summaryrefslogtreecommitdiff
path: root/kernel/cgroup/cpuset.c
blob: e4ca2dd2b7648d452b4ce46b0a87cd06ffe0eaa5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
 *  Copyright (C) 2006 Google, Inc
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  2006 Rework by Paul Menage to use generic cgroups
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/kthread.h>
#include <linux/list.h>
#include <linux/mempolicy.h>
#include <linux/mm.h>
#include <linux/memory.h>
#include <linux/export.h>
#include <linux/mount.h>
#include <linux/fs_context.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
#include <linux/rcupdate.h>
#include <linux/sched.h>
#include <linux/sched/deadline.h>
#include <linux/sched/mm.h>
#include <linux/sched/task.h>
#include <linux/seq_file.h>
#include <linux/security.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/time64.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>
#include <linux/oom.h>
#include <linux/sched/isolation.h>
#include <linux/uaccess.h>
#include <linux/atomic.h>
#include <linux/mutex.h>
#include <linux/cgroup.h>
#include <linux/wait.h>

DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);

/*
 * There could be abnormal cpuset configurations for cpu or memory
 * node binding, add this key to provide a quick low-cost judgment
 * of the situation.
 */
DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);

/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time64_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

/*
 * Invalid partition error code
 */
enum prs_errcode {
	PERR_NONE = 0,
	PERR_INVCPUS,
	PERR_INVPARENT,
	PERR_NOTPART,
	PERR_NOTEXCL,
	PERR_NOCPUS,
	PERR_HOTPLUG,
	PERR_CPUSEMPTY,
};

static const char * const perr_strings[] = {
	[PERR_INVCPUS]   = "Invalid cpu list in cpuset.cpus",
	[PERR_INVPARENT] = "Parent is an invalid partition root",
	[PERR_NOTPART]   = "Parent is not a partition root",
	[PERR_NOTEXCL]   = "Cpu list in cpuset.cpus not exclusive",
	[PERR_NOCPUS]    = "Parent unable to distribute cpu downstream",
	[PERR_HOTPLUG]   = "No cpu available due to hotplug",
	[PERR_CPUSEMPTY] = "cpuset.cpus is empty",
};

struct cpuset {
	struct cgroup_subsys_state css;

	unsigned long flags;		/* "unsigned long" so bitops work */

	/*
	 * On default hierarchy:
	 *
	 * The user-configured masks can only be changed by writing to
	 * cpuset.cpus and cpuset.mems, and won't be limited by the
	 * parent masks.
	 *
	 * The effective masks is the real masks that apply to the tasks
	 * in the cpuset. They may be changed if the configured masks are
	 * changed or hotplug happens.
	 *
	 * effective_mask == configured_mask & parent's effective_mask,
	 * and if it ends up empty, it will inherit the parent's mask.
	 *
	 *
	 * On legacy hierarchy:
	 *
	 * The user-configured masks are always the same with effective masks.
	 */

	/* user-configured CPUs and Memory Nodes allow to tasks */
	cpumask_var_t cpus_allowed;
	nodemask_t mems_allowed;

	/* effective CPUs and Memory Nodes allow to tasks */
	cpumask_var_t effective_cpus;
	nodemask_t effective_mems;

	/*
	 * CPUs allocated to child sub-partitions (default hierarchy only)
	 * - CPUs granted by the parent = effective_cpus U subparts_cpus
	 * - effective_cpus and subparts_cpus are mutually exclusive.
	 *
	 * effective_cpus contains only onlined CPUs, but subparts_cpus
	 * may have offlined ones.
	 */
	cpumask_var_t subparts_cpus;

	/*
	 * This is old Memory Nodes tasks took on.
	 *
	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
	 * - A new cpuset's old_mems_allowed is initialized when some
	 *   task is moved into it.
	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
	 *   then old_mems_allowed is updated to mems_allowed.
	 */
	nodemask_t old_mems_allowed;

	struct fmeter fmeter;		/* memory_pressure filter */

	/*
	 * Tasks are being attached to this cpuset.  Used to prevent
	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
	 */
	int attach_in_progress;

	/* partition number for rebuild_sched_domains() */
	int pn;

	/* for custom sched domain */
	int relax_domain_level;

	/* number of CPUs in subparts_cpus */
	int nr_subparts_cpus;

	/* partition root state */
	int partition_root_state;

	/*
	 * Default hierarchy only:
	 * use_parent_ecpus - set if using parent's effective_cpus
	 * child_ecpus_count - # of children with use_parent_ecpus set
	 */
	int use_parent_ecpus;
	int child_ecpus_count;

	/* Invalid partition error code, not lock protected */
	enum prs_errcode prs_err;

	/* Handle for cpuset.cpus.partition */
	struct cgroup_file partition_file;
};

/*
 * Partition root states:
 *
 *   0 - member (not a partition root)
 *   1 - partition root
 *   2 - partition root without load balancing (isolated)
 *  -1 - invalid partition root
 *  -2 - invalid isolated partition root
 */
#define PRS_MEMBER		0
#define PRS_ROOT		1
#define PRS_ISOLATED		2
#define PRS_INVALID_ROOT	-1
#define PRS_INVALID_ISOLATED	-2

static inline bool is_prs_invalid(int prs_state)
{
	return prs_state < 0;
}

/*
 * Temporary cpumasks for working with partitions that are passed among
 * functions to avoid memory allocation in inner functions.
 */
struct tmpmasks {
	cpumask_var_t addmask, delmask;	/* For partition root */
	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
};

static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
{
	return css ? container_of(css, struct cpuset, css) : NULL;
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
	return css_cs(task_css(task, cpuset_cgrp_id));
}

static inline struct cpuset *parent_cs(struct cpuset *cs)
{
	return css_cs(cs->css.parent);
}

/* bits in struct cpuset flags field */
typedef enum {
	CS_ONLINE,
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
	CS_MEM_HARDWALL,
	CS_MEMORY_MIGRATE,
	CS_SCHED_LOAD_BALANCE,
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
} cpuset_flagbits_t;

/* convenient tests for these bits */
static inline bool is_cpuset_online(struct cpuset *cs)
{
	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
}

static inline int is_cpu_exclusive(const struct cpuset *cs)
{
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
}

static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

static inline int is_memory_migrate(const struct cpuset *cs)
{
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
}

static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

static inline int is_partition_valid(const struct cpuset *cs)
{
	return cs->partition_root_state > 0;
}

static inline int is_partition_invalid(const struct cpuset *cs)
{
	return cs->partition_root_state < 0;
}

/*
 * Callers should hold callback_lock to modify partition_root_state.
 */
static inline void make_partition_invalid(struct cpuset *cs)
{
	if (is_partition_valid(cs))
		cs->partition_root_state = -cs->partition_root_state;
}

/*
 * Send notification event of whenever partition_root_state changes.
 */
static inline void notify_partition_change(struct cpuset *cs, int old_prs)
{
	if (old_prs == cs->partition_root_state)
		return;
	cgroup_file_notify(&cs->partition_file);

	/* Reset prs_err if not invalid */
	if (is_partition_valid(cs))
		WRITE_ONCE(cs->prs_err, PERR_NONE);
}

static struct cpuset top_cpuset = {
	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
		  (1 << CS_MEM_EXCLUSIVE)),
	.partition_root_state = PRS_ROOT,
};

/**
 * cpuset_for_each_child - traverse online children of a cpuset
 * @child_cs: loop cursor pointing to the current child
 * @pos_css: used for iteration
 * @parent_cs: target cpuset to walk children of
 *
 * Walk @child_cs through the online children of @parent_cs.  Must be used
 * with RCU read locked.
 */
#define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
	css_for_each_child((pos_css), &(parent_cs)->css)		\
		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))

/**
 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 * @des_cs: loop cursor pointing to the current descendant
 * @pos_css: used for iteration
 * @root_cs: target cpuset to walk ancestor of
 *
 * Walk @des_cs through the online descendants of @root_cs.  Must be used
 * with RCU read locked.  The caller may modify @pos_css by calling
 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 * iteration and the first node to be visited.
 */
#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))

/*
 * There are two global locks guarding cpuset structures - cpuset_rwsem and
 * callback_lock. We also require taking task_lock() when dereferencing a
 * task's cpuset pointer. See "The task_lock() exception", at the end of this
 * comment.  The cpuset code uses only cpuset_rwsem write lock.  Other
 * kernel subsystems can use cpuset_read_lock()/cpuset_read_unlock() to
 * prevent change to cpuset structures.
 *
 * A task must hold both locks to modify cpusets.  If a task holds
 * cpuset_rwsem, it blocks others wanting that rwsem, ensuring that it
 * is the only task able to also acquire callback_lock and be able to
 * modify cpusets.  It can perform various checks on the cpuset structure
 * first, knowing nothing will change.  It can also allocate memory while
 * just holding cpuset_rwsem.  While it is performing these checks, various
 * callback routines can briefly acquire callback_lock to query cpusets.
 * Once it is ready to make the changes, it takes callback_lock, blocking
 * everyone else.
 *
 * Calls to the kernel memory allocator can not be made while holding
 * callback_lock, as that would risk double tripping on callback_lock
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
 * If a task is only holding callback_lock, then it has read-only
 * access to cpusets.
 *
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
 *
 * The cpuset_common_file_read() handlers only hold callback_lock across
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
 */

DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem);

void cpuset_read_lock(void)
{
	percpu_down_read(&cpuset_rwsem);
}

void cpuset_read_unlock(void)
{
	percpu_up_read(&cpuset_rwsem);
}

static DEFINE_SPINLOCK(callback_lock);

static struct workqueue_struct *cpuset_migrate_mm_wq;

/*
 * CPU / memory hotplug is handled asynchronously.
 */
static void cpuset_hotplug_workfn(struct work_struct *work);
static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);

static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);

static inline void check_insane_mems_config(nodemask_t *nodes)
{
	if (!cpusets_insane_config() &&
		movable_only_nodes(nodes)) {
		static_branch_enable(&cpusets_insane_config_key);
		pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
			"Cpuset allocations might fail even with a lot of memory available.\n",
			nodemask_pr_args(nodes));
	}
}

/*
 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
 * With v2 behavior, "cpus" and "mems" are always what the users have
 * requested and won't be changed by hotplug events. Only the effective
 * cpus or mems will be affected.
 */
static inline bool is_in_v2_mode(void)
{
	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
}

/**
 * partition_is_populated - check if partition has tasks
 * @cs: partition root to be checked
 * @excluded_child: a child cpuset to be excluded in task checking
 * Return: true if there are tasks, false otherwise
 *
 * It is assumed that @cs is a valid partition root. @excluded_child should
 * be non-NULL when this cpuset is going to become a partition itself.
 */
static inline bool partition_is_populated(struct cpuset *cs,
					  struct cpuset *excluded_child)
{
	struct cgroup_subsys_state *css;
	struct cpuset *child;

	if (cs->css.cgroup->nr_populated_csets)
		return true;
	if (!excluded_child && !cs->nr_subparts_cpus)
		return cgroup_is_populated(cs->css.cgroup);

	rcu_read_lock();
	cpuset_for_each_child(child, css, cs) {
		if (child == excluded_child)
			continue;
		if (is_partition_valid(child))
			continue;
		if (cgroup_is_populated(child->css.cgroup)) {
			rcu_read_unlock();
			return true;
		}
	}
	rcu_read_unlock();
	return false;
}

/*
 * Return in pmask the portion of a task's cpusets's cpus_allowed that
 * are online and are capable of running the task.  If none are found,
 * walk up the cpuset hierarchy until we find one that does have some
 * appropriate cpus.
 *
 * One way or another, we guarantee to return some non-empty subset
 * of cpu_online_mask.
 *
 * Call with callback_lock or cpuset_rwsem held.
 */
static void guarantee_online_cpus(struct task_struct *tsk,
				  struct cpumask *pmask)
{
	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
	struct cpuset *cs;

	if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
		cpumask_copy(pmask, cpu_online_mask);

	rcu_read_lock();
	cs = task_cs(tsk);

	while (!cpumask_intersects(cs->effective_cpus, pmask)) {
		cs = parent_cs(cs);
		if (unlikely(!cs)) {
			/*
			 * The top cpuset doesn't have any online cpu as a
			 * consequence of a race between cpuset_hotplug_work
			 * and cpu hotplug notifier.  But we know the top
			 * cpuset's effective_cpus is on its way to be
			 * identical to cpu_online_mask.
			 */
			goto out_unlock;
		}
	}
	cpumask_and(pmask, pmask, cs->effective_cpus);

out_unlock:
	rcu_read_unlock();
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
 * online mems.  The top cpuset always has some mems online.
 *
 * One way or another, we guarantee to return some non-empty subset
 * of node_states[N_MEMORY].
 *
 * Call with callback_lock or cpuset_rwsem held.
 */
static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
{
	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
		cs = parent_cs(cs);
	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
}

/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
 * Call with callback_lock or cpuset_rwsem held. The check can be skipped
 * if on default hierarchy.
 */
static void cpuset_update_task_spread_flags(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
		return;

	if (is_spread_page(cs))
		task_set_spread_page(tsk);
	else
		task_clear_spread_page(tsk);

	if (is_spread_slab(cs))
		task_set_spread_slab(tsk);
	else
		task_clear_spread_slab(tsk);
}

/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
 * are only set if the other's are set.  Call holding cpuset_rwsem.
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

/**
 * alloc_cpumasks - allocate three cpumasks for cpuset
 * @cs:  the cpuset that have cpumasks to be allocated.
 * @tmp: the tmpmasks structure pointer
 * Return: 0 if successful, -ENOMEM otherwise.
 *
 * Only one of the two input arguments should be non-NULL.
 */
static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
{
	cpumask_var_t *pmask1, *pmask2, *pmask3;

	if (cs) {
		pmask1 = &cs->cpus_allowed;
		pmask2 = &cs->effective_cpus;
		pmask3 = &cs->subparts_cpus;
	} else {
		pmask1 = &tmp->new_cpus;
		pmask2 = &tmp->addmask;
		pmask3 = &tmp->delmask;
	}

	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
		return -ENOMEM;

	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
		goto free_one;

	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
		goto free_two;

	return 0;

free_two:
	free_cpumask_var(*pmask2);
free_one:
	free_cpumask_var(*pmask1);
	return -ENOMEM;
}

/**
 * free_cpumasks - free cpumasks in a tmpmasks structure
 * @cs:  the cpuset that have cpumasks to be free.
 * @tmp: the tmpmasks structure pointer
 */
static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
{
	if (cs) {
		free_cpumask_var(cs->cpus_allowed);
		free_cpumask_var(cs->effective_cpus);
		free_cpumask_var(cs->subparts_cpus);
	}
	if (tmp) {
		free_cpumask_var(tmp->new_cpus);
		free_cpumask_var(tmp->addmask);
		free_cpumask_var(tmp->delmask);
	}
}

/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
{
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

	if (alloc_cpumasks(trial, NULL)) {
		kfree(trial);
		return NULL;
	}

	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
	return trial;
}

/**
 * free_cpuset - free the cpuset
 * @cs: the cpuset to be freed
 */
static inline void free_cpuset(struct cpuset *cs)
{
	free_cpumasks(cs, NULL);
	kfree(cs);
}

/*
 * validate_change_legacy() - Validate conditions specific to legacy (v1)
 *                            behavior.
 */
static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial)
{
	struct cgroup_subsys_state *css;
	struct cpuset *c, *par;
	int ret;

	WARN_ON_ONCE(!rcu_read_lock_held());

	/* Each of our child cpusets must be a subset of us */
	ret = -EBUSY;
	cpuset_for_each_child(c, css, cur)
		if (!is_cpuset_subset(c, trial))
			goto out;

	/* On legacy hierarchy, we must be a subset of our parent cpuset. */
	ret = -EACCES;
	par = parent_cs(cur);
	if (par && !is_cpuset_subset(trial, par))
		goto out;

	ret = 0;
out:
	return ret;
}

/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
 * cpuset_rwsem held.
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

static int validate_change(struct cpuset *cur, struct cpuset *trial)
{
	struct cgroup_subsys_state *css;
	struct cpuset *c, *par;
	int ret = 0;

	rcu_read_lock();

	if (!is_in_v2_mode())
		ret = validate_change_legacy(cur, trial);
	if (ret)
		goto out;

	/* Remaining checks don't apply to root cpuset */
	if (cur == &top_cpuset)
		goto out;

	par = parent_cs(cur);

	/*
	 * Cpusets with tasks - existing or newly being attached - can't
	 * be changed to have empty cpus_allowed or mems_allowed.
	 */
	ret = -ENOSPC;
	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
		if (!cpumask_empty(cur->cpus_allowed) &&
		    cpumask_empty(trial->cpus_allowed))
			goto out;
		if (!nodes_empty(cur->mems_allowed) &&
		    nodes_empty(trial->mems_allowed))
			goto out;
	}

	/*
	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
	 * tasks.
	 */
	ret = -EBUSY;
	if (is_cpu_exclusive(cur) &&
	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
				       trial->cpus_allowed))
		goto out;

	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
	ret = -EINVAL;
	cpuset_for_each_child(c, css, par) {
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
			goto out;
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
			goto out;
	}

	ret = 0;
out:
	rcu_read_unlock();
	return ret;
}

#ifdef CONFIG_SMP
/*
 * Helper routine for generate_sched_domains().
 * Do cpusets a, b have overlapping effective cpus_allowed masks?
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
}

static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

static void update_domain_attr_tree(struct sched_domain_attr *dattr,
				    struct cpuset *root_cs)
{
	struct cpuset *cp;
	struct cgroup_subsys_state *pos_css;

	rcu_read_lock();
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
		/* skip the whole subtree if @cp doesn't have any CPU */
		if (cpumask_empty(cp->cpus_allowed)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
		}

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);
	}
	rcu_read_unlock();
}

/* Must be called with cpuset_rwsem held.  */
static inline int nr_cpusets(void)
{
	/* jump label reference count + the top-level cpuset */
	return static_key_count(&cpusets_enabled_key.key) + 1;
}

/*
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
 * The output of this function needs to be passed to kernel/sched/core.c
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
 *
 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
 * Must be called with cpuset_rwsem held.
 *
 * The three key local variables below are:
 *    cp - cpuset pointer, used (together with pos_css) to perform a
 *	   top-down scan of all cpusets. For our purposes, rebuilding
 *	   the schedulers sched domains, we can ignore !is_sched_load_
 *	   balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 *	   the kernel/sched/core.c routine partition_sched_domains() in a
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
static int generate_sched_domains(cpumask_var_t **domains,
			struct sched_domain_attr **attributes)
{
	struct cpuset *cp;	/* top-down scan of cpusets */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
	int ndoms = 0;		/* number of sched domains in result */
	int nslot;		/* next empty doms[] struct cpumask slot */
	struct cgroup_subsys_state *pos_css;
	bool root_load_balance = is_sched_load_balance(&top_cpuset);

	doms = NULL;
	dattr = NULL;
	csa = NULL;

	/* Special case for the 99% of systems with one, full, sched domain */
	if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
		if (!doms)
			goto done;

		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
			update_domain_attr_tree(dattr, &top_cpuset);
		}
		cpumask_and(doms[0], top_cpuset.effective_cpus,
			    housekeeping_cpumask(HK_TYPE_DOMAIN));

		goto done;
	}

	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
	if (!csa)
		goto done;
	csn = 0;

	rcu_read_lock();
	if (root_load_balance)
		csa[csn++] = &top_cpuset;
	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
		if (cp == &top_cpuset)
			continue;
		/*
		 * Continue traversing beyond @cp iff @cp has some CPUs and
		 * isn't load balancing.  The former is obvious.  The
		 * latter: All child cpusets contain a subset of the
		 * parent's cpus, so just skip them, and then we call
		 * update_domain_attr_tree() to calc relax_domain_level of
		 * the corresponding sched domain.
		 *
		 * If root is load-balancing, we can skip @cp if it
		 * is a subset of the root's effective_cpus.
		 */
		if (!cpumask_empty(cp->cpus_allowed) &&
		    !(is_sched_load_balance(cp) &&
		      cpumask_intersects(cp->cpus_allowed,
					 housekeeping_cpumask(HK_TYPE_DOMAIN))))
			continue;

		if (root_load_balance &&
		    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
			continue;

		if (is_sched_load_balance(cp) &&
		    !cpumask_empty(cp->effective_cpus))
			csa[csn++] = cp;

		/* skip @cp's subtree if not a partition root */
		if (!is_partition_valid(cp))
			pos_css = css_rightmost_descendant(pos_css);
	}
	rcu_read_unlock();

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
	doms = alloc_sched_domains(ndoms);
	if (!doms)
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
			      GFP_KERNEL);

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		struct cpumask *dp;
		int apn = a->pn;

		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

		dp = doms[nslot];

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
					nslot, ndoms, csn, i, apn);
				warnings--;
			}
			continue;
		}

		cpumask_clear(dp);
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
				cpumask_or(dp, dp, b->effective_cpus);
				cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
			}
		}
		nslot++;
	}
	BUG_ON(nslot != ndoms);

done:
	kfree(csa);

	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

static void update_tasks_root_domain(struct cpuset *cs)
{
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, 0, &it);

	while ((task = css_task_iter_next(&it)))
		dl_add_task_root_domain(task);

	css_task_iter_end(&it);
}

static void rebuild_root_domains(void)
{
	struct cpuset *cs = NULL;
	struct cgroup_subsys_state *pos_css;

	percpu_rwsem_assert_held(&cpuset_rwsem);
	lockdep_assert_cpus_held();
	lockdep_assert_held(&sched_domains_mutex);

	rcu_read_lock();

	/*
	 * Clear default root domain DL accounting, it will be computed again
	 * if a task belongs to it.
	 */
	dl_clear_root_domain(&def_root_domain);

	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {

		if (cpumask_empty(cs->effective_cpus)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
		}

		css_get(&cs->css);

		rcu_read_unlock();

		update_tasks_root_domain(cs);

		rcu_read_lock();
		css_put(&cs->css);
	}
	rcu_read_unlock();
}

static void
partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
				    struct sched_domain_attr *dattr_new)
{
	mutex_lock(&sched_domains_mutex);
	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
	rebuild_root_domains();
	mutex_unlock(&sched_domains_mutex);
}

/*
 * Rebuild scheduler domains.
 *
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
 *
 * Call with cpuset_rwsem held.  Takes cpus_read_lock().
 */
static void rebuild_sched_domains_locked(void)
{
	struct cgroup_subsys_state *pos_css;
	struct sched_domain_attr *attr;
	cpumask_var_t *doms;
	struct cpuset *cs;
	int ndoms;

	lockdep_assert_cpus_held();
	percpu_rwsem_assert_held(&cpuset_rwsem);

	/*
	 * If we have raced with CPU hotplug, return early to avoid
	 * passing doms with offlined cpu to partition_sched_domains().
	 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
	 *
	 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
	 * should be the same as the active CPUs, so checking only top_cpuset
	 * is enough to detect racing CPU offlines.
	 */
	if (!top_cpuset.nr_subparts_cpus &&
	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
		return;

	/*
	 * With subpartition CPUs, however, the effective CPUs of a partition
	 * root should be only a subset of the active CPUs.  Since a CPU in any
	 * partition root could be offlined, all must be checked.
	 */
	if (top_cpuset.nr_subparts_cpus) {
		rcu_read_lock();
		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
			if (!is_partition_valid(cs)) {
				pos_css = css_rightmost_descendant(pos_css);
				continue;
			}
			if (!cpumask_subset(cs->effective_cpus,
					    cpu_active_mask)) {
				rcu_read_unlock();
				return;
			}
		}
		rcu_read_unlock();
	}

	/* Generate domain masks and attrs */
	ndoms = generate_sched_domains(&doms, &attr);

	/* Have scheduler rebuild the domains */
	partition_and_rebuild_sched_domains(ndoms, doms, attr);
}
#else /* !CONFIG_SMP */
static void rebuild_sched_domains_locked(void)
{
}
#endif /* CONFIG_SMP */

void rebuild_sched_domains(void)
{
	cpus_read_lock();
	percpu_down_write(&cpuset_rwsem);
	rebuild_sched_domains_locked();
	percpu_up_write(&cpuset_rwsem);
	cpus_read_unlock();
}

/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 * @new_cpus: the temp variable for the new effective_cpus mask
 *
 * Iterate through each task of @cs updating its cpus_allowed to the
 * effective cpuset's.  As this function is called with cpuset_rwsem held,
 * cpuset membership stays stable. For top_cpuset, task_cpu_possible_mask()
 * is used instead of effective_cpus to make sure all offline CPUs are also
 * included as hotplug code won't update cpumasks for tasks in top_cpuset.
 */
static void update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
{
	struct css_task_iter it;
	struct task_struct *task;
	bool top_cs = cs == &top_cpuset;

	css_task_iter_start(&cs->css, 0, &it);
	while ((task = css_task_iter_next(&it))) {
		const struct cpumask *possible_mask = task_cpu_possible_mask(task);

		if (top_cs) {
			/*
			 * Percpu kthreads in top_cpuset are ignored
			 */
			if ((task->flags & PF_KTHREAD) && kthread_is_per_cpu(task))
				continue;
			cpumask_andnot(new_cpus, possible_mask, cs->subparts_cpus);
		} else {
			cpumask_and(new_cpus, possible_mask, cs->effective_cpus);
		}
		set_cpus_allowed_ptr(task, new_cpus);
	}
	css_task_iter_end(&it);
}

/**
 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
 * @new_cpus: the temp variable for the new effective_cpus mask
 * @cs: the cpuset the need to recompute the new effective_cpus mask
 * @parent: the parent cpuset
 *
 * If the parent has subpartition CPUs, include them in the list of
 * allowable CPUs in computing the new effective_cpus mask. Since offlined
 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
 * to mask those out.
 */
static void compute_effective_cpumask(struct cpumask *new_cpus,
				      struct cpuset *cs, struct cpuset *parent)
{
	if (parent->nr_subparts_cpus) {
		cpumask_or(new_cpus, parent->effective_cpus,
			   parent->subparts_cpus);
		cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
		cpumask_and(new_cpus, new_cpus, cpu_active_mask);
	} else {
		cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
	}
}

/*
 * Commands for update_parent_subparts_cpumask
 */
enum subparts_cmd {
	partcmd_enable,		/* Enable partition root	 */
	partcmd_disable,	/* Disable partition root	 */
	partcmd_update,		/* Update parent's subparts_cpus */
	partcmd_invalidate,	/* Make partition invalid	 */
};

static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on);
/**
 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
 * @cs:      The cpuset that requests change in partition root state
 * @cmd:     Partition root state change command
 * @newmask: Optional new cpumask for partcmd_update
 * @tmp:     Temporary addmask and delmask
 * Return:   0 or a partition root state error code
 *
 * For partcmd_enable, the cpuset is being transformed from a non-partition
 * root to a partition root. The cpus_allowed mask of the given cpuset will
 * be put into parent's subparts_cpus and taken away from parent's
 * effective_cpus. The function will return 0 if all the CPUs listed in
 * cpus_allowed can be granted or an error code will be returned.
 *
 * For partcmd_disable, the cpuset is being transformed from a partition
 * root back to a non-partition root. Any CPUs in cpus_allowed that are in
 * parent's subparts_cpus will be taken away from that cpumask and put back
 * into parent's effective_cpus. 0 will always be returned.
 *
 * For partcmd_update, if the optional newmask is specified, the cpu list is
 * to be changed from cpus_allowed to newmask. Otherwise, cpus_allowed is
 * assumed to remain the same. The cpuset should either be a valid or invalid
 * partition root. The partition root state may change from valid to invalid
 * or vice versa. An error code will only be returned if transitioning from
 * invalid to valid violates the exclusivity rule.
 *
 * For partcmd_invalidate, the current partition will be made invalid.
 *
 * The partcmd_enable and partcmd_disable commands are used by
 * update_prstate(). An error code may be returned and the caller will check
 * for error.
 *
 * The partcmd_update command is used by update_cpumasks_hier() with newmask
 * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
 * by update_cpumask() with NULL newmask. In both cases, the callers won't
 * check for error and so partition_root_state and prs_error will be updated
 * directly.
 */
static int update_parent_subparts_cpumask(struct cpuset *cs, int cmd,
					  struct cpumask *newmask,
					  struct tmpmasks *tmp)
{
	struct cpuset *parent = parent_cs(cs);
	int adding;	/* Moving cpus from effective_cpus to subparts_cpus */
	int deleting;	/* Moving cpus from subparts_cpus to effective_cpus */
	int old_prs, new_prs;
	int part_error = PERR_NONE;	/* Partition error? */

	percpu_rwsem_assert_held(&cpuset_rwsem);

	/*
	 * The parent must be a partition root.
	 * The new cpumask, if present, or the current cpus_allowed must
	 * not be empty.
	 */
	if (!is_partition_valid(parent)) {
		return is_partition_invalid(parent)
		       ? PERR_INVPARENT : PERR_NOTPART;
	}
	if ((newmask && cpumask_empty(newmask)) ||
	   (!newmask && cpumask_empty(cs->cpus_allowed)))
		return PERR_CPUSEMPTY;

	/*
	 * new_prs will only be changed for the partcmd_update and
	 * partcmd_invalidate commands.
	 */
	adding = deleting = false;
	old_prs = new_prs = cs->partition_root_state;
	if (cmd == partcmd_enable) {
		/*
		 * Enabling partition root is not allowed if cpus_allowed
		 * doesn't overlap parent's cpus_allowed.
		 */
		if (!cpumask_intersects(cs->cpus_allowed, parent->cpus_allowed))
			return PERR_INVCPUS;

		/*
		 * A parent can be left with no CPU as long as there is no
		 * task directly associated with the parent partition.
		 */
		if (cpumask_subset(parent->effective_cpus, cs->cpus_allowed) &&
		    partition_is_populated(parent, cs))
			return PERR_NOCPUS;

		cpumask_copy(tmp->addmask, cs->cpus_allowed);
		adding = true;
	} else if (cmd == partcmd_disable) {
		/*
		 * Need to remove cpus from parent's subparts_cpus for valid
		 * partition root.
		 */
		deleting = !is_prs_invalid(old_prs) &&
			   cpumask_and(tmp->delmask, cs->cpus_allowed,
				       parent->subparts_cpus);
	} else if (cmd == partcmd_invalidate) {
		if (is_prs_invalid(old_prs))
			return 0;

		/*
		 * Make the current partition invalid. It is assumed that
		 * invalidation is caused by violating cpu exclusivity rule.
		 */
		deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
				       parent->subparts_cpus);
		if (old_prs > 0) {
			new_prs = -old_prs;
			part_error = PERR_NOTEXCL;
		}
	} else if (newmask) {
		/*
		 * partcmd_update with newmask:
		 *
		 * Compute add/delete mask to/from subparts_cpus
		 *
		 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
		 * addmask = newmask & parent->cpus_allowed
		 *		     & ~parent->subparts_cpus
		 */
		cpumask_andnot(tmp->delmask, cs->cpus_allowed, newmask);
		deleting = cpumask_and(tmp->delmask, tmp->delmask,
				       parent->subparts_cpus);

		cpumask_and(tmp->addmask, newmask, parent->cpus_allowed);
		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
					parent->subparts_cpus);
		/*
		 * Make partition invalid if parent's effective_cpus could
		 * become empty and there are tasks in the parent.
		 */
		if (adding &&
		    cpumask_subset(parent->effective_cpus, tmp->addmask) &&
		    !cpumask_intersects(tmp->delmask, cpu_active_mask) &&
		    partition_is_populated(parent, cs)) {
			part_error = PERR_NOCPUS;
			adding = false;
			deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
					       parent->subparts_cpus);
		}
	} else {
		/*
		 * partcmd_update w/o newmask:
		 *
		 * delmask = cpus_allowed & parent->subparts_cpus
		 * addmask = cpus_allowed & parent->cpus_allowed
		 *			  & ~parent->subparts_cpus
		 *
		 * This gets invoked either due to a hotplug event or from
		 * update_cpumasks_hier(). This can cause the state of a
		 * partition root to transition from valid to invalid or vice
		 * versa. So we still need to compute the addmask and delmask.

		 * A partition error happens when:
		 * 1) Cpuset is valid partition, but parent does not distribute
		 *    out any CPUs.
		 * 2) Parent has tasks and all its effective CPUs will have
		 *    to be distributed out.
		 */
		cpumask_and(tmp->addmask, cs->cpus_allowed,
					  parent->cpus_allowed);
		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
					parent->subparts_cpus);

		if ((is_partition_valid(cs) && !parent->nr_subparts_cpus) ||
		    (adding &&
		     cpumask_subset(parent->effective_cpus, tmp->addmask) &&
		     partition_is_populated(parent, cs))) {
			part_error = PERR_NOCPUS;
			adding = false;
		}

		if (part_error && is_partition_valid(cs) &&
		    parent->nr_subparts_cpus)
			deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
					       parent->subparts_cpus);
	}
	if (part_error)
		WRITE_ONCE(cs->prs_err, part_error);

	if (cmd == partcmd_update) {
		/*
		 * Check for possible transition between valid and invalid
		 * partition root.
		 */
		switch (cs->partition_root_state) {
		case PRS_ROOT:
		case PRS_ISOLATED:
			if (part_error)
				new_prs = -old_prs;
			break;
		case PRS_INVALID_ROOT:
		case PRS_INVALID_ISOLATED:
			if (!part_error)
				new_prs = -old_prs;
			break;
		}
	}

	if (!adding && !deleting && (new_prs == old_prs))
		return 0;

	/*
	 * Transitioning between invalid to valid or vice versa may require
	 * changing CS_CPU_EXCLUSIVE and CS_SCHED_LOAD_BALANCE.
	 */
	if (old_prs != new_prs) {
		if (is_prs_invalid(old_prs) && !is_cpu_exclusive(cs) &&
		    (update_flag(CS_CPU_EXCLUSIVE, cs, 1) < 0))
			return PERR_NOTEXCL;
		if (is_prs_invalid(new_prs) && is_cpu_exclusive(cs))
			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
	}

	/*
	 * Change the parent's subparts_cpus.
	 * Newly added CPUs will be removed from effective_cpus and
	 * newly deleted ones will be added back to effective_cpus.
	 */
	spin_lock_irq(&callback_lock);
	if (adding) {
		cpumask_or(parent->subparts_cpus,
			   parent->subparts_cpus, tmp->addmask);
		cpumask_andnot(parent->effective_cpus,
			       parent->effective_cpus, tmp->addmask);
	}
	if (deleting) {
		cpumask_andnot(parent->subparts_cpus,
			       parent->subparts_cpus, tmp->delmask);
		/*
		 * Some of the CPUs in subparts_cpus might have been offlined.
		 */
		cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
		cpumask_or(parent->effective_cpus,
			   parent->effective_cpus, tmp->delmask);
	}

	parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);

	if (old_prs != new_prs)
		cs->partition_root_state = new_prs;

	spin_unlock_irq(&callback_lock);

	if (adding || deleting)
		update_tasks_cpumask(parent, tmp->addmask);

	/*
	 * Set or clear CS_SCHED_LOAD_BALANCE when partcmd_update, if necessary.
	 * rebuild_sched_domains_locked() may be called.
	 */
	if (old_prs != new_prs) {
		if (old_prs == PRS_ISOLATED)
			update_flag(CS_SCHED_LOAD_BALANCE, cs, 1);
		else if (new_prs == PRS_ISOLATED)
			update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
	}
	notify_partition_change(cs, old_prs);
	return 0;
}

/*
 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
 * @cs:  the cpuset to consider
 * @tmp: temp variables for calculating effective_cpus & partition setup
 * @force: don't skip any descendant cpusets if set
 *
 * When configured cpumask is changed, the effective cpumasks of this cpuset
 * and all its descendants need to be updated.
 *
 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
 *
 * Called with cpuset_rwsem held
 */
static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
				 bool force)
{
	struct cpuset *cp;
	struct cgroup_subsys_state *pos_css;
	bool need_rebuild_sched_domains = false;
	int old_prs, new_prs;

	rcu_read_lock();
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);
		bool update_parent = false;

		compute_effective_cpumask(tmp->new_cpus, cp, parent);

		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some CPUs unless
		 * it is a partition root that has explicitly distributed
		 * out all its CPUs.
		 */
		if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
			if (is_partition_valid(cp) &&
			    cpumask_equal(cp->cpus_allowed, cp->subparts_cpus))
				goto update_parent_subparts;

			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
			if (!cp->use_parent_ecpus) {
				cp->use_parent_ecpus = true;
				parent->child_ecpus_count++;
			}
		} else if (cp->use_parent_ecpus) {
			cp->use_parent_ecpus = false;
			WARN_ON_ONCE(!parent->child_ecpus_count);
			parent->child_ecpus_count--;
		}

		/*
		 * Skip the whole subtree if the cpumask remains the same
		 * and has no partition root state and force flag not set.
		 */
		if (!cp->partition_root_state && !force &&
		    cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
		}

update_parent_subparts:
		/*
		 * update_parent_subparts_cpumask() should have been called
		 * for cs already in update_cpumask(). We should also call
		 * update_tasks_cpumask() again for tasks in the parent
		 * cpuset if the parent's subparts_cpus changes.
		 */
		old_prs = new_prs = cp->partition_root_state;
		if ((cp != cs) && old_prs) {
			switch (parent->partition_root_state) {
			case PRS_ROOT:
			case PRS_ISOLATED:
				update_parent = true;
				break;

			default:
				/*
				 * When parent is not a partition root or is
				 * invalid, child partition roots become
				 * invalid too.
				 */
				if (is_partition_valid(cp))
					new_prs = -cp->partition_root_state;
				WRITE_ONCE(cp->prs_err,
					   is_partition_invalid(parent)
					   ? PERR_INVPARENT : PERR_NOTPART);
				break;
			}
		}

		if (!css_tryget_online(&cp->css))
			continue;
		rcu_read_unlock();

		if (update_parent) {
			update_parent_subparts_cpumask(cp, partcmd_update, NULL,
						       tmp);
			/*
			 * The cpuset partition_root_state may become
			 * invalid. Capture it.
			 */
			new_prs = cp->partition_root_state;
		}

		spin_lock_irq(&callback_lock);

		if (cp->nr_subparts_cpus && !is_partition_valid(cp)) {
			/*
			 * Put all active subparts_cpus back to effective_cpus.
			 */
			cpumask_or(tmp->new_cpus, tmp->new_cpus,
				   cp->subparts_cpus);
			cpumask_and(tmp->new_cpus, tmp->new_cpus,
				   cpu_active_mask);
			cp->nr_subparts_cpus = 0;
			cpumask_clear(cp->subparts_cpus);
		}

		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
		if (cp->nr_subparts_cpus) {
			/*
			 * Make sure that effective_cpus & subparts_cpus
			 * are mutually exclusive.
			 */
			cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
				       cp->subparts_cpus);
		}

		cp->partition_root_state = new_prs;
		spin_unlock_irq(&callback_lock);

		notify_partition_change(cp, old_prs);

		WARN_ON(!is_in_v2_mode() &&
			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));

		update_tasks_cpumask(cp, tmp->new_cpus);

		/*
		 * On legacy hierarchy, if the effective cpumask of any non-
		 * empty cpuset is changed, we need to rebuild sched domains.
		 * On default hierarchy, the cpuset needs to be a partition
		 * root as well.
		 */
		if (!cpumask_empty(cp->cpus_allowed) &&
		    is_sched_load_balance(cp) &&
		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
		    is_partition_valid(cp)))
			need_rebuild_sched_domains = true;

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();

	if (need_rebuild_sched_domains)
		rebuild_sched_domains_locked();
}

/**
 * update_sibling_cpumasks - Update siblings cpumasks
 * @parent:  Parent cpuset
 * @cs:      Current cpuset
 * @tmp:     Temp variables
 */
static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
				    struct tmpmasks *tmp)
{
	struct cpuset *sibling;
	struct cgroup_subsys_state *pos_css;

	percpu_rwsem_assert_held(&cpuset_rwsem);

	/*
	 * Check all its siblings and call update_cpumasks_hier()
	 * if their use_parent_ecpus flag is set in order for them
	 * to use the right effective_cpus value.
	 *
	 * The update_cpumasks_hier() function may sleep. So we have to
	 * release the RCU read lock before calling it.
	 */
	rcu_read_lock();
	cpuset_for_each_child(sibling, pos_css, parent) {
		if (sibling == cs)
			continue;
		if (!sibling->use_parent_ecpus)
			continue;
		if (!css_tryget_online(&sibling->css))
			continue;

		rcu_read_unlock();
		update_cpumasks_hier(sibling, tmp, false);
		rcu_read_lock();
		css_put(&sibling->css);
	}
	rcu_read_unlock();
}

/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
 * @trialcs: trial cpuset
 * @buf: buffer of cpu numbers written to this cpuset
 */
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
{
	int retval;
	struct tmpmasks tmp;
	bool invalidate = false;

	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
	if (cs == &top_cpuset)
		return -EACCES;

	/*
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
	 */
	if (!*buf) {
		cpumask_clear(trialcs->cpus_allowed);
	} else {
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
		if (retval < 0)
			return retval;

		if (!cpumask_subset(trialcs->cpus_allowed,
				    top_cpuset.cpus_allowed))
			return -EINVAL;
	}

	/* Nothing to do if the cpus didn't change */
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
		return 0;

#ifdef CONFIG_CPUMASK_OFFSTACK
	/*
	 * Use the cpumasks in trialcs for tmpmasks when they are pointers
	 * to allocated cpumasks.
	 *
	 * Note that update_parent_subparts_cpumask() uses only addmask &
	 * delmask, but not new_cpus.
	 */
	tmp.addmask  = trialcs->subparts_cpus;
	tmp.delmask  = trialcs->effective_cpus;
	tmp.new_cpus = NULL;
#endif

	retval = validate_change(cs, trialcs);

	if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
		struct cpuset *cp, *parent;
		struct cgroup_subsys_state *css;

		/*
		 * The -EINVAL error code indicates that partition sibling
		 * CPU exclusivity rule has been violated. We still allow
		 * the cpumask change to proceed while invalidating the
		 * partition. However, any conflicting sibling partitions
		 * have to be marked as invalid too.
		 */
		invalidate = true;
		rcu_read_lock();
		parent = parent_cs(cs);
		cpuset_for_each_child(cp, css, parent)
			if (is_partition_valid(cp) &&
			    cpumask_intersects(trialcs->cpus_allowed, cp->cpus_allowed)) {
				rcu_read_unlock();
				update_parent_subparts_cpumask(cp, partcmd_invalidate, NULL, &tmp);
				rcu_read_lock();
			}
		rcu_read_unlock();
		retval = 0;
	}
	if (retval < 0)
		return retval;

	if (cs->partition_root_state) {
		if (invalidate)
			update_parent_subparts_cpumask(cs, partcmd_invalidate,
						       NULL, &tmp);
		else
			update_parent_subparts_cpumask(cs, partcmd_update,
						trialcs->cpus_allowed, &tmp);
	}

	compute_effective_cpumask(trialcs->effective_cpus, trialcs,
				  parent_cs(cs));
	spin_lock_irq(&callback_lock);
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);

	/*
	 * Make sure that subparts_cpus, if not empty, is a subset of
	 * cpus_allowed. Clear subparts_cpus if partition not valid or
	 * empty effective cpus with tasks.
	 */
	if (cs->nr_subparts_cpus) {
		if (!is_partition_valid(cs) ||
		   (cpumask_subset(trialcs->effective_cpus, cs->subparts_cpus) &&
		    partition_is_populated(cs, NULL))) {
			cs->nr_subparts_cpus = 0;
			cpumask_clear(cs->subparts_cpus);
		} else {
			cpumask_and(cs->subparts_cpus, cs->subparts_cpus,
				    cs->cpus_allowed);
			cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
		}
	}
	spin_unlock_irq(&callback_lock);

#ifdef CONFIG_CPUMASK_OFFSTACK
	/* Now trialcs->cpus_allowed is available */
	tmp.new_cpus = trialcs->cpus_allowed;
#endif

	/* effective_cpus will be updated here */
	update_cpumasks_hier(cs, &tmp, false);

	if (cs->partition_root_state) {
		struct cpuset *parent = parent_cs(cs);

		/*
		 * For partition root, update the cpumasks of sibling
		 * cpusets if they use parent's effective_cpus.
		 */
		if (parent->child_ecpus_count)
			update_sibling_cpumasks(parent, cs, &tmp);
	}
	return 0;
}

/*
 * Migrate memory region from one set of nodes to another.  This is
 * performed asynchronously as it can be called from process migration path
 * holding locks involved in process management.  All mm migrations are
 * performed in the queued order and can be waited for by flushing
 * cpuset_migrate_mm_wq.
 */

struct cpuset_migrate_mm_work {
	struct work_struct	work;
	struct mm_struct	*mm;
	nodemask_t		from;
	nodemask_t		to;
};

static void cpuset_migrate_mm_workfn(struct work_struct *work)
{
	struct cpuset_migrate_mm_work *mwork =
		container_of(work, struct cpuset_migrate_mm_work, work);

	/* on a wq worker, no need to worry about %current's mems_allowed */
	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
	mmput(mwork->mm);
	kfree(mwork);
}

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct cpuset_migrate_mm_work *mwork;

	if (nodes_equal(*from, *to)) {
		mmput(mm);
		return;
	}

	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
	if (mwork) {
		mwork->mm = mm;
		mwork->from = *from;
		mwork->to = *to;
		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
		queue_work(cpuset_migrate_mm_wq, &mwork->work);
	} else {
		mmput(mm);
	}
}

static void cpuset_post_attach(void)
{
	flush_workqueue(cpuset_migrate_mm_wq);
}

/*
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
 * and rebind an eventual tasks' mempolicy. If the task is allocating in
 * parallel, it might temporarily see an empty intersection, which results in
 * a seqlock check and retry before OOM or allocation failure.
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
	task_lock(tsk);

	local_irq_disable();
	write_seqcount_begin(&tsk->mems_allowed_seq);

	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
	mpol_rebind_task(tsk, newmems);
	tsk->mems_allowed = *newmems;

	write_seqcount_end(&tsk->mems_allowed_seq);
	local_irq_enable();

	task_unlock(tsk);
}

static void *cpuset_being_rebound;

/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 *
 * Iterate through each task of @cs updating its mems_allowed to the
 * effective cpuset's.  As this function is called with cpuset_rwsem held,
 * cpuset membership stays stable.
 */
static void update_tasks_nodemask(struct cpuset *cs)
{
	static nodemask_t newmems;	/* protected by cpuset_rwsem */
	struct css_task_iter it;
	struct task_struct *task;

	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */

	guarantee_online_mems(cs, &newmems);

	/*
	 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
	 * the global cpuset_rwsem, we know that no other rebind effort
	 * will be contending for the global variable cpuset_being_rebound.
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
	 * is idempotent.  Also migrate pages in each mm to new nodes.
	 */
	css_task_iter_start(&cs->css, 0, &it);
	while ((task = css_task_iter_next(&it))) {
		struct mm_struct *mm;
		bool migrate;

		cpuset_change_task_nodemask(task, &newmems);

		mm = get_task_mm(task);
		if (!mm)
			continue;

		migrate = is_memory_migrate(cs);

		mpol_rebind_mm(mm, &cs->mems_allowed);
		if (migrate)
			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
		else
			mmput(mm);
	}
	css_task_iter_end(&it);

	/*
	 * All the tasks' nodemasks have been updated, update
	 * cs->old_mems_allowed.
	 */
	cs->old_mems_allowed = newmems;

	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
	cpuset_being_rebound = NULL;
}

/*
 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_mems: a temp variable for calculating new effective_mems
 *
 * When configured nodemask is changed, the effective nodemasks of this cpuset
 * and all its descendants need to be updated.
 *
 * On legacy hierarchy, effective_mems will be the same with mems_allowed.
 *
 * Called with cpuset_rwsem held
 */
static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
{
	struct cpuset *cp;
	struct cgroup_subsys_state *pos_css;

	rcu_read_lock();
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);

		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some MEMs.
		 */
		if (is_in_v2_mode() && nodes_empty(*new_mems))
			*new_mems = parent->effective_mems;

		/* Skip the whole subtree if the nodemask remains the same. */
		if (nodes_equal(*new_mems, cp->effective_mems)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
		}

		if (!css_tryget_online(&cp->css))
			continue;
		rcu_read_unlock();

		spin_lock_irq(&callback_lock);
		cp->effective_mems = *new_mems;
		spin_unlock_irq(&callback_lock);

		WARN_ON(!is_in_v2_mode() &&
			!nodes_equal(cp->mems_allowed, cp->effective_mems));

		update_tasks_nodemask(cp);

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
 *
 * Call with cpuset_rwsem held. May take callback_lock during call.
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_lock, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
{
	int retval;

	/*
	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
	 * it's read-only
	 */
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
		nodes_clear(trialcs->mems_allowed);
	} else {
		retval = nodelist_parse(buf, trialcs->mems_allowed);
		if (retval < 0)
			goto done;

		if (!nodes_subset(trialcs->mems_allowed,
				  top_cpuset.mems_allowed)) {
			retval = -EINVAL;
			goto done;
		}
	}

	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
	retval = validate_change(cs, trialcs);
	if (retval < 0)
		goto done;

	check_insane_mems_config(&trialcs->mems_allowed);

	spin_lock_irq(&callback_lock);
	cs->mems_allowed = trialcs->mems_allowed;
	spin_unlock_irq(&callback_lock);

	/* use trialcs->mems_allowed as a temp variable */
	update_nodemasks_hier(cs, &trialcs->mems_allowed);
done:
	return retval;
}

bool current_cpuset_is_being_rebound(void)
{
	bool ret;

	rcu_read_lock();
	ret = task_cs(current) == cpuset_being_rebound;
	rcu_read_unlock();

	return ret;
}

static int update_relax_domain_level(struct cpuset *cs, s64 val)
{
#ifdef CONFIG_SMP
	if (val < -1 || val >= sched_domain_level_max)
		return -EINVAL;
#endif

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
			rebuild_sched_domains_locked();
	}

	return 0;
}

/**
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 *
 * Iterate through each task of @cs updating its spread flags.  As this
 * function is called with cpuset_rwsem held, cpuset membership stays
 * stable.
 */
static void update_tasks_flags(struct cpuset *cs)
{
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, 0, &it);
	while ((task = css_task_iter_next(&it)))
		cpuset_update_task_spread_flags(cs, task);
	css_task_iter_end(&it);
}

/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
 *
 * Call with cpuset_rwsem held.
 */

static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
{
	struct cpuset *trialcs;
	int balance_flag_changed;
	int spread_flag_changed;
	int err;

	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

	if (turning_on)
		set_bit(bit, &trialcs->flags);
	else
		clear_bit(bit, &trialcs->flags);

	err = validate_change(cs, trialcs);
	if (err < 0)
		goto out;

	balance_flag_changed = (is_sched_load_balance(cs) !=
				is_sched_load_balance(trialcs));

	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

	spin_lock_irq(&callback_lock);
	cs->flags = trialcs->flags;
	spin_unlock_irq(&callback_lock);

	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
		rebuild_sched_domains_locked();

	if (spread_flag_changed)
		update_tasks_flags(cs);
out:
	free_cpuset(trialcs);
	return err;
}

/**
 * update_prstate - update partition_root_state
 * @cs: the cpuset to update
 * @new_prs: new partition root state
 * Return: 0 if successful, != 0 if error
 *
 * Call with cpuset_rwsem held.
 */
static int update_prstate(struct cpuset *cs, int new_prs)
{
	int err = PERR_NONE, old_prs = cs->partition_root_state;
	bool sched_domain_rebuilt = false;
	struct cpuset *parent = parent_cs(cs);
	struct tmpmasks tmpmask;

	if (old_prs == new_prs)
		return 0;

	/*
	 * For a previously invalid partition root, leave it at being
	 * invalid if new_prs is not "member".
	 */
	if (new_prs && is_prs_invalid(old_prs)) {
		cs->partition_root_state = -new_prs;
		return 0;
	}

	if (alloc_cpumasks(NULL, &tmpmask))
		return -ENOMEM;

	if (!old_prs) {
		/*
		 * Turning on partition root requires setting the
		 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
		 * cannot be empty.
		 */
		if (cpumask_empty(cs->cpus_allowed)) {
			err = PERR_CPUSEMPTY;
			goto out;
		}

		err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
		if (err) {
			err = PERR_NOTEXCL;
			goto out;
		}

		err = update_parent_subparts_cpumask(cs, partcmd_enable,
						     NULL, &tmpmask);
		if (err) {
			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
			goto out;
		}

		if (new_prs == PRS_ISOLATED) {
			/*
			 * Disable the load balance flag should not return an
			 * error unless the system is running out of memory.
			 */
			update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
			sched_domain_rebuilt = true;
		}
	} else if (old_prs && new_prs) {
		/*
		 * A change in load balance state only, no change in cpumasks.
		 */
		update_flag(CS_SCHED_LOAD_BALANCE, cs, (new_prs != PRS_ISOLATED));
		sched_domain_rebuilt = true;
		goto out;	/* Sched domain is rebuilt in update_flag() */
	} else {
		/*
		 * Switching back to member is always allowed even if it
		 * disables child partitions.
		 */
		update_parent_subparts_cpumask(cs, partcmd_disable, NULL,
					       &tmpmask);

		/*
		 * If there are child partitions, they will all become invalid.
		 */
		if (unlikely(cs->nr_subparts_cpus)) {
			spin_lock_irq(&callback_lock);
			cs->nr_subparts_cpus = 0;
			cpumask_clear(cs->subparts_cpus);
			compute_effective_cpumask(cs->effective_cpus, cs, parent);
			spin_unlock_irq(&callback_lock);
		}

		/* Turning off CS_CPU_EXCLUSIVE will not return error */
		update_flag(CS_CPU_EXCLUSIVE, cs, 0);

		if (!is_sched_load_balance(cs)) {
			/* Make sure load balance is on */
			update_flag(CS_SCHED_LOAD_BALANCE, cs, 1);
			sched_domain_rebuilt = true;
		}
	}

	update_tasks_cpumask(parent, tmpmask.new_cpus);

	if (parent->child_ecpus_count)
		update_sibling_cpumasks(parent, cs, &tmpmask);

	if (!sched_domain_rebuilt)
		rebuild_sched_domains_locked();
out:
	/*
	 * Make partition invalid if an error happen
	 */
	if (err)
		new_prs = -new_prs;
	spin_lock_irq(&callback_lock);
	cs->partition_root_state = new_prs;
	WRITE_ONCE(cs->prs_err, err);
	spin_unlock_irq(&callback_lock);
	/*
	 * Update child cpusets, if present.
	 * Force update if switching back to member.
	 */
	if (!list_empty(&cs->css.children))
		update_cpumasks_hier(cs, &tmpmask, !new_prs);

	notify_partition_change(cs, old_prs);
	free_cpumasks(NULL, &tmpmask);
	return 0;
}

/*
 * Frequency meter - How fast is some event occurring?
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time64_t now;
	u32 ticks;

	now = ktime_get_seconds();
	ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

static struct cpuset *cpuset_attach_old_cs;

/*
 * Check to see if a cpuset can accept a new task
 * For v1, cpus_allowed and mems_allowed can't be empty.
 * For v2, effective_cpus can't be empty.
 * Note that in v1, effective_cpus = cpus_allowed.
 */
static int cpuset_can_attach_check(struct cpuset *cs)
{
	if (cpumask_empty(cs->effective_cpus) ||
	   (!is_in_v2_mode() && nodes_empty(cs->mems_allowed)))
		return -ENOSPC;
	return 0;
}

/* Called by cgroups to determine if a cpuset is usable; cpuset_rwsem held */
static int cpuset_can_attach(struct cgroup_taskset *tset)
{
	struct cgroup_subsys_state *css;
	struct cpuset *cs;
	struct task_struct *task;
	int ret;

	/* used later by cpuset_attach() */
	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
	cs = css_cs(css);

	percpu_down_write(&cpuset_rwsem);

	/* Check to see if task is allowed in the cpuset */
	ret = cpuset_can_attach_check(cs);
	if (ret)
		goto out_unlock;

	cgroup_taskset_for_each(task, css, tset) {
		ret = task_can_attach(task, cs->effective_cpus);
		if (ret)
			goto out_unlock;
		ret = security_task_setscheduler(task);
		if (ret)
			goto out_unlock;
	}

	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;
out_unlock:
	percpu_up_write(&cpuset_rwsem);
	return ret;
}

static void cpuset_cancel_attach(struct cgroup_taskset *tset)
{
	struct cgroup_subsys_state *css;
	struct cpuset *cs;

	cgroup_taskset_first(tset, &css);
	cs = css_cs(css);

	percpu_down_write(&cpuset_rwsem);
	cs->attach_in_progress--;
	if (!cs->attach_in_progress)
		wake_up(&cpuset_attach_wq);
	percpu_up_write(&cpuset_rwsem);
}

/*
 * Protected by cpuset_rwsem. cpus_attach is used only by cpuset_attach_task()
 * but we can't allocate it dynamically there.  Define it global and
 * allocate from cpuset_init().
 */
static cpumask_var_t cpus_attach;
static nodemask_t cpuset_attach_nodemask_to;

static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task)
{
	percpu_rwsem_assert_held(&cpuset_rwsem);

	if (cs != &top_cpuset)
		guarantee_online_cpus(task, cpus_attach);
	else
		cpumask_andnot(cpus_attach, task_cpu_possible_mask(task),
			       cs->subparts_cpus);
	/*
	 * can_attach beforehand should guarantee that this doesn't
	 * fail.  TODO: have a better way to handle failure here
	 */
	WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));

	cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
	cpuset_update_task_spread_flags(cs, task);
}

static void cpuset_attach(struct cgroup_taskset *tset)
{
	struct task_struct *task;
	struct task_struct *leader;
	struct cgroup_subsys_state *css;
	struct cpuset *cs;
	struct cpuset *oldcs = cpuset_attach_old_cs;
	bool cpus_updated, mems_updated;

	cgroup_taskset_first(tset, &css);
	cs = css_cs(css);

	lockdep_assert_cpus_held();	/* see cgroup_attach_lock() */
	percpu_down_write(&cpuset_rwsem);
	cpus_updated = !cpumask_equal(cs->effective_cpus,
				      oldcs->effective_cpus);
	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);

	/*
	 * In the default hierarchy, enabling cpuset in the child cgroups
	 * will trigger a number of cpuset_attach() calls with no change
	 * in effective cpus and mems. In that case, we can optimize out
	 * by skipping the task iteration and update.
	 */
	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
	    !cpus_updated && !mems_updated) {
		cpuset_attach_nodemask_to = cs->effective_mems;
		goto out;
	}

	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);

	cgroup_taskset_for_each(task, css, tset)
		cpuset_attach_task(cs, task);

	/*
	 * Change mm for all threadgroup leaders. This is expensive and may
	 * sleep and should be moved outside migration path proper. Skip it
	 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is
	 * not set.
	 */
	cpuset_attach_nodemask_to = cs->effective_mems;
	if (!is_memory_migrate(cs) && !mems_updated)
		goto out;

	cgroup_taskset_for_each_leader(leader, css, tset) {
		struct mm_struct *mm = get_task_mm(leader);

		if (mm) {
			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);

			/*
			 * old_mems_allowed is the same with mems_allowed
			 * here, except if this task is being moved
			 * automatically due to hotplug.  In that case
			 * @mems_allowed has been updated and is empty, so
			 * @old_mems_allowed is the right nodesets that we
			 * migrate mm from.
			 */
			if (is_memory_migrate(cs))
				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
						  &cpuset_attach_nodemask_to);
			else
				mmput(mm);
		}
	}

out:
	cs->old_mems_allowed = cpuset_attach_nodemask_to;

	cs->attach_in_progress--;
	if (!cs->attach_in_progress)
		wake_up(&cpuset_attach_wq);

	percpu_up_write(&cpuset_rwsem);
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
	FILE_MEMORY_MIGRATE,
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_EFFECTIVE_CPULIST,
	FILE_EFFECTIVE_MEMLIST,
	FILE_SUBPARTS_CPULIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
	FILE_MEM_HARDWALL,
	FILE_SCHED_LOAD_BALANCE,
	FILE_PARTITION_ROOT,
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
} cpuset_filetype_t;

static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
			    u64 val)
{
	struct cpuset *cs = css_cs(css);
	cpuset_filetype_t type = cft->private;
	int retval = 0;

	cpus_read_lock();
	percpu_down_write(&cpuset_rwsem);
	if (!is_cpuset_online(cs)) {
		retval = -ENODEV;
		goto out_unlock;
	}

	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
		break;
	case FILE_MEM_EXCLUSIVE:
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
		break;
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
	case FILE_SCHED_LOAD_BALANCE:
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
		break;
	case FILE_MEMORY_MIGRATE:
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
		break;
	case FILE_MEMORY_PRESSURE_ENABLED:
		cpuset_memory_pressure_enabled = !!val;
		break;
	case FILE_SPREAD_PAGE:
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
		break;
	case FILE_SPREAD_SLAB:
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
out_unlock:
	percpu_up_write(&cpuset_rwsem);
	cpus_read_unlock();
	return retval;
}

static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
			    s64 val)
{
	struct cpuset *cs = css_cs(css);
	cpuset_filetype_t type = cft->private;
	int retval = -ENODEV;

	cpus_read_lock();
	percpu_down_write(&cpuset_rwsem);
	if (!is_cpuset_online(cs))
		goto out_unlock;

	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
out_unlock:
	percpu_up_write(&cpuset_rwsem);
	cpus_read_unlock();
	return retval;
}

/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
				    char *buf, size_t nbytes, loff_t off)
{
	struct cpuset *cs = css_cs(of_css(of));
	struct cpuset *trialcs;
	int retval = -ENODEV;

	buf = strstrip(buf);

	/*
	 * CPU or memory hotunplug may leave @cs w/o any execution
	 * resources, in which case the hotplug code asynchronously updates
	 * configuration and transfers all tasks to the nearest ancestor
	 * which can execute.
	 *
	 * As writes to "cpus" or "mems" may restore @cs's execution
	 * resources, wait for the previously scheduled operations before
	 * proceeding, so that we don't end up keep removing tasks added
	 * after execution capability is restored.
	 *
	 * cpuset_hotplug_work calls back into cgroup core via
	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
	 * operation like this one can lead to a deadlock through kernfs
	 * active_ref protection.  Let's break the protection.  Losing the
	 * protection is okay as we check whether @cs is online after
	 * grabbing cpuset_rwsem anyway.  This only happens on the legacy
	 * hierarchies.
	 */
	css_get(&cs->css);
	kernfs_break_active_protection(of->kn);
	flush_work(&cpuset_hotplug_work);

	cpus_read_lock();
	percpu_down_write(&cpuset_rwsem);
	if (!is_cpuset_online(cs))
		goto out_unlock;

	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs) {
		retval = -ENOMEM;
		goto out_unlock;
	}

	switch (of_cft(of)->private) {
	case FILE_CPULIST:
		retval = update_cpumask(cs, trialcs, buf);
		break;
	case FILE_MEMLIST:
		retval = update_nodemask(cs, trialcs, buf);
		break;
	default:
		retval = -EINVAL;
		break;
	}

	free_cpuset(trialcs);
out_unlock:
	percpu_up_write(&cpuset_rwsem);
	cpus_read_unlock();
	kernfs_unbreak_active_protection(of->kn);
	css_put(&cs->css);
	flush_workqueue(cpuset_migrate_mm_wq);
	return retval ?: nbytes;
}

/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 */
static int cpuset_common_seq_show(struct seq_file *sf, void *v)
{
	struct cpuset *cs = css_cs(seq_css(sf));
	cpuset_filetype_t type = seq_cft(sf)->private;
	int ret = 0;

	spin_lock_irq(&callback_lock);

	switch (type) {
	case FILE_CPULIST:
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
		break;
	case FILE_MEMLIST:
		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
		break;
	case FILE_EFFECTIVE_CPULIST:
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
		break;
	case FILE_EFFECTIVE_MEMLIST:
		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
		break;
	case FILE_SUBPARTS_CPULIST:
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
		break;
	default:
		ret = -EINVAL;
	}

	spin_unlock_irq(&callback_lock);
	return ret;
}

static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
{
	struct cpuset *cs = css_cs(css);
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}

	/* Unreachable but makes gcc happy */
	return 0;
}

static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
{
	struct cpuset *cs = css_cs(css);
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}

	/* Unreachable but makes gcc happy */
	return 0;
}

static int sched_partition_show(struct seq_file *seq, void *v)
{
	struct cpuset *cs = css_cs(seq_css(seq));
	const char *err, *type = NULL;

	switch (cs->partition_root_state) {
	case PRS_ROOT:
		seq_puts(seq, "root\n");
		break;
	case PRS_ISOLATED:
		seq_puts(seq, "isolated\n");
		break;
	case PRS_MEMBER:
		seq_puts(seq, "member\n");
		break;
	case PRS_INVALID_ROOT:
		type = "root";
		fallthrough;
	case PRS_INVALID_ISOLATED:
		if (!type)
			type = "isolated";
		err = perr_strings[READ_ONCE(cs->prs_err)];
		if (err)
			seq_printf(seq, "%s invalid (%s)\n", type, err);
		else
			seq_printf(seq, "%s invalid\n", type);
		break;
	}
	return 0;
}

static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
				     size_t nbytes, loff_t off)
{
	struct cpuset *cs = css_cs(of_css(of));
	int val;
	int retval = -ENODEV;

	buf = strstrip(buf);

	/*
	 * Convert "root" to ENABLED, and convert "member" to DISABLED.
	 */
	if (!strcmp(buf, "root"))
		val = PRS_ROOT;
	else if (!strcmp(buf, "member"))
		val = PRS_MEMBER;
	else if (!strcmp(buf, "isolated"))
		val = PRS_ISOLATED;
	else
		return -EINVAL;

	css_get(&cs->css);
	cpus_read_lock();
	percpu_down_write(&cpuset_rwsem);
	if (!is_cpuset_online(cs))
		goto out_unlock;

	retval = update_prstate(cs, val);
out_unlock:
	percpu_up_write(&cpuset_rwsem);
	cpus_read_unlock();
	css_put(&cs->css);
	return retval ?: nbytes;
}

/*
 * for the common functions, 'private' gives the type of file
 */

static struct cftype legacy_files[] = {
	{
		.name = "cpus",
		.seq_show = cpuset_common_seq_show,
		.write = cpuset_write_resmask,
		.max_write_len = (100U + 6 * NR_CPUS),
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
		.seq_show = cpuset_common_seq_show,
		.write = cpuset_write_resmask,
		.max_write_len = (100U + 6 * MAX_NUMNODES),
		.private = FILE_MEMLIST,
	},

	{
		.name = "effective_cpus",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_CPULIST,
	},

	{
		.name = "effective_mems",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_MEMLIST,
	},

	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
		.private = FILE_MEMORY_PRESSURE,
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},

	{
		.name = "memory_pressure_enabled",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE_ENABLED,
	},

	{ }	/* terminate */
};

/*
 * This is currently a minimal set for the default hierarchy. It can be
 * expanded later on by migrating more features and control files from v1.
 */
static struct cftype dfl_files[] = {
	{
		.name = "cpus",
		.seq_show = cpuset_common_seq_show,
		.write = cpuset_write_resmask,
		.max_write_len = (100U + 6 * NR_CPUS),
		.private = FILE_CPULIST,
		.flags = CFTYPE_NOT_ON_ROOT,
	},

	{
		.name = "mems",
		.seq_show = cpuset_common_seq_show,
		.write = cpuset_write_resmask,
		.max_write_len = (100U + 6 * MAX_NUMNODES),
		.private = FILE_MEMLIST,
		.flags = CFTYPE_NOT_ON_ROOT,
	},

	{
		.name = "cpus.effective",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_CPULIST,
	},

	{
		.name = "mems.effective",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_MEMLIST,
	},

	{
		.name = "cpus.partition",
		.seq_show = sched_partition_show,
		.write = sched_partition_write,
		.private = FILE_PARTITION_ROOT,
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct cpuset, partition_file),
	},

	{
		.name = "cpus.subpartitions",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_SUBPARTS_CPULIST,
		.flags = CFTYPE_DEBUG,
	},

	{ }	/* terminate */
};


/**
 * cpuset_css_alloc - Allocate a cpuset css
 * @parent_css: Parent css of the control group that the new cpuset will be
 *              part of
 * Return: cpuset css on success, -ENOMEM on failure.
 *
 * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
 * top cpuset css otherwise.
 */
static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
{
	struct cpuset *cs;

	if (!parent_css)
		return &top_cpuset.css;

	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
	if (!cs)
		return ERR_PTR(-ENOMEM);

	if (alloc_cpumasks(cs, NULL)) {
		kfree(cs);
		return ERR_PTR(-ENOMEM);
	}

	__set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
	nodes_clear(cs->mems_allowed);
	nodes_clear(cs->effective_mems);
	fmeter_init(&cs->fmeter);
	cs->relax_domain_level = -1;

	/* Set CS_MEMORY_MIGRATE for default hierarchy */
	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
		__set_bit(CS_MEMORY_MIGRATE, &cs->flags);

	return &cs->css;
}

static int cpuset_css_online(struct cgroup_subsys_state *css)
{
	struct cpuset *cs = css_cs(css);
	struct cpuset *parent = parent_cs(cs);
	struct cpuset *tmp_cs;
	struct cgroup_subsys_state *pos_css;

	if (!parent)
		return 0;

	cpus_read_lock();
	percpu_down_write(&cpuset_rwsem);

	set_bit(CS_ONLINE, &cs->flags);
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);

	cpuset_inc();

	spin_lock_irq(&callback_lock);
	if (is_in_v2_mode()) {
		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
		cs->effective_mems = parent->effective_mems;
		cs->use_parent_ecpus = true;
		parent->child_ecpus_count++;
	}
	spin_unlock_irq(&callback_lock);

	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
		goto out_unlock;

	/*
	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
	 * set.  This flag handling is implemented in cgroup core for
	 * historical reasons - the flag may be specified during mount.
	 *
	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
	 * refuse to clone the configuration - thereby refusing the task to
	 * be entered, and as a result refusing the sys_unshare() or
	 * clone() which initiated it.  If this becomes a problem for some
	 * users who wish to allow that scenario, then this could be
	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
	 * (and likewise for mems) to the new cgroup.
	 */
	rcu_read_lock();
	cpuset_for_each_child(tmp_cs, pos_css, parent) {
		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
			rcu_read_unlock();
			goto out_unlock;
		}
	}
	rcu_read_unlock();

	spin_lock_irq(&callback_lock);
	cs->mems_allowed = parent->mems_allowed;
	cs->effective_mems = parent->mems_allowed;
	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
	spin_unlock_irq(&callback_lock);
out_unlock:
	percpu_up_write(&cpuset_rwsem);
	cpus_read_unlock();
	return 0;
}

/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
 * will call rebuild_sched_domains_locked(). That is not needed
 * in the default hierarchy where only changes in partition
 * will cause repartitioning.
 *
 * If the cpuset has the 'sched.partition' flag enabled, simulate
 * turning 'sched.partition" off.
 */

static void cpuset_css_offline(struct cgroup_subsys_state *css)
{
	struct cpuset *cs = css_cs(css);

	cpus_read_lock();
	percpu_down_write(&cpuset_rwsem);

	if (is_partition_valid(cs))
		update_prstate(cs, 0);

	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
	    is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);

	if (cs->use_parent_ecpus) {
		struct cpuset *parent = parent_cs(cs);

		cs->use_parent_ecpus = false;
		parent->child_ecpus_count--;
	}

	cpuset_dec();
	clear_bit(CS_ONLINE, &cs->flags);

	percpu_up_write(&cpuset_rwsem);
	cpus_read_unlock();
}

static void cpuset_css_free(struct cgroup_subsys_state *css)
{
	struct cpuset *cs = css_cs(css);

	free_cpuset(cs);
}

static void cpuset_bind(struct cgroup_subsys_state *root_css)
{
	percpu_down_write(&cpuset_rwsem);
	spin_lock_irq(&callback_lock);

	if (is_in_v2_mode()) {
		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
		top_cpuset.mems_allowed = node_possible_map;
	} else {
		cpumask_copy(top_cpuset.cpus_allowed,
			     top_cpuset.effective_cpus);
		top_cpuset.mems_allowed = top_cpuset.effective_mems;
	}

	spin_unlock_irq(&callback_lock);
	percpu_up_write(&cpuset_rwsem);
}

/*
 * In case the child is cloned into a cpuset different from its parent,
 * additional checks are done to see if the move is allowed.
 */
static int cpuset_can_fork(struct task_struct *task, struct css_set *cset)
{
	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
	bool same_cs;
	int ret;

	rcu_read_lock();
	same_cs = (cs == task_cs(current));
	rcu_read_unlock();

	if (same_cs)
		return 0;

	lockdep_assert_held(&cgroup_mutex);
	percpu_down_write(&cpuset_rwsem);

	/* Check to see if task is allowed in the cpuset */
	ret = cpuset_can_attach_check(cs);
	if (ret)
		goto out_unlock;

	ret = task_can_attach(task, cs->effective_cpus);
	if (ret)
		goto out_unlock;

	ret = security_task_setscheduler(task);
	if (ret)
		goto out_unlock;

	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;
out_unlock:
	percpu_up_write(&cpuset_rwsem);
	return ret;
}

static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset)
{
	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
	bool same_cs;

	rcu_read_lock();
	same_cs = (cs == task_cs(current));
	rcu_read_unlock();

	if (same_cs)
		return;

	percpu_down_write(&cpuset_rwsem);
	cs->attach_in_progress--;
	if (!cs->attach_in_progress)
		wake_up(&cpuset_attach_wq);
	percpu_up_write(&cpuset_rwsem);
}

/*
 * Make sure the new task conform to the current state of its parent,
 * which could have been changed by cpuset just after it inherits the
 * state from the parent and before it sits on the cgroup's task list.
 */
static void cpuset_fork(struct task_struct *task)
{
	struct cpuset *cs;
	bool same_cs;

	rcu_read_lock();
	cs = task_cs(task);
	same_cs = (cs == task_cs(current));
	rcu_read_unlock();

	if (same_cs) {
		if (cs == &top_cpuset)
			return;

		set_cpus_allowed_ptr(task, current->cpus_ptr);
		task->mems_allowed = current->mems_allowed;
		return;
	}

	/* CLONE_INTO_CGROUP */
	percpu_down_write(&cpuset_rwsem);
	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
	cpuset_attach_task(cs, task);

	cs->attach_in_progress--;
	if (!cs->attach_in_progress)
		wake_up(&cpuset_attach_wq);

	percpu_up_write(&cpuset_rwsem);
}

struct cgroup_subsys cpuset_cgrp_subsys = {
	.css_alloc	= cpuset_css_alloc,
	.css_online	= cpuset_css_online,
	.css_offline	= cpuset_css_offline,
	.css_free	= cpuset_css_free,
	.can_attach	= cpuset_can_attach,
	.cancel_attach	= cpuset_cancel_attach,
	.attach		= cpuset_attach,
	.post_attach	= cpuset_post_attach,
	.bind		= cpuset_bind,
	.can_fork	= cpuset_can_fork,
	.cancel_fork	= cpuset_cancel_fork,
	.fork		= cpuset_fork,
	.legacy_cftypes	= legacy_files,
	.dfl_cftypes	= dfl_files,
	.early_init	= true,
	.threaded	= true,
};

/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset
 **/

int __init cpuset_init(void)
{
	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
	BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));

	cpumask_setall(top_cpuset.cpus_allowed);
	nodes_setall(top_cpuset.mems_allowed);
	cpumask_setall(top_cpuset.effective_cpus);
	nodes_setall(top_cpuset.effective_mems);

	fmeter_init(&top_cpuset.fmeter);
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
	top_cpuset.relax_domain_level = -1;

	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));

	return 0;
}

/*
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
 */
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
	parent = parent_cs(cs);
	while (cpumask_empty(parent->cpus_allowed) ||
			nodes_empty(parent->mems_allowed))
		parent = parent_cs(parent);

	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
		pr_cont_cgroup_name(cs->css.cgroup);
		pr_cont("\n");
	}
}

static void
hotplug_update_tasks_legacy(struct cpuset *cs,
			    struct cpumask *new_cpus, nodemask_t *new_mems,
			    bool cpus_updated, bool mems_updated)
{
	bool is_empty;

	spin_lock_irq(&callback_lock);
	cpumask_copy(cs->cpus_allowed, new_cpus);
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->mems_allowed = *new_mems;
	cs->effective_mems = *new_mems;
	spin_unlock_irq(&callback_lock);

	/*
	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
	 * as the tasks will be migrated to an ancestor.
	 */
	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
		update_tasks_cpumask(cs, new_cpus);
	if (mems_updated && !nodes_empty(cs->mems_allowed))
		update_tasks_nodemask(cs);

	is_empty = cpumask_empty(cs->cpus_allowed) ||
		   nodes_empty(cs->mems_allowed);

	percpu_up_write(&cpuset_rwsem);

	/*
	 * Move tasks to the nearest ancestor with execution resources,
	 * This is full cgroup operation which will also call back into
	 * cpuset. Should be done outside any lock.
	 */
	if (is_empty)
		remove_tasks_in_empty_cpuset(cs);

	percpu_down_write(&cpuset_rwsem);
}

static void
hotplug_update_tasks(struct cpuset *cs,
		     struct cpumask *new_cpus, nodemask_t *new_mems,
		     bool cpus_updated, bool mems_updated)
{
	/* A partition root is allowed to have empty effective cpus */
	if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
	if (nodes_empty(*new_mems))
		*new_mems = parent_cs(cs)->effective_mems;

	spin_lock_irq(&callback_lock);
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->effective_mems = *new_mems;
	spin_unlock_irq(&callback_lock);

	if (cpus_updated)
		update_tasks_cpumask(cs, new_cpus);
	if (mems_updated)
		update_tasks_nodemask(cs);
}

static bool force_rebuild;

void cpuset_force_rebuild(void)
{
	force_rebuild = true;
}

/**
 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
 * @cs: cpuset in interest
 * @tmp: the tmpmasks structure pointer
 *
 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 * all its tasks are moved to the nearest ancestor with both resources.
 */
static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
{
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
	bool cpus_updated;
	bool mems_updated;
	struct cpuset *parent;
retry:
	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);

	percpu_down_write(&cpuset_rwsem);

	/*
	 * We have raced with task attaching. We wait until attaching
	 * is finished, so we won't attach a task to an empty cpuset.
	 */
	if (cs->attach_in_progress) {
		percpu_up_write(&cpuset_rwsem);
		goto retry;
	}

	parent = parent_cs(cs);
	compute_effective_cpumask(&new_cpus, cs, parent);
	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);

	if (cs->nr_subparts_cpus)
		/*
		 * Make sure that CPUs allocated to child partitions
		 * do not show up in effective_cpus.
		 */
		cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);

	if (!tmp || !cs->partition_root_state)
		goto update_tasks;

	/*
	 * In the unlikely event that a partition root has empty
	 * effective_cpus with tasks, we will have to invalidate child
	 * partitions, if present, by setting nr_subparts_cpus to 0 to
	 * reclaim their cpus.
	 */
	if (cs->nr_subparts_cpus && is_partition_valid(cs) &&
	    cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)) {
		spin_lock_irq(&callback_lock);
		cs->nr_subparts_cpus = 0;
		cpumask_clear(cs->subparts_cpus);
		spin_unlock_irq(&callback_lock);
		compute_effective_cpumask(&new_cpus, cs, parent);
	}

	/*
	 * Force the partition to become invalid if either one of
	 * the following conditions hold:
	 * 1) empty effective cpus but not valid empty partition.
	 * 2) parent is invalid or doesn't grant any cpus to child
	 *    partitions.
	 */
	if (is_partition_valid(cs) && (!parent->nr_subparts_cpus ||
	   (cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)))) {
		int old_prs, parent_prs;

		update_parent_subparts_cpumask(cs, partcmd_disable, NULL, tmp);
		if (cs->nr_subparts_cpus) {
			spin_lock_irq(&callback_lock);
			cs->nr_subparts_cpus = 0;
			cpumask_clear(cs->subparts_cpus);
			spin_unlock_irq(&callback_lock);
			compute_effective_cpumask(&new_cpus, cs, parent);
		}

		old_prs = cs->partition_root_state;
		parent_prs = parent->partition_root_state;
		if (is_partition_valid(cs)) {
			spin_lock_irq(&callback_lock);
			make_partition_invalid(cs);
			spin_unlock_irq(&callback_lock);
			if (is_prs_invalid(parent_prs))
				WRITE_ONCE(cs->prs_err, PERR_INVPARENT);
			else if (!parent_prs)
				WRITE_ONCE(cs->prs_err, PERR_NOTPART);
			else
				WRITE_ONCE(cs->prs_err, PERR_HOTPLUG);
			notify_partition_change(cs, old_prs);
		}
		cpuset_force_rebuild();
	}

	/*
	 * On the other hand, an invalid partition root may be transitioned
	 * back to a regular one.
	 */
	else if (is_partition_valid(parent) && is_partition_invalid(cs)) {
		update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp);
		if (is_partition_valid(cs))
			cpuset_force_rebuild();
	}

update_tasks:
	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
	if (!cpus_updated && !mems_updated)
		goto unlock;	/* Hotplug doesn't affect this cpuset */

	if (mems_updated)
		check_insane_mems_config(&new_mems);

	if (is_in_v2_mode())
		hotplug_update_tasks(cs, &new_cpus, &new_mems,
				     cpus_updated, mems_updated);
	else
		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
					    cpus_updated, mems_updated);

unlock:
	percpu_up_write(&cpuset_rwsem);
}

/**
 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
 *
 * This function is called after either CPU or memory configuration has
 * changed and updates cpuset accordingly.  The top_cpuset is always
 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 * order to make cpusets transparent (of no affect) on systems that are
 * actively using CPU hotplug but making no active use of cpusets.
 *
 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
 * all descendants.
 *
 * Note that CPU offlining during suspend is ignored.  We don't modify
 * cpusets across suspend/resume cycles at all.
 */
static void cpuset_hotplug_workfn(struct work_struct *work)
{
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
	bool cpus_updated, mems_updated;
	bool on_dfl = is_in_v2_mode();
	struct tmpmasks tmp, *ptmp = NULL;

	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
		ptmp = &tmp;

	percpu_down_write(&cpuset_rwsem);

	/* fetch the available cpus/mems and find out which changed how */
	cpumask_copy(&new_cpus, cpu_active_mask);
	new_mems = node_states[N_MEMORY];

	/*
	 * If subparts_cpus is populated, it is likely that the check below
	 * will produce a false positive on cpus_updated when the cpu list
	 * isn't changed. It is extra work, but it is better to be safe.
	 */
	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);

	/*
	 * In the rare case that hotplug removes all the cpus in subparts_cpus,
	 * we assumed that cpus are updated.
	 */
	if (!cpus_updated && top_cpuset.nr_subparts_cpus)
		cpus_updated = true;

	/* synchronize cpus_allowed to cpu_active_mask */
	if (cpus_updated) {
		spin_lock_irq(&callback_lock);
		if (!on_dfl)
			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
		/*
		 * Make sure that CPUs allocated to child partitions
		 * do not show up in effective_cpus. If no CPU is left,
		 * we clear the subparts_cpus & let the child partitions
		 * fight for the CPUs again.
		 */
		if (top_cpuset.nr_subparts_cpus) {
			if (cpumask_subset(&new_cpus,
					   top_cpuset.subparts_cpus)) {
				top_cpuset.nr_subparts_cpus = 0;
				cpumask_clear(top_cpuset.subparts_cpus);
			} else {
				cpumask_andnot(&new_cpus, &new_cpus,
					       top_cpuset.subparts_cpus);
			}
		}
		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
		spin_unlock_irq(&callback_lock);
		/* we don't mess with cpumasks of tasks in top_cpuset */
	}

	/* synchronize mems_allowed to N_MEMORY */
	if (mems_updated) {
		spin_lock_irq(&callback_lock);
		if (!on_dfl)
			top_cpuset.mems_allowed = new_mems;
		top_cpuset.effective_mems = new_mems;
		spin_unlock_irq(&callback_lock);
		update_tasks_nodemask(&top_cpuset);
	}

	percpu_up_write(&cpuset_rwsem);

	/* if cpus or mems changed, we need to propagate to descendants */
	if (cpus_updated || mems_updated) {
		struct cpuset *cs;
		struct cgroup_subsys_state *pos_css;

		rcu_read_lock();
		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
				continue;
			rcu_read_unlock();

			cpuset_hotplug_update_tasks(cs, ptmp);

			rcu_read_lock();
			css_put(&cs->css);
		}
		rcu_read_unlock();
	}

	/* rebuild sched domains if cpus_allowed has changed */
	if (cpus_updated || force_rebuild) {
		force_rebuild = false;
		rebuild_sched_domains();
	}

	free_cpumasks(NULL, ptmp);
}

void cpuset_update_active_cpus(void)
{
	/*
	 * We're inside cpu hotplug critical region which usually nests
	 * inside cgroup synchronization.  Bounce actual hotplug processing
	 * to a work item to avoid reverse locking order.
	 */
	schedule_work(&cpuset_hotplug_work);
}

void cpuset_wait_for_hotplug(void)
{
	flush_work(&cpuset_hotplug_work);
}

/*
 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 * Call this routine anytime after node_states[N_MEMORY] changes.
 * See cpuset_update_active_cpus() for CPU hotplug handling.
 */
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
{
	schedule_work(&cpuset_hotplug_work);
	return NOTIFY_OK;
}

/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
 */
void __init cpuset_init_smp(void)
{
	/*
	 * cpus_allowd/mems_allowed set to v2 values in the initial
	 * cpuset_bind() call will be reset to v1 values in another
	 * cpuset_bind() call when v1 cpuset is mounted.
	 */
	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;

	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
	top_cpuset.effective_mems = node_states[N_MEMORY];

	hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);

	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
	BUG_ON(!cpuset_migrate_mm_wq);
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
 *
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
 * subset of cpu_online_mask, even if this means going outside the
 * tasks cpuset, except when the task is in the top cpuset.
 **/

void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
{
	unsigned long flags;
	struct cpuset *cs;

	spin_lock_irqsave(&callback_lock, flags);
	rcu_read_lock();

	cs = task_cs(tsk);
	if (cs != &top_cpuset)
		guarantee_online_cpus(tsk, pmask);
	/*
	 * Tasks in the top cpuset won't get update to their cpumasks
	 * when a hotplug online/offline event happens. So we include all
	 * offline cpus in the allowed cpu list.
	 */
	if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
		const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);

		/*
		 * We first exclude cpus allocated to partitions. If there is no
		 * allowable online cpu left, we fall back to all possible cpus.
		 */
		cpumask_andnot(pmask, possible_mask, top_cpuset.subparts_cpus);
		if (!cpumask_intersects(pmask, cpu_online_mask))
			cpumask_copy(pmask, possible_mask);
	}

	rcu_read_unlock();
	spin_unlock_irqrestore(&callback_lock, flags);
}

/**
 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
 * @tsk: pointer to task_struct with which the scheduler is struggling
 *
 * Description: In the case that the scheduler cannot find an allowed cpu in
 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
 * which will not contain a sane cpumask during cases such as cpu hotplugging.
 * This is the absolute last resort for the scheduler and it is only used if
 * _every_ other avenue has been traveled.
 *
 * Returns true if the affinity of @tsk was changed, false otherwise.
 **/

bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
{
	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
	const struct cpumask *cs_mask;
	bool changed = false;

	rcu_read_lock();
	cs_mask = task_cs(tsk)->cpus_allowed;
	if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
		do_set_cpus_allowed(tsk, cs_mask);
		changed = true;
	}
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
	 *
	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
	 * if required.
	 */
	return changed;
}

void __init cpuset_init_current_mems_allowed(void)
{
	nodes_setall(current->mems_allowed);
}

/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
 * subset of node_states[N_MEMORY], even if this means going outside the
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;
	unsigned long flags;

	spin_lock_irqsave(&callback_lock, flags);
	rcu_read_lock();
	guarantee_online_mems(task_cs(tsk), &mask);
	rcu_read_unlock();
	spin_unlock_irqrestore(&callback_lock, flags);

	return mask;
}

/**
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
 * @nodemask: the nodemask to be checked
 *
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
 */
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
{
	return nodes_intersects(*nodemask, current->mems_allowed);
}

/*
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
 * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
 * (an unusual configuration), then returns the root cpuset.
 */
static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
{
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
		cs = parent_cs(cs);
	return cs;
}

/*
 * cpuset_node_allowed - Can we allocate on a memory node?
 * @node: is this an allowed node?
 * @gfp_mask: memory allocation flags
 *
 * If we're in interrupt, yes, we can always allocate.  If @node is set in
 * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
 * yes.  If current has access to memory reserves as an oom victim, yes.
 * Otherwise, no.
 *
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed.
 * GFP_KERNEL allocations are not so marked, so can escape to the
 * nearest enclosing hardwalled ancestor cpuset.
 *
 * Scanning up parent cpusets requires callback_lock.  The
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
 * cpuset are short of memory, might require taking the callback_lock.
 *
 * The first call here from mm/page_alloc:get_page_from_freelist()
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
 *	tsk_is_oom_victim   - any node ok
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
 */
bool cpuset_node_allowed(int node, gfp_t gfp_mask)
{
	struct cpuset *cs;		/* current cpuset ancestors */
	bool allowed;			/* is allocation in zone z allowed? */
	unsigned long flags;

	if (in_interrupt())
		return true;
	if (node_isset(node, current->mems_allowed))
		return true;
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(tsk_is_oom_victim(current)))
		return true;
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return false;

	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return true;

	/* Not hardwall and node outside mems_allowed: scan up cpusets */
	spin_lock_irqsave(&callback_lock, flags);

	rcu_read_lock();
	cs = nearest_hardwall_ancestor(task_cs(current));
	allowed = node_isset(node, cs->mems_allowed);
	rcu_read_unlock();

	spin_unlock_irqrestore(&callback_lock, flags);
	return allowed;
}

/**
 * cpuset_spread_node() - On which node to begin search for a page
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */
static int cpuset_spread_node(int *rotor)
{
	return *rotor = next_node_in(*rotor, current->mems_allowed);
}

/**
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 */
int cpuset_mem_spread_node(void)
{
	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
		current->cpuset_mem_spread_rotor =
			node_random(&current->mems_allowed);

	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

/**
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
 */
int cpuset_slab_spread_node(void)
{
	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
		current->cpuset_slab_spread_rotor =
			node_random(&current->mems_allowed);

	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

/**
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
 **/

int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
{
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
}

/**
 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
 *
 * Description: Prints current's name, cpuset name, and cached copy of its
 * mems_allowed to the kernel log.
 */
void cpuset_print_current_mems_allowed(void)
{
	struct cgroup *cgrp;

	rcu_read_lock();

	cgrp = task_cs(current)->css.cgroup;
	pr_cont(",cpuset=");
	pr_cont_cgroup_name(cgrp);
	pr_cont(",mems_allowed=%*pbl",
		nodemask_pr_args(&current->mems_allowed));

	rcu_read_unlock();
}

/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

int cpuset_memory_pressure_enabled __read_mostly;

/*
 * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 */

void __cpuset_memory_pressure_bump(void)
{
	rcu_read_lock();
	fmeter_markevent(&task_cs(current)->fmeter);
	rcu_read_unlock();
}

#ifdef CONFIG_PROC_PID_CPUSET
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
 *    and we take cpuset_rwsem, keeping cpuset_attach() from changing it
 *    anyway.
 */
int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
		     struct pid *pid, struct task_struct *tsk)
{
	char *buf;
	struct cgroup_subsys_state *css;
	int retval;

	retval = -ENOMEM;
	buf = kmalloc(PATH_MAX, GFP_KERNEL);
	if (!buf)
		goto out;

	css = task_get_css(tsk, cpuset_cgrp_id);
	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
				current->nsproxy->cgroup_ns);
	css_put(css);
	if (retval >= PATH_MAX)
		retval = -ENAMETOOLONG;
	if (retval < 0)
		goto out_free;
	seq_puts(m, buf);
	seq_putc(m, '\n');
	retval = 0;
out_free:
	kfree(buf);
out:
	return retval;
}
#endif /* CONFIG_PROC_PID_CPUSET */

/* Display task mems_allowed in /proc/<pid>/status file. */
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
	seq_printf(m, "Mems_allowed:\t%*pb\n",
		   nodemask_pr_args(&task->mems_allowed));
	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
		   nodemask_pr_args(&task->mems_allowed));
}