summaryrefslogtreecommitdiff
path: root/include/linux/blk-crypto.h
blob: 58b0c5254a678a296483bfaa72f069bc219b0d94 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
/* SPDX-License-Identifier: GPL-2.0 */
/*
 * Copyright 2019 Google LLC
 */

#ifndef __LINUX_BLK_CRYPTO_H
#define __LINUX_BLK_CRYPTO_H

#include <linux/minmax.h>
#include <linux/types.h>
#include <uapi/linux/blk-crypto.h>

enum blk_crypto_mode_num {
	BLK_ENCRYPTION_MODE_INVALID,
	BLK_ENCRYPTION_MODE_AES_256_XTS,
	BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV,
	BLK_ENCRYPTION_MODE_ADIANTUM,
	BLK_ENCRYPTION_MODE_SM4_XTS,
	BLK_ENCRYPTION_MODE_MAX,
};

/*
 * Supported types of keys.  Must be bitflags due to their use in
 * blk_crypto_profile::key_types_supported.
 */
enum blk_crypto_key_type {
	/*
	 * Raw keys (i.e. "software keys").  These keys are simply kept in raw,
	 * plaintext form in kernel memory.
	 */
	BLK_CRYPTO_KEY_TYPE_RAW = 0x1,

	/*
	 * Hardware-wrapped keys.  These keys are only present in kernel memory
	 * in ephemerally-wrapped form, and they can only be unwrapped by
	 * dedicated hardware.  For details, see the "Hardware-wrapped keys"
	 * section of Documentation/block/inline-encryption.rst.
	 */
	BLK_CRYPTO_KEY_TYPE_HW_WRAPPED = 0x2,
};

/*
 * Currently the maximum raw key size is 64 bytes, as that is the key size of
 * BLK_ENCRYPTION_MODE_AES_256_XTS which takes the longest key.
 *
 * The maximum hardware-wrapped key size depends on the hardware's key wrapping
 * algorithm, which is a hardware implementation detail, so it isn't precisely
 * specified.  But currently 128 bytes is plenty in practice.  Implementations
 * are recommended to wrap a 32-byte key for the hardware KDF with AES-256-GCM,
 * which should result in a size closer to 64 bytes than 128.
 *
 * Both of these values can trivially be increased if ever needed.
 */
#define BLK_CRYPTO_MAX_RAW_KEY_SIZE		64
#define BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE	128

#define BLK_CRYPTO_MAX_ANY_KEY_SIZE \
	MAX(BLK_CRYPTO_MAX_RAW_KEY_SIZE, BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE)

/*
 * Size of the "software secret" which can be derived from a hardware-wrapped
 * key.  This is currently always 32 bytes.  Note, the choice of 32 bytes
 * assumes that the software secret is only used directly for algorithms that
 * don't require more than a 256-bit key to get the desired security strength.
 * If it were to be used e.g. directly as an AES-256-XTS key, then this would
 * need to be increased (which is possible if hardware supports it, but care
 * would need to be taken to avoid breaking users who need exactly 32 bytes).
 */
#define BLK_CRYPTO_SW_SECRET_SIZE	32

/**
 * struct blk_crypto_config - an inline encryption key's crypto configuration
 * @crypto_mode: encryption algorithm this key is for
 * @data_unit_size: the data unit size for all encryption/decryptions with this
 *	key.  This is the size in bytes of each individual plaintext and
 *	ciphertext.  This is always a power of 2.  It might be e.g. the
 *	filesystem block size or the disk sector size.
 * @dun_bytes: the maximum number of bytes of DUN used when using this key
 * @key_type: the type of this key -- either raw or hardware-wrapped
 */
struct blk_crypto_config {
	enum blk_crypto_mode_num crypto_mode;
	unsigned int data_unit_size;
	unsigned int dun_bytes;
	enum blk_crypto_key_type key_type;
};

/**
 * struct blk_crypto_key - an inline encryption key
 * @crypto_cfg: the crypto mode, data unit size, key type, and other
 *		characteristics of this key and how it will be used
 * @data_unit_size_bits: log2 of data_unit_size
 * @size: size of this key in bytes.  The size of a raw key is fixed for a given
 *	  crypto mode, but the size of a hardware-wrapped key can vary.
 * @bytes: the bytes of this key.  Only the first @size bytes are significant.
 *
 * A blk_crypto_key is immutable once created, and many bios can reference it at
 * the same time.  It must not be freed until all bios using it have completed
 * and it has been evicted from all devices on which it may have been used.
 */
struct blk_crypto_key {
	struct blk_crypto_config crypto_cfg;
	unsigned int data_unit_size_bits;
	unsigned int size;
	u8 bytes[BLK_CRYPTO_MAX_ANY_KEY_SIZE];
};

#define BLK_CRYPTO_MAX_IV_SIZE		32
#define BLK_CRYPTO_DUN_ARRAY_SIZE	(BLK_CRYPTO_MAX_IV_SIZE / sizeof(u64))

/**
 * struct bio_crypt_ctx - an inline encryption context
 * @bc_key: the key, algorithm, and data unit size to use
 * @bc_dun: the data unit number (starting IV) to use
 *
 * A bio_crypt_ctx specifies that the contents of the bio will be encrypted (for
 * write requests) or decrypted (for read requests) inline by the storage device
 * or controller, or by the crypto API fallback.
 */
struct bio_crypt_ctx {
	const struct blk_crypto_key	*bc_key;
	u64				bc_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
};

#include <linux/blk_types.h>
#include <linux/blkdev.h>

#ifdef CONFIG_BLK_INLINE_ENCRYPTION

static inline bool bio_has_crypt_ctx(struct bio *bio)
{
	return bio->bi_crypt_context;
}

void bio_crypt_set_ctx(struct bio *bio, const struct blk_crypto_key *key,
		       const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
		       gfp_t gfp_mask);

bool bio_crypt_dun_is_contiguous(const struct bio_crypt_ctx *bc,
				 unsigned int bytes,
				 const u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE]);

int blk_crypto_init_key(struct blk_crypto_key *blk_key,
			const u8 *key_bytes, size_t key_size,
			enum blk_crypto_key_type key_type,
			enum blk_crypto_mode_num crypto_mode,
			unsigned int dun_bytes,
			unsigned int data_unit_size);

int blk_crypto_start_using_key(struct block_device *bdev,
			       const struct blk_crypto_key *key);

void blk_crypto_evict_key(struct block_device *bdev,
			  const struct blk_crypto_key *key);

bool blk_crypto_config_supported_natively(struct block_device *bdev,
					  const struct blk_crypto_config *cfg);
bool blk_crypto_config_supported(struct block_device *bdev,
				 const struct blk_crypto_config *cfg);

int blk_crypto_derive_sw_secret(struct block_device *bdev,
				const u8 *eph_key, size_t eph_key_size,
				u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE]);

#else /* CONFIG_BLK_INLINE_ENCRYPTION */

static inline bool bio_has_crypt_ctx(struct bio *bio)
{
	return false;
}

#endif /* CONFIG_BLK_INLINE_ENCRYPTION */

int __bio_crypt_clone(struct bio *dst, struct bio *src, gfp_t gfp_mask);
/**
 * bio_crypt_clone - clone bio encryption context
 * @dst: destination bio
 * @src: source bio
 * @gfp_mask: memory allocation flags
 *
 * If @src has an encryption context, clone it to @dst.
 *
 * Return: 0 on success, -ENOMEM if out of memory.  -ENOMEM is only possible if
 *	   @gfp_mask doesn't include %__GFP_DIRECT_RECLAIM.
 */
static inline int bio_crypt_clone(struct bio *dst, struct bio *src,
				  gfp_t gfp_mask)
{
	if (bio_has_crypt_ctx(src))
		return __bio_crypt_clone(dst, src, gfp_mask);
	return 0;
}

#endif /* __LINUX_BLK_CRYPTO_H */