summaryrefslogtreecommitdiff
path: root/include/linux/compiler.h
blob: 2594553bb30b10d14dda5f634398b8596e6bbb7e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __LINUX_COMPILER_H
#define __LINUX_COMPILER_H

#include <linux/compiler_types.h>

#ifndef __ASSEMBLY__

#ifdef __KERNEL__

/*
 * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code
 * to disable branch tracing on a per file basis.
 */
void ftrace_likely_update(struct ftrace_likely_data *f, int val,
			  int expect, int is_constant);
#if defined(CONFIG_TRACE_BRANCH_PROFILING) \
    && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__)
#define likely_notrace(x)	__builtin_expect(!!(x), 1)
#define unlikely_notrace(x)	__builtin_expect(!!(x), 0)

#define __branch_check__(x, expect, is_constant) ({			\
			long ______r;					\
			static struct ftrace_likely_data		\
				__aligned(4)				\
				__section("_ftrace_annotated_branch")	\
				______f = {				\
				.data.func = __func__,			\
				.data.file = __FILE__,			\
				.data.line = __LINE__,			\
			};						\
			______r = __builtin_expect(!!(x), expect);	\
			ftrace_likely_update(&______f, ______r,		\
					     expect, is_constant);	\
			______r;					\
		})

/*
 * Using __builtin_constant_p(x) to ignore cases where the return
 * value is always the same.  This idea is taken from a similar patch
 * written by Daniel Walker.
 */
# ifndef likely
#  define likely(x)	(__branch_check__(x, 1, __builtin_constant_p(x)))
# endif
# ifndef unlikely
#  define unlikely(x)	(__branch_check__(x, 0, __builtin_constant_p(x)))
# endif

#ifdef CONFIG_PROFILE_ALL_BRANCHES
/*
 * "Define 'is'", Bill Clinton
 * "Define 'if'", Steven Rostedt
 */
#define if(cond, ...) if ( __trace_if_var( !!(cond , ## __VA_ARGS__) ) )

#define __trace_if_var(cond) (__builtin_constant_p(cond) ? (cond) : __trace_if_value(cond))

#define __trace_if_value(cond) ({			\
	static struct ftrace_branch_data		\
		__aligned(4)				\
		__section("_ftrace_branch")		\
		__if_trace = {				\
			.func = __func__,		\
			.file = __FILE__,		\
			.line = __LINE__,		\
		};					\
	(cond) ?					\
		(__if_trace.miss_hit[1]++,1) :		\
		(__if_trace.miss_hit[0]++,0);		\
})

#endif /* CONFIG_PROFILE_ALL_BRANCHES */

#else
# define likely(x)	__builtin_expect(!!(x), 1)
# define unlikely(x)	__builtin_expect(!!(x), 0)
# define likely_notrace(x)	likely(x)
# define unlikely_notrace(x)	unlikely(x)
#endif

/* Optimization barrier */
#ifndef barrier
/* The "volatile" is due to gcc bugs */
# define barrier() __asm__ __volatile__("": : :"memory")
#endif

#ifndef barrier_data
/*
 * This version is i.e. to prevent dead stores elimination on @ptr
 * where gcc and llvm may behave differently when otherwise using
 * normal barrier(): while gcc behavior gets along with a normal
 * barrier(), llvm needs an explicit input variable to be assumed
 * clobbered. The issue is as follows: while the inline asm might
 * access any memory it wants, the compiler could have fit all of
 * @ptr into memory registers instead, and since @ptr never escaped
 * from that, it proved that the inline asm wasn't touching any of
 * it. This version works well with both compilers, i.e. we're telling
 * the compiler that the inline asm absolutely may see the contents
 * of @ptr. See also: https://llvm.org/bugs/show_bug.cgi?id=15495
 */
# define barrier_data(ptr) __asm__ __volatile__("": :"r"(ptr) :"memory")
#endif

/* workaround for GCC PR82365 if needed */
#ifndef barrier_before_unreachable
# define barrier_before_unreachable() do { } while (0)
#endif

/* Unreachable code */
#ifdef CONFIG_OBJTOOL
/*
 * These macros help objtool understand GCC code flow for unreachable code.
 * The __COUNTER__ based labels are a hack to make each instance of the macros
 * unique, to convince GCC not to merge duplicate inline asm statements.
 */
#define __stringify_label(n) #n

#define __annotate_reachable(c) ({					\
	asm volatile(__stringify_label(c) ":\n\t"			\
			".pushsection .discard.reachable\n\t"		\
			".long " __stringify_label(c) "b - .\n\t"	\
			".popsection\n\t");				\
})
#define annotate_reachable() __annotate_reachable(__COUNTER__)

#define __annotate_unreachable(c) ({					\
	asm volatile(__stringify_label(c) ":\n\t"			\
		     ".pushsection .discard.unreachable\n\t"		\
		     ".long " __stringify_label(c) "b - .\n\t"		\
		     ".popsection\n\t" : : "i" (c));			\
})
#define annotate_unreachable() __annotate_unreachable(__COUNTER__)

/* Annotate a C jump table to allow objtool to follow the code flow */
#define __annotate_jump_table __section(".rodata..c_jump_table")

#else /* !CONFIG_OBJTOOL */
#define annotate_reachable()
#define annotate_unreachable()
#define __annotate_jump_table
#endif /* CONFIG_OBJTOOL */

#ifndef unreachable
# define unreachable() do {		\
	annotate_unreachable();		\
	__builtin_unreachable();	\
} while (0)
#endif

/*
 * KENTRY - kernel entry point
 * This can be used to annotate symbols (functions or data) that are used
 * without their linker symbol being referenced explicitly. For example,
 * interrupt vector handlers, or functions in the kernel image that are found
 * programatically.
 *
 * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those
 * are handled in their own way (with KEEP() in linker scripts).
 *
 * KENTRY can be avoided if the symbols in question are marked as KEEP() in the
 * linker script. For example an architecture could KEEP() its entire
 * boot/exception vector code rather than annotate each function and data.
 */
#ifndef KENTRY
# define KENTRY(sym)						\
	extern typeof(sym) sym;					\
	static const unsigned long __kentry_##sym		\
	__used							\
	__attribute__((__section__("___kentry+" #sym)))		\
	= (unsigned long)&sym;
#endif

#ifndef RELOC_HIDE
# define RELOC_HIDE(ptr, off)					\
  ({ unsigned long __ptr;					\
     __ptr = (unsigned long) (ptr);				\
    (typeof(ptr)) (__ptr + (off)); })
#endif

#define absolute_pointer(val)	RELOC_HIDE((void *)(val), 0)

#ifndef OPTIMIZER_HIDE_VAR
/* Make the optimizer believe the variable can be manipulated arbitrarily. */
#define OPTIMIZER_HIDE_VAR(var)						\
	__asm__ ("" : "=r" (var) : "0" (var))
#endif

#define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __COUNTER__)

/**
 * data_race - mark an expression as containing intentional data races
 *
 * This data_race() macro is useful for situations in which data races
 * should be forgiven.  One example is diagnostic code that accesses
 * shared variables but is not a part of the core synchronization design.
 * For example, if accesses to a given variable are protected by a lock,
 * except for diagnostic code, then the accesses under the lock should
 * be plain C-language accesses and those in the diagnostic code should
 * use data_race().  This way, KCSAN will complain if buggy lockless
 * accesses to that variable are introduced, even if the buggy accesses
 * are protected by READ_ONCE() or WRITE_ONCE().
 *
 * This macro *does not* affect normal code generation, but is a hint
 * to tooling that data races here are to be ignored.  If the access must
 * be atomic *and* KCSAN should ignore the access, use both data_race()
 * and READ_ONCE(), for example, data_race(READ_ONCE(x)).
 */
#define data_race(expr)							\
({									\
	__kcsan_disable_current();					\
	__auto_type __v = (expr);					\
	__kcsan_enable_current();					\
	__v;								\
})

#endif /* __KERNEL__ */

/*
 * Force the compiler to emit 'sym' as a symbol, so that we can reference
 * it from inline assembler. Necessary in case 'sym' could be inlined
 * otherwise, or eliminated entirely due to lack of references that are
 * visible to the compiler.
 */
#define ___ADDRESSABLE(sym, __attrs) \
	static void * __used __attrs \
	__UNIQUE_ID(__PASTE(__addressable_,sym)) = (void *)(uintptr_t)&sym;
#define __ADDRESSABLE(sym) \
	___ADDRESSABLE(sym, __section(".discard.addressable"))

/**
 * offset_to_ptr - convert a relative memory offset to an absolute pointer
 * @off:	the address of the 32-bit offset value
 */
static inline void *offset_to_ptr(const int *off)
{
	return (void *)((unsigned long)off + *off);
}

#endif /* __ASSEMBLY__ */

/* &a[0] degrades to a pointer: a different type from an array */
#define __must_be_array(a)	BUILD_BUG_ON_ZERO(__same_type((a), &(a)[0]))

/*
 * This returns a constant expression while determining if an argument is
 * a constant expression, most importantly without evaluating the argument.
 * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de>
 *
 * Details:
 * - sizeof() return an integer constant expression, and does not evaluate
 *   the value of its operand; it only examines the type of its operand.
 * - The results of comparing two integer constant expressions is also
 *   an integer constant expression.
 * - The first literal "8" isn't important. It could be any literal value.
 * - The second literal "8" is to avoid warnings about unaligned pointers;
 *   this could otherwise just be "1".
 * - (long)(x) is used to avoid warnings about 64-bit types on 32-bit
 *   architectures.
 * - The C Standard defines "null pointer constant", "(void *)0", as
 *   distinct from other void pointers.
 * - If (x) is an integer constant expression, then the "* 0l" resolves
 *   it into an integer constant expression of value 0. Since it is cast to
 *   "void *", this makes the second operand a null pointer constant.
 * - If (x) is not an integer constant expression, then the second operand
 *   resolves to a void pointer (but not a null pointer constant: the value
 *   is not an integer constant 0).
 * - The conditional operator's third operand, "(int *)8", is an object
 *   pointer (to type "int").
 * - The behavior (including the return type) of the conditional operator
 *   ("operand1 ? operand2 : operand3") depends on the kind of expressions
 *   given for the second and third operands. This is the central mechanism
 *   of the macro:
 *   - When one operand is a null pointer constant (i.e. when x is an integer
 *     constant expression) and the other is an object pointer (i.e. our
 *     third operand), the conditional operator returns the type of the
 *     object pointer operand (i.e. "int *"). Here, within the sizeof(), we
 *     would then get:
 *       sizeof(*((int *)(...))  == sizeof(int)  == 4
 *   - When one operand is a void pointer (i.e. when x is not an integer
 *     constant expression) and the other is an object pointer (i.e. our
 *     third operand), the conditional operator returns a "void *" type.
 *     Here, within the sizeof(), we would then get:
 *       sizeof(*((void *)(...)) == sizeof(void) == 1
 * - The equality comparison to "sizeof(int)" therefore depends on (x):
 *     sizeof(int) == sizeof(int)     (x) was a constant expression
 *     sizeof(int) != sizeof(void)    (x) was not a constant expression
 */
#define __is_constexpr(x) \
	(sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))

/*
 * Whether 'type' is a signed type or an unsigned type. Supports scalar types,
 * bool and also pointer types.
 */
#define is_signed_type(type) (((type)(-1)) < (__force type)1)
#define is_unsigned_type(type) (!is_signed_type(type))

/*
 * This is needed in functions which generate the stack canary, see
 * arch/x86/kernel/smpboot.c::start_secondary() for an example.
 */
#define prevent_tail_call_optimization()	mb()

#include <asm/rwonce.h>

#endif /* __LINUX_COMPILER_H */