summaryrefslogtreecommitdiff
path: root/mm/page_counter.c
blob: 0153f5bb31611e7344f3c27a24762036000c0415 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
// SPDX-License-Identifier: GPL-2.0
/*
 * Lockless hierarchical page accounting & limiting
 *
 * Copyright (C) 2014 Red Hat, Inc., Johannes Weiner
 */

#include <linux/page_counter.h>
#include <linux/atomic.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/sched.h>
#include <linux/bug.h>
#include <asm/page.h>

static void propagate_protected_usage(struct page_counter *c,
				      unsigned long usage)
{
	unsigned long protected, old_protected;
	long delta;

	if (!c->parent)
		return;

	protected = min(usage, READ_ONCE(c->min));
	old_protected = atomic_long_read(&c->min_usage);
	if (protected != old_protected) {
		old_protected = atomic_long_xchg(&c->min_usage, protected);
		delta = protected - old_protected;
		if (delta)
			atomic_long_add(delta, &c->parent->children_min_usage);
	}

	protected = min(usage, READ_ONCE(c->low));
	old_protected = atomic_long_read(&c->low_usage);
	if (protected != old_protected) {
		old_protected = atomic_long_xchg(&c->low_usage, protected);
		delta = protected - old_protected;
		if (delta)
			atomic_long_add(delta, &c->parent->children_low_usage);
	}
}

/**
 * page_counter_cancel - take pages out of the local counter
 * @counter: counter
 * @nr_pages: number of pages to cancel
 */
void page_counter_cancel(struct page_counter *counter, unsigned long nr_pages)
{
	long new;

	new = atomic_long_sub_return(nr_pages, &counter->usage);
	/* More uncharges than charges? */
	if (WARN_ONCE(new < 0, "page_counter underflow: %ld nr_pages=%lu\n",
		      new, nr_pages)) {
		new = 0;
		atomic_long_set(&counter->usage, new);
	}
	propagate_protected_usage(counter, new);
}

/**
 * page_counter_charge - hierarchically charge pages
 * @counter: counter
 * @nr_pages: number of pages to charge
 *
 * NOTE: This does not consider any configured counter limits.
 */
void page_counter_charge(struct page_counter *counter, unsigned long nr_pages)
{
	struct page_counter *c;

	for (c = counter; c; c = c->parent) {
		long new;

		new = atomic_long_add_return(nr_pages, &c->usage);
		propagate_protected_usage(c, new);
		/*
		 * This is indeed racy, but we can live with some
		 * inaccuracy in the watermark.
		 */
		if (new > READ_ONCE(c->watermark))
			WRITE_ONCE(c->watermark, new);
	}
}

/**
 * page_counter_try_charge - try to hierarchically charge pages
 * @counter: counter
 * @nr_pages: number of pages to charge
 * @fail: points first counter to hit its limit, if any
 *
 * Returns %true on success, or %false and @fail if the counter or one
 * of its ancestors has hit its configured limit.
 */
bool page_counter_try_charge(struct page_counter *counter,
			     unsigned long nr_pages,
			     struct page_counter **fail)
{
	struct page_counter *c;

	for (c = counter; c; c = c->parent) {
		long new;
		/*
		 * Charge speculatively to avoid an expensive CAS.  If
		 * a bigger charge fails, it might falsely lock out a
		 * racing smaller charge and send it into reclaim
		 * early, but the error is limited to the difference
		 * between the two sizes, which is less than 2M/4M in
		 * case of a THP locking out a regular page charge.
		 *
		 * The atomic_long_add_return() implies a full memory
		 * barrier between incrementing the count and reading
		 * the limit.  When racing with page_counter_set_max(),
		 * we either see the new limit or the setter sees the
		 * counter has changed and retries.
		 */
		new = atomic_long_add_return(nr_pages, &c->usage);
		if (new > c->max) {
			atomic_long_sub(nr_pages, &c->usage);
			/*
			 * This is racy, but we can live with some
			 * inaccuracy in the failcnt which is only used
			 * to report stats.
			 */
			data_race(c->failcnt++);
			*fail = c;
			goto failed;
		}
		propagate_protected_usage(c, new);
		/*
		 * Just like with failcnt, we can live with some
		 * inaccuracy in the watermark.
		 */
		if (new > READ_ONCE(c->watermark))
			WRITE_ONCE(c->watermark, new);
	}
	return true;

failed:
	for (c = counter; c != *fail; c = c->parent)
		page_counter_cancel(c, nr_pages);

	return false;
}

/**
 * page_counter_uncharge - hierarchically uncharge pages
 * @counter: counter
 * @nr_pages: number of pages to uncharge
 */
void page_counter_uncharge(struct page_counter *counter, unsigned long nr_pages)
{
	struct page_counter *c;

	for (c = counter; c; c = c->parent)
		page_counter_cancel(c, nr_pages);
}

/**
 * page_counter_set_max - set the maximum number of pages allowed
 * @counter: counter
 * @nr_pages: limit to set
 *
 * Returns 0 on success, -EBUSY if the current number of pages on the
 * counter already exceeds the specified limit.
 *
 * The caller must serialize invocations on the same counter.
 */
int page_counter_set_max(struct page_counter *counter, unsigned long nr_pages)
{
	for (;;) {
		unsigned long old;
		long usage;

		/*
		 * Update the limit while making sure that it's not
		 * below the concurrently-changing counter value.
		 *
		 * The xchg implies two full memory barriers before
		 * and after, so the read-swap-read is ordered and
		 * ensures coherency with page_counter_try_charge():
		 * that function modifies the count before checking
		 * the limit, so if it sees the old limit, we see the
		 * modified counter and retry.
		 */
		usage = page_counter_read(counter);

		if (usage > nr_pages)
			return -EBUSY;

		old = xchg(&counter->max, nr_pages);

		if (page_counter_read(counter) <= usage || nr_pages >= old)
			return 0;

		counter->max = old;
		cond_resched();
	}
}

/**
 * page_counter_set_min - set the amount of protected memory
 * @counter: counter
 * @nr_pages: value to set
 *
 * The caller must serialize invocations on the same counter.
 */
void page_counter_set_min(struct page_counter *counter, unsigned long nr_pages)
{
	struct page_counter *c;

	WRITE_ONCE(counter->min, nr_pages);

	for (c = counter; c; c = c->parent)
		propagate_protected_usage(c, atomic_long_read(&c->usage));
}

/**
 * page_counter_set_low - set the amount of protected memory
 * @counter: counter
 * @nr_pages: value to set
 *
 * The caller must serialize invocations on the same counter.
 */
void page_counter_set_low(struct page_counter *counter, unsigned long nr_pages)
{
	struct page_counter *c;

	WRITE_ONCE(counter->low, nr_pages);

	for (c = counter; c; c = c->parent)
		propagate_protected_usage(c, atomic_long_read(&c->usage));
}

/**
 * page_counter_memparse - memparse() for page counter limits
 * @buf: string to parse
 * @max: string meaning maximum possible value
 * @nr_pages: returns the result in number of pages
 *
 * Returns -EINVAL, or 0 and @nr_pages on success.  @nr_pages will be
 * limited to %PAGE_COUNTER_MAX.
 */
int page_counter_memparse(const char *buf, const char *max,
			  unsigned long *nr_pages)
{
	char *end;
	u64 bytes;

	if (!strcmp(buf, max)) {
		*nr_pages = PAGE_COUNTER_MAX;
		return 0;
	}

	bytes = memparse(buf, &end);
	if (*end != '\0')
		return -EINVAL;

	*nr_pages = min(bytes / PAGE_SIZE, (u64)PAGE_COUNTER_MAX);

	return 0;
}


/*
 * This function calculates an individual page counter's effective
 * protection which is derived from its own memory.min/low, its
 * parent's and siblings' settings, as well as the actual memory
 * distribution in the tree.
 *
 * The following rules apply to the effective protection values:
 *
 * 1. At the first level of reclaim, effective protection is equal to
 *    the declared protection in memory.min and memory.low.
 *
 * 2. To enable safe delegation of the protection configuration, at
 *    subsequent levels the effective protection is capped to the
 *    parent's effective protection.
 *
 * 3. To make complex and dynamic subtrees easier to configure, the
 *    user is allowed to overcommit the declared protection at a given
 *    level. If that is the case, the parent's effective protection is
 *    distributed to the children in proportion to how much protection
 *    they have declared and how much of it they are utilizing.
 *
 *    This makes distribution proportional, but also work-conserving:
 *    if one counter claims much more protection than it uses memory,
 *    the unused remainder is available to its siblings.
 *
 * 4. Conversely, when the declared protection is undercommitted at a
 *    given level, the distribution of the larger parental protection
 *    budget is NOT proportional. A counter's protection from a sibling
 *    is capped to its own memory.min/low setting.
 *
 * 5. However, to allow protecting recursive subtrees from each other
 *    without having to declare each individual counter's fixed share
 *    of the ancestor's claim to protection, any unutilized -
 *    "floating" - protection from up the tree is distributed in
 *    proportion to each counter's *usage*. This makes the protection
 *    neutral wrt sibling cgroups and lets them compete freely over
 *    the shared parental protection budget, but it protects the
 *    subtree as a whole from neighboring subtrees.
 *
 * Note that 4. and 5. are not in conflict: 4. is about protecting
 * against immediate siblings whereas 5. is about protecting against
 * neighboring subtrees.
 */
static unsigned long effective_protection(unsigned long usage,
					  unsigned long parent_usage,
					  unsigned long setting,
					  unsigned long parent_effective,
					  unsigned long siblings_protected,
					  bool recursive_protection)
{
	unsigned long protected;
	unsigned long ep;

	protected = min(usage, setting);
	/*
	 * If all cgroups at this level combined claim and use more
	 * protection than what the parent affords them, distribute
	 * shares in proportion to utilization.
	 *
	 * We are using actual utilization rather than the statically
	 * claimed protection in order to be work-conserving: claimed
	 * but unused protection is available to siblings that would
	 * otherwise get a smaller chunk than what they claimed.
	 */
	if (siblings_protected > parent_effective)
		return protected * parent_effective / siblings_protected;

	/*
	 * Ok, utilized protection of all children is within what the
	 * parent affords them, so we know whatever this child claims
	 * and utilizes is effectively protected.
	 *
	 * If there is unprotected usage beyond this value, reclaim
	 * will apply pressure in proportion to that amount.
	 *
	 * If there is unutilized protection, the cgroup will be fully
	 * shielded from reclaim, but we do return a smaller value for
	 * protection than what the group could enjoy in theory. This
	 * is okay. With the overcommit distribution above, effective
	 * protection is always dependent on how memory is actually
	 * consumed among the siblings anyway.
	 */
	ep = protected;

	/*
	 * If the children aren't claiming (all of) the protection
	 * afforded to them by the parent, distribute the remainder in
	 * proportion to the (unprotected) memory of each cgroup. That
	 * way, cgroups that aren't explicitly prioritized wrt each
	 * other compete freely over the allowance, but they are
	 * collectively protected from neighboring trees.
	 *
	 * We're using unprotected memory for the weight so that if
	 * some cgroups DO claim explicit protection, we don't protect
	 * the same bytes twice.
	 *
	 * Check both usage and parent_usage against the respective
	 * protected values. One should imply the other, but they
	 * aren't read atomically - make sure the division is sane.
	 */
	if (!recursive_protection)
		return ep;

	if (parent_effective > siblings_protected &&
	    parent_usage > siblings_protected &&
	    usage > protected) {
		unsigned long unclaimed;

		unclaimed = parent_effective - siblings_protected;
		unclaimed *= usage - protected;
		unclaimed /= parent_usage - siblings_protected;

		ep += unclaimed;
	}

	return ep;
}


/**
 * page_counter_calculate_protection - check if memory consumption is in the normal range
 * @root: the top ancestor of the sub-tree being checked
 * @counter: the page_counter the counter to update
 * @recursive_protection: Whether to use memory_recursiveprot behavior.
 *
 * Calculates elow/emin thresholds for given page_counter.
 *
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
 */
void page_counter_calculate_protection(struct page_counter *root,
				       struct page_counter *counter,
				       bool recursive_protection)
{
	unsigned long usage, parent_usage;
	struct page_counter *parent = counter->parent;

	/*
	 * Effective values of the reclaim targets are ignored so they
	 * can be stale. Have a look at mem_cgroup_protection for more
	 * details.
	 * TODO: calculation should be more robust so that we do not need
	 * that special casing.
	 */
	if (root == counter)
		return;

	usage = page_counter_read(counter);
	if (!usage)
		return;

	if (parent == root) {
		counter->emin = READ_ONCE(counter->min);
		counter->elow = READ_ONCE(counter->low);
		return;
	}

	parent_usage = page_counter_read(parent);

	WRITE_ONCE(counter->emin, effective_protection(usage, parent_usage,
			READ_ONCE(counter->min),
			READ_ONCE(parent->emin),
			atomic_long_read(&parent->children_min_usage),
			recursive_protection));

	WRITE_ONCE(counter->elow, effective_protection(usage, parent_usage,
			READ_ONCE(counter->low),
			READ_ONCE(parent->elow),
			atomic_long_read(&parent->children_low_usage),
			recursive_protection));
}