is best to use filemap_remove_folio() to remove the
 * folios from the page cache as is automatically done for folios that
 * were not fetched with readahead_folio().  This will allow a
 * subsequent synchronous readahead request to try them again.  If they
 * are left in the page cache, then they will be read individually using
 * ->read_folio() which may be less efficient.
 */

#include <linux/blkdev.h>
#include <linux/kernel.h>
#include <linux/dax.h>
#include <linux/gfp.h>
#include <linux/export.h>
#include <linux/backing-dev.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/pagevec.h>
#include <linux/pagemap.h>
#include <linux/psi.h>
#include <linux/syscalls.h>
#include <linux/file.h>
#include <linux/mm_inline.h>
#include <linux/blk-cgroup.h>
#include <linux/fadvise.h>
#include <linux/sched/mm.h>

#include "internal.h"

/*
 * Initialise a struct file's readahead state.  Assumes that the caller has
 * memset *ra to zero.
 */
void
file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
{
	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
	ra->prev_pos = -1;
}
EXPORT_SYMBOL_GPL(file_ra_state_init);

static void read_pages(struct readahead_control *rac)
{
	const struct address_space_operations *aops = rac->mapping->a_ops;
	struct folio *folio;
	struct blk_plug plug;

	if (!readahead_count(rac))
		return;

	if (unlikely(rac->_workingset))
		psi_memstall_enter(&rac->_pflags);
	blk_start_plug(&plug);

	if (aops->readahead) {
		aops->readahead(rac);
		/*
		 * Clean up the remaining folios.  The sizes in ->ra
		 * may be used to size the next readahead, so make sure
		 * they accurately reflect what happened.
		 */
		while ((folio = readahead_folio(rac)) != NULL) {
			unsigned long nr = folio_nr_pages(folio);

			folio_get(folio);
			rac->ra->size -= nr;
			if (rac->ra->async_size >= nr) {
				rac->ra->async_size -= nr;
				filemap_remove_folio(folio);
			}
			folio_unlock(folio);
			folio_put(folio);
		}
	} else {
		while ((folio = readahead_folio(rac)) != NULL)
			aops->read_folio(rac->file, folio);
	}

	blk_finish_plug(&plug);
	if (unlikely(rac->_workingset))
		psi_memstall_leave(&rac->_pflags);
	rac->_workingset = false;

	BUG_ON(readahead_count(rac));
}

/**
 * page_cache_ra_unbounded - Start unchecked readahead.
 * @ractl: Readahead control.
 * @nr_to_read: The number of pages to read.
 * @lookahead_size: Where to start the next readahead.
 *
 * This function is for filesystems to call when they want to start
 * readahead beyond a file's stated i_size.  This is almost certainly
 * not the function you want to call.  Use page_cache_async_readahead()
 * or page_cache_sync_readahead() instead.
 *
 * Context: File is referenced by caller.  Mutexes may be held by caller.
 * May sleep, but will not reenter filesystem to reclaim memory.
 */
void page_cache_ra_unbounded(struct readahead_control *ractl,
		unsigned long nr_to_read, unsigned long lookahead_size)
{
	struct address_space *mapping = ractl->mapping;
	unsigned long index = readahead_index(ractl);
	gfp_t gfp_mask = readahead_gfp_mask(mapping);
	unsigned long i;

	/*
	 * Partway through the readahead operation, we will have added
	 * locked pages to the page cache, but will not yet have submitted
	 * them for I/O.  Adding another page may need to allocate memory,
	 * which can trigger memory reclaim.  Telling the VM we're in
	 * the middle of a filesystem operation will cause it to not
	 * touch file-backed pages, preventing a deadlock.  Most (all?)
	 * filesystems already specify __GFP_NOFS in their mapping's
	 * gfp_mask, but let's be explicit here.
	 */
	unsigned int nofs = memalloc_nofs_save();

	filemap_invalidate_lock_shared(mapping);
	/*
	 * Preallocate as many pages as we will need.
	 */
	for (i = 0; i < nr_to_read; i++) {
		struct folio *folio = xa_load(&mapping->i_pages, index + i);

		if (folio && !xa_is_value(folio)) {
			/*
			 * Page already present?  Kick off the current batch
			 * of contiguous pages before continuing with the
			 * next batch.  This page may be the one we would
			 * have intended to mark as Readahead, but we don't
			 * have a stable reference to this page, and it's
			 * not worth getting one just for that.
			 */
			read_pages(ractl);
			ractl->_index++;
			i = ractl->_index + ractl->_nr_pages - index - 1;
			continue;
		}

		folio = filemap_alloc_folio(gfp_mask, 0);
		if (!folio)
			break;
		if (filemap_add_folio(mapping, folio, index + i,
					gfp_mask) < 0) {
			folio_put(folio);
			read_pages(ractl);
			ractl->_index++;
			i = ractl->_index + ractl->_nr_pages - index - 1;
			continue;
		}
		if (i == nr_to_read - lookahead_size)
			folio_set_readahead(folio);
		ractl->_workingset |= folio_test_workingset(folio);
		ractl->_nr_pages++;
	}

	/*
	 * Now start the IO.  We ignore I/O errors - if the folio is not
	 * uptodate then the caller will launch read_folio again, and
	 * will then handle the error.
	 */
	read_pages(ractl);
	filemap_invalidate_unlock_shared(mapping);
	memalloc_nofs_restore(nofs);
}
EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);

/*
 * do_page_cache_ra() actually reads a chunk of disk.  It allocates
 * the pages first, then submits them for I/O. This avoids the very bad
 * behaviour which would occur if page allocations are causing VM writeback.
 * We really don't want to intermingle reads and writes like that.
 */
static void do_page_cache_ra(struct readahead_control *ractl,
		unsigned long nr_to_read, unsigned long lookahead_size)
{
	struct inode *inode = ractl->mapping->host;
	unsigned long index = readahead_index(ractl);
	loff_t isize = i_size_read(inode);
	pgoff_t end_index;	/* The last page we want to read */

	if (isize == 0)
		return;

	end_index = (isize - 1) >> PAGE_SHIFT;
	if (index > end_index)
		return;
	/* Don't read past the page containing the last byte of the file */
	if (nr_to_read > end_index - index)
		nr_to_read = end_index - index + 1;

	page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
}

/*
 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
 * memory at once.
 */
void force_page_cache_ra(struct readahead_control *ractl,
		unsigned long nr_to_read)
{
	struct address_space *mapping = ractl->mapping;
	struct file_ra_state *ra = ractl->ra;
	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
	unsigned long max_pages, index;

	if (unlikely(!mapping->a_ops->read_folio && !mapping->a_ops->readahead))
		return;

	/*
	 * If the request exceeds the readahead window, allow the read to
	 * be up to the optimal hardware IO size
	 */
	index = readahead_index(ractl);
	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
	nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
	while (nr_to_read) {
		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;

		if (this_chunk > nr_to_read)
			this_chunk = nr_to_read;
		ractl->_index = index;
		do_page_cache_ra(ractl, this_chunk, 0);

		index += this_chunk;
		nr_to_read -= this_chunk;
	}
}

/*
 * Set the initial window size, round to next power of 2 and square
 * for small size, x 4 for medium, and x 2 for large
 * for 128k (32 page) max ra
 * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial
 */
static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
{
	unsigned long newsize = roundup_pow_of_two(size);

	if (newsize <= max / 32)
		newsize = newsize * 4;
	else if (newsize <= max / 4)
		newsize = newsize * 2;
	else
		newsize = max;

	return newsize;
}

/*
 *  Get the previous window size, ramp it up, and
 *  return it as the new window size.
 */
static unsigned long get_next_ra_size(struct file_ra_state *ra,
				      unsigned long max)
{
	unsigned long cur = ra->size;

	if (cur < max / 16)
		return 4 * cur;
	if (cur <= max / 2)
		return 2 * cur;
	return max;
}

/*
 * On-demand readahead design.
 *
 * The fields in struct file_ra_state represent the most-recently-executed
 * readahead attempt:
 *
 *                        |<----- async_size ---------|
 *     |------------------- size -------------------->|
 *     |==================#===========================|
 *     ^start             ^page marked with PG_readahead
 *
 * To overlap application thinking time and disk I/O time, we do
 * `readahead pipelining': Do not wait until the application consumed all
 * readahead pages and stalled on the missing page at readahead_index;
 * Instead, submit an asynchronous readahead I/O as soon as there are
 * only async_size pages left in the readahead window. Normally async_size
 * will be equal to size, for maximum pipelining.
 *
 * In interleaved sequential reads, concurrent streams on the same fd can
 * be invalidating each other's readahead state. So we flag the new readahead
 * page at (start+size-async_size) with PG_readahead, and use it as readahead
 * indicator. The flag won't be set on already cached pages, to avoid the
 * readahead-for-nothing fuss, saving pointless page cache lookups.
 *
 * prev_pos tracks the last visited byte in the _previous_ read request.
 * It should be maintained by the caller, and will be used for detecting
 * small random reads. Note that the readahead algorithm checks loosely
 * for sequential patterns. Hence interleaved reads might be served as
 * sequential ones.
 *
 * There is a special-case: if the first page which the application tries to
 * read happens to be the first page of the file, it is assumed that a linear
 * read is about to happen and the window is immediately set to the initial size
 * based on I/O request size and the max_readahead.
 *
 * The code ramps up the readahead size aggressively at first, but slow down as
 * it approaches max_readhead.
 */

/*
 * Count contiguously cached pages from @index-1 to @index-@max,
 * this count is a conservative estimation of
 * 	- length of the sequential read sequence, or
 * 	- thrashing threshold in memory tight systems
 */
static pgoff_t count_history_pages(struct address_space *mapping,
				   pgoff_t index, unsigned long max)
{
	pgoff_t head;

	rcu_read_lock();
	head = page_cache_prev_miss(mapping, index - 1, max);
	rcu_read_unlock();

	return index - 1 - head;
}

/*
 * page cache context based readahead
 */
static int try_context_readahead(struct address_space *mapping,
				 struct file_ra_state *ra,
				 pgoff_t index,
				 unsigned long req_size,
				 unsigned long max)
{
	pgoff_t size;

	size = count_history_pages(mapping, index, max);

	/*
	 * not enough history pages:
	 * it could be a random read
	 */
	if (size <= req_size)
		return 0;

	/*
	 * starts from beginning of file:
	 * it is a strong indication of long-run stream (or whole-file-read)
	 */
	if (size >= index)
		size *= 2;

	ra->start = index;
	ra->size = min(size + req_size, max);
	ra->async_size = 1;

	return 1;
}

/*
 * There are some parts of the kernel which assume that PMD entries
 * are exactly HPAGE_PMD_ORDER.  Those should be fixed, but until then,
 * limit the maximum allocation order to PMD size.  I'm not aware of any
 * assumptions about maximum order if THP are disabled, but 8 seems like
 * a good order (that's 1MB if you're using 4kB pages)
 */
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define MAX_PAGECACHE_ORDER	HPAGE_PMD_ORDER
#else
#define MAX_PAGECACHE_ORDER	8
#endif

static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index,
		pgoff_t mark, unsigned int order, gfp_t gfp)
{
	int err;
	struct folio *folio = filemap_alloc_folio(gfp, order);

	if (!folio)
		return -ENOMEM;
	mark = round_up(mark, 1UL << order);
	if (index == mark)
		folio_set_readahead(folio);
	err = filemap_add_folio(ractl->mapping, folio, index, gfp);
	if (err) {
		folio_put(folio);
		return err;
	}

	ractl->_nr_pages += 1UL << order;
	ractl->_workingset |= folio_test_workingset(folio);
	return 0;
}

void page_cache_ra_order(struct readahead_control *ractl,
		struct file_ra_state *ra, unsigned int new_order)
{
	struct address_space *mapping = ractl->mapping;
	pgoff_t index = readahead_index(ractl);
	pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT;
	pgoff_t mark = index + ra->size - ra->async_size;
	int err = 0;
	gfp_t gfp = readahead_gfp_mask(mapping);

	if (!mapping_large_folio_support(mapping) || ra->size < 4)
		goto fallback;

	limit = min(limit, index + ra->size - 1);

	if (new_order < MAX_PAGECACHE_ORDER) {
		new_order += 2;
		if (new_order > MAX_PAGECACHE_ORDER)
			new_order = MAX_PAGECACHE_ORDER;
		while ((1 << new_order) > ra->size)
			new_order--;
	}

	filemap_invalidate_lock_shared(mapping);
	while (index <= limit) {
		unsigned int order = new_order;

		/* Align with smaller pages if needed */
		if (index & ((1UL << order) - 1)) {
			order = __ffs(index);
			if (order == 1)
				order = 0;
		}
		/* Don't allocate pages past EOF */
		while (index + (1UL << order) - 1 > limit) {
			if (--order == 1)
				order = 0;
		}
		err = ra_alloc_folio(ractl, index, mark, order, gfp);
		if (err)
			break;
		index += 1UL << order;
	}

	if (index > limit) {
		ra->size += index - limit - 1;
		ra->async_size += index - limit - 1;
	}

	read_pages(ractl);
	filemap_invalidate_unlock_shared(mapping);

	/*
	 * If there were already pages in the page cache, then we may have
	 * left some gaps.  Let the regular readahead code take care of this
	 * situation.
	 */
	if (!err)
		return;
fallback:
	do_page_cache_ra(ractl, ra->size, ra->async_size);
}

/*
 * A minimal readahead algorithm for trivial sequential/random reads.
 */
static void ondemand_readahead(struct readahead_control *ractl,
		struct folio *folio, unsigned long req_size)
{
	struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
	struct file_ra_state *ra = ractl->ra;
	unsigned long max_pages = ra->ra_pages;
	unsigned long add_pages;
	pgoff_t index = readahead_index(ractl);
	pgoff_t expected, prev_index;
	unsigned int order = folio ? folio_order(folio) : 0;

	/*
	 * If the request exceeds the readahead window, allow the read to
	 * be up to the optimal hardware IO size
	 */
	if (req_size > max_pages && bdi->io_pages > max_pages)
		max_pages = min(req_size, bdi->io_pages);

	/*
	 * start of file
	 */
	if (!index)
		goto initial_readahead;

	/*
	 * It's the expected callback index, assume sequential access.
	 * Ramp up sizes, and push forward the readahead window.
	 */
	expected = round_up(ra->start + ra->size - ra->async_size,
			1UL << order);
	if (index == expected || index == (ra->start + ra->size)) {
		ra->start += ra->size;
		ra->size = get_next_ra_size(ra, max_pages);
		ra->async_size = ra->size;
		goto readit;
	}

	/*
	 * Hit a marked folio without valid readahead state.
	 * E.g. interleaved reads.
	 * Query the pagecache for async_size, which normally equals to
	 * readahead size. Ramp it up and use it as the new readahead size.
	 */
	if (folio) {
		pgoff_t start;

		rcu_read_lock();
		start = page_cache_next_miss(ractl->mapping, index + 1,
				max_pages);
		rcu_read_unlock();

		if (!start || start - index > max_pages)
			return;

		ra->start = start;
		ra->size = start - index;	/* old async_size */
		ra->size += req_size;
		ra->size = get_next_ra_size(ra, max_pages);
		ra->async_size = ra->size;
		goto readit;
	}

	/*
	 * oversize read
	 */
	if (req_size > max_pages)
		goto initial_readahead;

	/*
	 * sequential cache miss
	 * trivial case: (index - prev_index) == 1
	 * unaligned reads: (index - prev_index) == 0
	 */
	prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
	if (index - prev_index <= 1UL)
		goto initial_readahead;

	/*
	 * Query the page cache and look for the traces(cached history pages)
	 * that a sequential stream would leave behind.
	 */
	if (try_context_readahead(ractl->mapping, ra, index, req_size,
			max_pages))
		goto readit;

	/*
	 * standalone, small random read
	 * Read as is, and do not pollute the readahead state.
	 */
	do_page_cache_ra(ractl, req_size, 0);
	return;

initial_readahead:
	ra->start = index;
	ra->size = get_init_ra_size(req_size, max_pages);
	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;

readit:
	/*
	 * Will this read hit the readahead marker made by itself?
	 * If so, trigger the readahead marker hit now, and merge
	 * the resulted next readahead window into the current one.
	 * Take care of maximum IO pages as above.
	 */
	if (index == ra->start && ra->size == ra->async_size) {
		add_pages = get_next_ra_size(ra, max_pages);
		if (ra->size + add_pages <= max_pages) {
			ra->async_size = add_pages;
			ra->size += add_pages;
		} else {
			ra->size = max_pages;
			ra->async_size = max_pages >> 1;
		}
	}

	ractl->_index = ra->start;
	page_cache_ra_order(ractl, ra, order);
}

void page_cache_sync_ra(struct readahead_control *ractl,
		unsigned long req_count)
{
	bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);

	/*
	 * Even if readahead is disabled, issue this request as readahead
	 * as we'll need it to satisfy the requested range. The forced
	 * readahead will do the right thing and limit the read to just the
	 * requested range, which we'll set to 1 page for this case.
	 */
	if (!ractl->ra->ra_pages || blk_cgroup_congested()) {
		if (!ractl->file)
			return;
		req_count = 1;
		do_forced_ra = true;
	}

	/* be dumb */
	if (do_forced_ra) {
		force_page_cache_ra(ractl, req_count);
		return;
	}

	ondemand_readahead(ractl, NULL, req_count);
}
EXPORT_SYMBOL_GPL(page_cache_sync_ra);

void page_cache_async_ra(struct readahead_control *ractl,
		struct folio *folio, unsigned long req_count)
{
	/* no readahead */
	if (!ractl->ra->ra_pages)
		return;

	/*
	 * Same bit is used for PG_readahead and PG_reclaim.
	 */
	if (folio_test_writeback(folio))
		return;

	folio_clear_readahead(folio);

	if (blk_cgroup_congested())
		return;

	ondemand_readahead(ractl, folio, req_count);
}
EXPORT_SYMBOL_GPL(page_cache_async_ra);

ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
{
	ssize_t ret;
	struct fd f;

	ret = -EBADF;
	f = fdget(fd);
	if (!f.file || !(f.file->f_mode & FMODE_READ))
		goto out;

	/*
	 * The readahead() syscall is intended to run only on files
	 * that can execute readahead. If readahead is not possible
	 * on this file, then we must return -EINVAL.
	 */
	ret = -EINVAL;
	if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
	    !S_ISREG(file_inode(f.file)->i_mode))
		goto out;

	ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
out:
	fdput(f);
	return ret;
}

SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
{
	return ksys_readahead(fd, offset, count);
}

#if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_READAHEAD)
COMPAT_SYSCALL_DEFINE4(readahead, int, fd, compat_arg_u64_dual(offset), size_t, count)
{
	return ksys_readahead(fd, compat_arg_u64_glue(offset), count);
}
#endif

/**
 * readahead_expand - Expand a readahead request
 * @ractl: The request to be expanded
 * @new_start: The revised start
 * @new_len: The revised size of the request
 *
 * Attempt to expand a readahead request outwards from the current size to the
 * specified size by inserting locked pages before and after the current window
 * to increase the size to the new window.  This may involve the insertion of
 * THPs, in which case the window may get expanded even beyond what was
 * requested.
 *
 * The algorithm will stop if it encounters a conflicting page already in the
 * pagecache and leave a smaller expansion than requested.
 *
 * The caller must check for this by examining the revised @ractl object for a
 * different expansion than was requested.
 */
void readahead_expand(struct readahead_control *ractl,
		      loff_t new_start, size_t new_len)
{
	struct address_space *mapping = ractl->mapping;
	struct file_ra_state *ra = ractl->ra;
	pgoff_t new_index, new_nr_pages;
	gfp_t gfp_mask = readahead_gfp_mask(mapping);

	new_index = new_start / PAGE_SIZE;

	/* Expand the leading edge downwards */
	while (ractl->_index > new_index) {
		unsigned long index = ractl->_index - 1;
		struct page *page = xa_load(&mapping->i_pages, index);

		if (page && !xa_is_value(page))
			return; /* Page apparently present */

		page = __page_cache_alloc(gfp_mask);
		if (!page)
			return;
		if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
			put_page(page);
			return;
		}

		ractl->_nr_pages++;
		ractl->_index = page->index;
	}

	new_len += new_start - readahead_pos(ractl);
	new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);

	/* Expand the trailing edge upwards */
	while (ractl->_nr_pages < new_nr_pages) {
		unsigned long index = ractl->_index + ractl->_nr_pages;
		struct page *page = xa_load(&mapping->i_pages, index);

		if (page && !xa_is_value(page))
			return; /* Page apparently present */

		page = __page_cache_alloc(gfp_mask);
		if (!page)
			return;
		if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
			put_page(page);
			return;
		}
		if (unlikely(PageWorkingset(page)) && !ractl->_workingset) {
			ractl->_workingset = true;
			psi_memstall_enter(&ractl->_pflags);
		}
		ractl->_nr_pages++;
		if (ra) {
			ra->size++;
			ra->async_size++;
		}
	}
}
EXPORT_SYMBOL(readahead_expand);