summaryrefslogtreecommitdiff
path: root/fs/xfs/scrub/xfarray.c
blob: 17c982a4821d47db929eb9a1f5911fd0c7e02cbb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Copyright (C) 2021-2023 Oracle.  All Rights Reserved.
 * Author: Darrick J. Wong <djwong@kernel.org>
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "scrub/xfile.h"
#include "scrub/xfarray.h"
#include "scrub/scrub.h"
#include "scrub/trace.h"

/*
 * Large Arrays of Fixed-Size Records
 * ==================================
 *
 * This memory array uses an xfile (which itself is a shmem file) to store
 * large numbers of fixed-size records in memory that can be paged out.  This
 * puts less stress on the memory reclaim algorithms during an online repair
 * because we don't have to pin so much memory.  However, array access is less
 * direct than would be in a regular memory array.  Access to the array is
 * performed via indexed load and store methods, and an append method is
 * provided for convenience.  Array elements can be unset, which sets them to
 * all zeroes.  Unset entries are skipped during iteration, though direct loads
 * will return a zeroed buffer.  Callers are responsible for concurrency
 * control.
 */

/*
 * Pointer to scratch space.  Because we can't access the xfile data directly,
 * we allocate a small amount of memory on the end of the xfarray structure to
 * buffer array items when we need space to store values temporarily.
 */
static inline void *xfarray_scratch(struct xfarray *array)
{
	return (array + 1);
}

/* Compute array index given an xfile offset. */
static xfarray_idx_t
xfarray_idx(
	struct xfarray	*array,
	loff_t		pos)
{
	if (array->obj_size_log >= 0)
		return (xfarray_idx_t)pos >> array->obj_size_log;

	return div_u64((xfarray_idx_t)pos, array->obj_size);
}

/* Compute xfile offset of array element. */
static inline loff_t xfarray_pos(struct xfarray *array, xfarray_idx_t idx)
{
	if (array->obj_size_log >= 0)
		return idx << array->obj_size_log;

	return idx * array->obj_size;
}

/*
 * Initialize a big memory array.  Array records cannot be larger than a
 * page, and the array cannot span more bytes than the page cache supports.
 * If @required_capacity is nonzero, the maximum array size will be set to this
 * quantity and the array creation will fail if the underlying storage cannot
 * support that many records.
 */
int
xfarray_create(
	const char		*description,
	unsigned long long	required_capacity,
	size_t			obj_size,
	struct xfarray		**arrayp)
{
	struct xfarray		*array;
	struct xfile		*xfile;
	int			error;

	ASSERT(obj_size < PAGE_SIZE);

	error = xfile_create(description, 0, &xfile);
	if (error)
		return error;

	error = -ENOMEM;
	array = kzalloc(sizeof(struct xfarray) + obj_size, XCHK_GFP_FLAGS);
	if (!array)
		goto out_xfile;

	array->xfile = xfile;
	array->obj_size = obj_size;

	if (is_power_of_2(obj_size))
		array->obj_size_log = ilog2(obj_size);
	else
		array->obj_size_log = -1;

	array->max_nr = xfarray_idx(array, MAX_LFS_FILESIZE);
	trace_xfarray_create(array, required_capacity);

	if (required_capacity > 0) {
		if (array->max_nr < required_capacity) {
			error = -ENOMEM;
			goto out_xfarray;
		}
		array->max_nr = required_capacity;
	}

	*arrayp = array;
	return 0;

out_xfarray:
	kfree(array);
out_xfile:
	xfile_destroy(xfile);
	return error;
}

/* Destroy the array. */
void
xfarray_destroy(
	struct xfarray	*array)
{
	xfile_destroy(array->xfile);
	kfree(array);
}

/* Load an element from the array. */
int
xfarray_load(
	struct xfarray	*array,
	xfarray_idx_t	idx,
	void		*ptr)
{
	if (idx >= array->nr)
		return -ENODATA;

	return xfile_load(array->xfile, ptr, array->obj_size,
			xfarray_pos(array, idx));
}

/* Is this array element potentially unset? */
static inline bool
xfarray_is_unset(
	struct xfarray	*array,
	loff_t		pos)
{
	void		*temp = xfarray_scratch(array);
	int		error;

	if (array->unset_slots == 0)
		return false;

	error = xfile_load(array->xfile, temp, array->obj_size, pos);
	if (!error && xfarray_element_is_null(array, temp))
		return true;

	return false;
}

/*
 * Unset an array element.  If @idx is the last element in the array, the
 * array will be truncated.  Otherwise, the entry will be zeroed.
 */
int
xfarray_unset(
	struct xfarray	*array,
	xfarray_idx_t	idx)
{
	void		*temp = xfarray_scratch(array);
	loff_t		pos = xfarray_pos(array, idx);
	int		error;

	if (idx >= array->nr)
		return -ENODATA;

	if (idx == array->nr - 1) {
		array->nr--;
		return 0;
	}

	if (xfarray_is_unset(array, pos))
		return 0;

	memset(temp, 0, array->obj_size);
	error = xfile_store(array->xfile, temp, array->obj_size, pos);
	if (error)
		return error;

	array->unset_slots++;
	return 0;
}

/*
 * Store an element in the array.  The element must not be completely zeroed,
 * because those are considered unset sparse elements.
 */
int
xfarray_store(
	struct xfarray	*array,
	xfarray_idx_t	idx,
	const void	*ptr)
{
	int		ret;

	if (idx >= array->max_nr)
		return -EFBIG;

	ASSERT(!xfarray_element_is_null(array, ptr));

	ret = xfile_store(array->xfile, ptr, array->obj_size,
			xfarray_pos(array, idx));
	if (ret)
		return ret;

	array->nr = max(array->nr, idx + 1);
	return 0;
}

/* Is this array element NULL? */
bool
xfarray_element_is_null(
	struct xfarray	*array,
	const void	*ptr)
{
	return !memchr_inv(ptr, 0, array->obj_size);
}

/*
 * Store an element anywhere in the array that is unset.  If there are no
 * unset slots, append the element to the array.
 */
int
xfarray_store_anywhere(
	struct xfarray	*array,
	const void	*ptr)
{
	void		*temp = xfarray_scratch(array);
	loff_t		endpos = xfarray_pos(array, array->nr);
	loff_t		pos;
	int		error;

	/* Find an unset slot to put it in. */
	for (pos = 0;
	     pos < endpos && array->unset_slots > 0;
	     pos += array->obj_size) {
		error = xfile_load(array->xfile, temp, array->obj_size,
				pos);
		if (error || !xfarray_element_is_null(array, temp))
			continue;

		error = xfile_store(array->xfile, ptr, array->obj_size,
				pos);
		if (error)
			return error;

		array->unset_slots--;
		return 0;
	}

	/* No unset slots found; attach it on the end. */
	array->unset_slots = 0;
	return xfarray_append(array, ptr);
}

/* Return length of array. */
uint64_t
xfarray_length(
	struct xfarray	*array)
{
	return array->nr;
}

/*
 * Decide which array item we're going to read as part of an _iter_get.
 * @cur is the array index, and @pos is the file offset of that array index in
 * the backing xfile.  Returns ENODATA if we reach the end of the records.
 *
 * Reading from a hole in a sparse xfile causes page instantiation, so for
 * iterating a (possibly sparse) array we need to figure out if the cursor is
 * pointing at a totally uninitialized hole and move the cursor up if
 * necessary.
 */
static inline int
xfarray_find_data(
	struct xfarray	*array,
	xfarray_idx_t	*cur,
	loff_t		*pos)
{
	unsigned int	pgoff = offset_in_page(*pos);
	loff_t		end_pos = *pos + array->obj_size - 1;
	loff_t		new_pos;

	/*
	 * If the current array record is not adjacent to a page boundary, we
	 * are in the middle of the page.  We do not need to move the cursor.
	 */
	if (pgoff != 0 && pgoff + array->obj_size - 1 < PAGE_SIZE)
		return 0;

	/*
	 * Call SEEK_DATA on the last byte in the record we're about to read.
	 * If the record ends at (or crosses) the end of a page then we know
	 * that the first byte of the record is backed by pages and don't need
	 * to query it.  If instead the record begins at the start of the page
	 * then we know that querying the last byte is just as good as querying
	 * the first byte, since records cannot be larger than a page.
	 *
	 * If the call returns the same file offset, we know this record is
	 * backed by real pages.  We do not need to move the cursor.
	 */
	new_pos = xfile_seek_data(array->xfile, end_pos);
	if (new_pos == -ENXIO)
		return -ENODATA;
	if (new_pos < 0)
		return new_pos;
	if (new_pos == end_pos)
		return 0;

	/*
	 * Otherwise, SEEK_DATA told us how far up to move the file pointer to
	 * find more data.  Move the array index to the first record past the
	 * byte offset we were given.
	 */
	new_pos = roundup_64(new_pos, array->obj_size);
	*cur = xfarray_idx(array, new_pos);
	*pos = xfarray_pos(array, *cur);
	return 0;
}

/*
 * Starting at *idx, fetch the next non-null array entry and advance the index
 * to set up the next _load_next call.  Returns ENODATA if we reach the end of
 * the array.  Callers must set @*idx to XFARRAY_CURSOR_INIT before the first
 * call to this function.
 */
int
xfarray_load_next(
	struct xfarray	*array,
	xfarray_idx_t	*idx,
	void		*rec)
{
	xfarray_idx_t	cur = *idx;
	loff_t		pos = xfarray_pos(array, cur);
	int		error;

	do {
		if (cur >= array->nr)
			return -ENODATA;

		/*
		 * Ask the backing store for the location of next possible
		 * written record, then retrieve that record.
		 */
		error = xfarray_find_data(array, &cur, &pos);
		if (error)
			return error;
		error = xfarray_load(array, cur, rec);
		if (error)
			return error;

		cur++;
		pos += array->obj_size;
	} while (xfarray_element_is_null(array, rec));

	*idx = cur;
	return 0;
}

/* Sorting functions */

#ifdef DEBUG
# define xfarray_sort_bump_loads(si)	do { (si)->loads++; } while (0)
# define xfarray_sort_bump_stores(si)	do { (si)->stores++; } while (0)
# define xfarray_sort_bump_compares(si)	do { (si)->compares++; } while (0)
# define xfarray_sort_bump_heapsorts(si) do { (si)->heapsorts++; } while (0)
#else
# define xfarray_sort_bump_loads(si)
# define xfarray_sort_bump_stores(si)
# define xfarray_sort_bump_compares(si)
# define xfarray_sort_bump_heapsorts(si)
#endif /* DEBUG */

/* Load an array element for sorting. */
static inline int
xfarray_sort_load(
	struct xfarray_sortinfo	*si,
	xfarray_idx_t		idx,
	void			*ptr)
{
	xfarray_sort_bump_loads(si);
	return xfarray_load(si->array, idx, ptr);
}

/* Store an array element for sorting. */
static inline int
xfarray_sort_store(
	struct xfarray_sortinfo	*si,
	xfarray_idx_t		idx,
	void			*ptr)
{
	xfarray_sort_bump_stores(si);
	return xfarray_store(si->array, idx, ptr);
}

/* Compare an array element for sorting. */
static inline int
xfarray_sort_cmp(
	struct xfarray_sortinfo	*si,
	const void		*a,
	const void		*b)
{
	xfarray_sort_bump_compares(si);
	return si->cmp_fn(a, b);
}

/* Return a pointer to the low index stack for quicksort partitioning. */
static inline xfarray_idx_t *xfarray_sortinfo_lo(struct xfarray_sortinfo *si)
{
	return (xfarray_idx_t *)(si + 1);
}

/* Return a pointer to the high index stack for quicksort partitioning. */
static inline xfarray_idx_t *xfarray_sortinfo_hi(struct xfarray_sortinfo *si)
{
	return xfarray_sortinfo_lo(si) + si->max_stack_depth;
}

/* Size of each element in the quicksort pivot array. */
static inline size_t
xfarray_pivot_rec_sz(
	struct xfarray		*array)
{
	return round_up(array->obj_size, 8) + sizeof(xfarray_idx_t);
}

/* Allocate memory to handle the sort. */
static inline int
xfarray_sortinfo_alloc(
	struct xfarray		*array,
	xfarray_cmp_fn		cmp_fn,
	unsigned int		flags,
	struct xfarray_sortinfo	**infop)
{
	struct xfarray_sortinfo	*si;
	size_t			nr_bytes = sizeof(struct xfarray_sortinfo);
	size_t			pivot_rec_sz = xfarray_pivot_rec_sz(array);
	int			max_stack_depth;

	/*
	 * The median-of-nine pivot algorithm doesn't work if a subset has
	 * fewer than 9 items.  Make sure the in-memory sort will always take
	 * over for subsets where this wouldn't be the case.
	 */
	BUILD_BUG_ON(XFARRAY_QSORT_PIVOT_NR >= XFARRAY_ISORT_NR);

	/*
	 * Tail-call recursion during the partitioning phase means that
	 * quicksort will never recurse more than log2(nr) times.  We need one
	 * extra level of stack to hold the initial parameters.  In-memory
	 * sort will always take care of the last few levels of recursion for
	 * us, so we can reduce the stack depth by that much.
	 */
	max_stack_depth = ilog2(array->nr) + 1 - (XFARRAY_ISORT_SHIFT - 1);
	if (max_stack_depth < 1)
		max_stack_depth = 1;

	/* Each level of quicksort uses a lo and a hi index */
	nr_bytes += max_stack_depth * sizeof(xfarray_idx_t) * 2;

	/* Scratchpad for in-memory sort, or finding the pivot */
	nr_bytes += max_t(size_t,
			(XFARRAY_QSORT_PIVOT_NR + 1) * pivot_rec_sz,
			XFARRAY_ISORT_NR * array->obj_size);

	si = kvzalloc(nr_bytes, XCHK_GFP_FLAGS);
	if (!si)
		return -ENOMEM;

	si->array = array;
	si->cmp_fn = cmp_fn;
	si->flags = flags;
	si->max_stack_depth = max_stack_depth;
	si->max_stack_used = 1;

	xfarray_sortinfo_lo(si)[0] = 0;
	xfarray_sortinfo_hi(si)[0] = array->nr - 1;

	trace_xfarray_sort(si, nr_bytes);
	*infop = si;
	return 0;
}

/* Should this sort be terminated by a fatal signal? */
static inline bool
xfarray_sort_terminated(
	struct xfarray_sortinfo	*si,
	int			*error)
{
	/*
	 * If preemption is disabled, we need to yield to the scheduler every
	 * few seconds so that we don't run afoul of the soft lockup watchdog
	 * or RCU stall detector.
	 */
	cond_resched();

	if ((si->flags & XFARRAY_SORT_KILLABLE) &&
	    fatal_signal_pending(current)) {
		if (*error == 0)
			*error = -EINTR;
		return true;
	}
	return false;
}

/* Do we want an in-memory sort? */
static inline bool
xfarray_want_isort(
	struct xfarray_sortinfo *si,
	xfarray_idx_t		start,
	xfarray_idx_t		end)
{
	/*
	 * For array subsets that fit in the scratchpad, it's much faster to
	 * use the kernel's heapsort than quicksort's stack machine.
	 */
	return (end - start) < XFARRAY_ISORT_NR;
}

/* Return the scratch space within the sortinfo structure. */
static inline void *xfarray_sortinfo_isort_scratch(struct xfarray_sortinfo *si)
{
	return xfarray_sortinfo_hi(si) + si->max_stack_depth;
}

/*
 * Sort a small number of array records using scratchpad memory.  The records
 * need not be contiguous in the xfile's memory pages.
 */
STATIC int
xfarray_isort(
	struct xfarray_sortinfo	*si,
	xfarray_idx_t		lo,
	xfarray_idx_t		hi)
{
	void			*scratch = xfarray_sortinfo_isort_scratch(si);
	loff_t			lo_pos = xfarray_pos(si->array, lo);
	loff_t			len = xfarray_pos(si->array, hi - lo + 1);
	int			error;

	trace_xfarray_isort(si, lo, hi);

	xfarray_sort_bump_loads(si);
	error = xfile_load(si->array->xfile, scratch, len, lo_pos);
	if (error)
		return error;

	xfarray_sort_bump_heapsorts(si);
	sort(scratch, hi - lo + 1, si->array->obj_size, si->cmp_fn, NULL);

	xfarray_sort_bump_stores(si);
	return xfile_store(si->array->xfile, scratch, len, lo_pos);
}

/*
 * Sort the records from lo to hi (inclusive) if they are all backed by the
 * same memory folio.  Returns 1 if it sorted, 0 if it did not, or a negative
 * errno.
 */
STATIC int
xfarray_foliosort(
	struct xfarray_sortinfo	*si,
	xfarray_idx_t		lo,
	xfarray_idx_t		hi)
{
	struct folio		*folio;
	void			*startp;
	loff_t			lo_pos = xfarray_pos(si->array, lo);
	uint64_t		len = xfarray_pos(si->array, hi - lo + 1);

	/* No single folio could back this many records. */
	if (len > XFILE_MAX_FOLIO_SIZE)
		return 0;

	xfarray_sort_bump_loads(si);
	folio = xfile_get_folio(si->array->xfile, lo_pos, len, XFILE_ALLOC);
	if (IS_ERR(folio))
		return PTR_ERR(folio);
	if (!folio)
		return 0;

	trace_xfarray_foliosort(si, lo, hi);

	xfarray_sort_bump_heapsorts(si);
	startp = folio_address(folio) + offset_in_folio(folio, lo_pos);
	sort(startp, hi - lo + 1, si->array->obj_size, si->cmp_fn, NULL);

	xfarray_sort_bump_stores(si);
	xfile_put_folio(si->array->xfile, folio);
	return 1;
}

/* Return a pointer to the xfarray pivot record within the sortinfo struct. */
static inline void *xfarray_sortinfo_pivot(struct xfarray_sortinfo *si)
{
	return xfarray_sortinfo_hi(si) + si->max_stack_depth;
}

/* Return a pointer to the start of the pivot array. */
static inline void *
xfarray_sortinfo_pivot_array(
	struct xfarray_sortinfo	*si)
{
	return xfarray_sortinfo_pivot(si) + si->array->obj_size;
}

/* The xfarray record is stored at the start of each pivot array element. */
static inline void *
xfarray_pivot_array_rec(
	void			*pa,
	size_t			pa_recsz,
	unsigned int		pa_idx)
{
	return pa + (pa_recsz * pa_idx);
}

/* The xfarray index is stored at the end of each pivot array element. */
static inline xfarray_idx_t *
xfarray_pivot_array_idx(
	void			*pa,
	size_t			pa_recsz,
	unsigned int		pa_idx)
{
	return xfarray_pivot_array_rec(pa, pa_recsz, pa_idx + 1) -
			sizeof(xfarray_idx_t);
}

/*
 * Find a pivot value for quicksort partitioning, swap it with a[lo], and save
 * the cached pivot record for the next step.
 *
 * Load evenly-spaced records within the given range into memory, sort them,
 * and choose the pivot from the median record.  Using multiple points will
 * improve the quality of the pivot selection, and hopefully avoid the worst
 * quicksort behavior, since our array values are nearly always evenly sorted.
 */
STATIC int
xfarray_qsort_pivot(
	struct xfarray_sortinfo	*si,
	xfarray_idx_t		lo,
	xfarray_idx_t		hi)
{
	void			*pivot = xfarray_sortinfo_pivot(si);
	void			*parray = xfarray_sortinfo_pivot_array(si);
	void			*recp;
	xfarray_idx_t		*idxp;
	xfarray_idx_t		step = (hi - lo) / (XFARRAY_QSORT_PIVOT_NR - 1);
	size_t			pivot_rec_sz = xfarray_pivot_rec_sz(si->array);
	int			i, j;
	int			error;

	ASSERT(step > 0);

	/*
	 * Load the xfarray indexes of the records we intend to sample into the
	 * pivot array.
	 */
	idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz, 0);
	*idxp = lo;
	for (i = 1; i < XFARRAY_QSORT_PIVOT_NR - 1; i++) {
		idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz, i);
		*idxp = lo + (i * step);
	}
	idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz,
			XFARRAY_QSORT_PIVOT_NR - 1);
	*idxp = hi;

	/* Load the selected xfarray records into the pivot array. */
	for (i = 0; i < XFARRAY_QSORT_PIVOT_NR; i++) {
		xfarray_idx_t	idx;

		recp = xfarray_pivot_array_rec(parray, pivot_rec_sz, i);
		idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz, i);

		/* No unset records; load directly into the array. */
		if (likely(si->array->unset_slots == 0)) {
			error = xfarray_sort_load(si, *idxp, recp);
			if (error)
				return error;
			continue;
		}

		/*
		 * Load non-null records into the scratchpad without changing
		 * the xfarray_idx_t in the pivot array.
		 */
		idx = *idxp;
		xfarray_sort_bump_loads(si);
		error = xfarray_load_next(si->array, &idx, recp);
		if (error)
			return error;
	}

	xfarray_sort_bump_heapsorts(si);
	sort(parray, XFARRAY_QSORT_PIVOT_NR, pivot_rec_sz, si->cmp_fn, NULL);

	/*
	 * We sorted the pivot array records (which includes the xfarray
	 * indices) in xfarray record order.  The median element of the pivot
	 * array contains the xfarray record that we will use as the pivot.
	 * Copy that xfarray record to the designated space.
	 */
	recp = xfarray_pivot_array_rec(parray, pivot_rec_sz,
			XFARRAY_QSORT_PIVOT_NR / 2);
	memcpy(pivot, recp, si->array->obj_size);

	/* If the pivot record we chose was already in a[lo] then we're done. */
	idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz,
			XFARRAY_QSORT_PIVOT_NR / 2);
	if (*idxp == lo)
		return 0;

	/*
	 * Find the cached copy of a[lo] in the pivot array so that we can swap
	 * a[lo] and a[pivot].
	 */
	for (i = 0, j = -1; i < XFARRAY_QSORT_PIVOT_NR; i++) {
		idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz, i);
		if (*idxp == lo)
			j = i;
	}
	if (j < 0) {
		ASSERT(j >= 0);
		return -EFSCORRUPTED;
	}

	/* Swap a[lo] and a[pivot]. */
	error = xfarray_sort_store(si, lo, pivot);
	if (error)
		return error;

	recp = xfarray_pivot_array_rec(parray, pivot_rec_sz, j);
	idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz,
			XFARRAY_QSORT_PIVOT_NR / 2);
	return xfarray_sort_store(si, *idxp, recp);
}

/*
 * Set up the pointers for the next iteration.  We push onto the stack all of
 * the unsorted values between a[lo + 1] and a[end[i]], and we tweak the
 * current stack frame to point to the unsorted values between a[beg[i]] and
 * a[lo] so that those values will be sorted when we pop the stack.
 */
static inline int
xfarray_qsort_push(
	struct xfarray_sortinfo	*si,
	xfarray_idx_t		*si_lo,
	xfarray_idx_t		*si_hi,
	xfarray_idx_t		lo,
	xfarray_idx_t		hi)
{
	/* Check for stack overflows */
	if (si->stack_depth >= si->max_stack_depth - 1) {
		ASSERT(si->stack_depth < si->max_stack_depth - 1);
		return -EFSCORRUPTED;
	}

	si->max_stack_used = max_t(uint8_t, si->max_stack_used,
					    si->stack_depth + 2);

	si_lo[si->stack_depth + 1] = lo + 1;
	si_hi[si->stack_depth + 1] = si_hi[si->stack_depth];
	si_hi[si->stack_depth++] = lo - 1;

	/*
	 * Always start with the smaller of the two partitions to keep the
	 * amount of recursion in check.
	 */
	if (si_hi[si->stack_depth]     - si_lo[si->stack_depth] >
	    si_hi[si->stack_depth - 1] - si_lo[si->stack_depth - 1]) {
		swap(si_lo[si->stack_depth], si_lo[si->stack_depth - 1]);
		swap(si_hi[si->stack_depth], si_hi[si->stack_depth - 1]);
	}

	return 0;
}

static inline void
xfarray_sort_scan_done(
	struct xfarray_sortinfo	*si)
{
	if (si->folio)
		xfile_put_folio(si->array->xfile, si->folio);
	si->folio = NULL;
}

/*
 * Cache the folio backing the start of the given array element.  If the array
 * element is contained entirely within the folio, return a pointer to the
 * cached folio.  Otherwise, load the element into the scratchpad and return a
 * pointer to the scratchpad.
 */
static inline int
xfarray_sort_scan(
	struct xfarray_sortinfo	*si,
	xfarray_idx_t		idx,
	void			**ptrp)
{
	loff_t			idx_pos = xfarray_pos(si->array, idx);
	int			error = 0;

	if (xfarray_sort_terminated(si, &error))
		return error;

	trace_xfarray_sort_scan(si, idx);

	/* If the cached folio doesn't cover this index, release it. */
	if (si->folio &&
	    (idx < si->first_folio_idx || idx > si->last_folio_idx))
		xfarray_sort_scan_done(si);

	/* Grab the first folio that backs this array element. */
	if (!si->folio) {
		loff_t		next_pos;

		si->folio = xfile_get_folio(si->array->xfile, idx_pos,
				si->array->obj_size, XFILE_ALLOC);
		if (IS_ERR(si->folio))
			return PTR_ERR(si->folio);

		si->first_folio_idx = xfarray_idx(si->array,
				folio_pos(si->folio) + si->array->obj_size - 1);

		next_pos = folio_pos(si->folio) + folio_size(si->folio);
		si->last_folio_idx = xfarray_idx(si->array, next_pos - 1);
		if (xfarray_pos(si->array, si->last_folio_idx + 1) > next_pos)
			si->last_folio_idx--;

		trace_xfarray_sort_scan(si, idx);
	}

	/*
	 * If this folio still doesn't cover the desired element, it must cross
	 * a folio boundary.  Read into the scratchpad and we're done.
	 */
	if (idx < si->first_folio_idx || idx > si->last_folio_idx) {
		void		*temp = xfarray_scratch(si->array);

		error = xfile_load(si->array->xfile, temp, si->array->obj_size,
				idx_pos);
		if (error)
			return error;

		*ptrp = temp;
		return 0;
	}

	/* Otherwise return a pointer to the array element in the folio. */
	*ptrp = folio_address(si->folio) + offset_in_folio(si->folio, idx_pos);
	return 0;
}

/*
 * Sort the array elements via quicksort.  This implementation incorporates
 * four optimizations discussed in Sedgewick:
 *
 * 1. Use an explicit stack of array indices to store the next array partition
 *    to sort.  This helps us to avoid recursion in the call stack, which is
 *    particularly expensive in the kernel.
 *
 * 2. For arrays with records in arbitrary or user-controlled order, choose the
 *    pivot element using a median-of-nine decision tree.  This reduces the
 *    probability of selecting a bad pivot value which causes worst case
 *    behavior (i.e. partition sizes of 1).
 *
 * 3. The smaller of the two sub-partitions is pushed onto the stack to start
 *    the next level of recursion, and the larger sub-partition replaces the
 *    current stack frame.  This guarantees that we won't need more than
 *    log2(nr) stack space.
 *
 * 4. For small sets, load the records into the scratchpad and run heapsort on
 *    them because that is very fast.  In the author's experience, this yields
 *    a ~10% reduction in runtime.
 *
 *    If a small set is contained entirely within a single xfile memory page,
 *    map the page directly and run heap sort directly on the xfile page
 *    instead of using the load/store interface.  This halves the runtime.
 *
 * 5. This optimization is specific to the implementation.  When converging lo
 *    and hi after selecting a pivot, we will try to retain the xfile memory
 *    page between load calls, which reduces run time by 50%.
 */

/*
 * Due to the use of signed indices, we can only support up to 2^63 records.
 * Files can only grow to 2^63 bytes, so this is not much of a limitation.
 */
#define QSORT_MAX_RECS		(1ULL << 63)

int
xfarray_sort(
	struct xfarray		*array,
	xfarray_cmp_fn		cmp_fn,
	unsigned int		flags)
{
	struct xfarray_sortinfo	*si;
	xfarray_idx_t		*si_lo, *si_hi;
	void			*pivot;
	void			*scratch = xfarray_scratch(array);
	xfarray_idx_t		lo, hi;
	int			error = 0;

	if (array->nr < 2)
		return 0;
	if (array->nr >= QSORT_MAX_RECS)
		return -E2BIG;

	error = xfarray_sortinfo_alloc(array, cmp_fn, flags, &si);
	if (error)
		return error;
	si_lo = xfarray_sortinfo_lo(si);
	si_hi = xfarray_sortinfo_hi(si);
	pivot = xfarray_sortinfo_pivot(si);

	while (si->stack_depth >= 0) {
		int		ret;

		lo = si_lo[si->stack_depth];
		hi = si_hi[si->stack_depth];

		trace_xfarray_qsort(si, lo, hi);

		/* Nothing left in this partition to sort; pop stack. */
		if (lo >= hi) {
			si->stack_depth--;
			continue;
		}

		/*
		 * If directly mapping the folio and sorting can solve our
		 * problems, we're done.
		 */
		ret = xfarray_foliosort(si, lo, hi);
		if (ret < 0)
			goto out_free;
		if (ret == 1) {
			si->stack_depth--;
			continue;
		}

		/* If insertion sort can solve our problems, we're done. */
		if (xfarray_want_isort(si, lo, hi)) {
			error = xfarray_isort(si, lo, hi);
			if (error)
				goto out_free;
			si->stack_depth--;
			continue;
		}

		/* Pick a pivot, move it to a[lo] and stash it. */
		error = xfarray_qsort_pivot(si, lo, hi);
		if (error)
			goto out_free;

		/*
		 * Rearrange a[lo..hi] such that everything smaller than the
		 * pivot is on the left side of the range and everything larger
		 * than the pivot is on the right side of the range.
		 */
		while (lo < hi) {
			void	*p;

			/*
			 * Decrement hi until it finds an a[hi] less than the
			 * pivot value.
			 */
			error = xfarray_sort_scan(si, hi, &p);
			if (error)
				goto out_free;
			while (xfarray_sort_cmp(si, p, pivot) >= 0 && lo < hi) {
				hi--;
				error = xfarray_sort_scan(si, hi, &p);
				if (error)
					goto out_free;
			}
			if (p != scratch)
				memcpy(scratch, p, si->array->obj_size);
			xfarray_sort_scan_done(si);
			if (xfarray_sort_terminated(si, &error))
				goto out_free;

			/* Copy that item (a[hi]) to a[lo]. */
			if (lo < hi) {
				error = xfarray_sort_store(si, lo++, scratch);
				if (error)
					goto out_free;
			}

			/*
			 * Increment lo until it finds an a[lo] greater than
			 * the pivot value.
			 */
			error = xfarray_sort_scan(si, lo, &p);
			if (error)
				goto out_free;
			while (xfarray_sort_cmp(si, p, pivot) <= 0 && lo < hi) {
				lo++;
				error = xfarray_sort_scan(si, lo, &p);
				if (error)
					goto out_free;
			}
			if (p != scratch)
				memcpy(scratch, p, si->array->obj_size);
			xfarray_sort_scan_done(si);
			if (xfarray_sort_terminated(si, &error))
				goto out_free;

			/* Copy that item (a[lo]) to a[hi]. */
			if (lo < hi) {
				error = xfarray_sort_store(si, hi--, scratch);
				if (error)
					goto out_free;
			}

			if (xfarray_sort_terminated(si, &error))
				goto out_free;
		}

		/*
		 * Put our pivot value in the correct place at a[lo].  All
		 * values between a[beg[i]] and a[lo - 1] should be less than
		 * the pivot; and all values between a[lo + 1] and a[end[i]-1]
		 * should be greater than the pivot.
		 */
		error = xfarray_sort_store(si, lo, pivot);
		if (error)
			goto out_free;

		/* Set up the stack frame to process the two partitions. */
		error = xfarray_qsort_push(si, si_lo, si_hi, lo, hi);
		if (error)
			goto out_free;

		if (xfarray_sort_terminated(si, &error))
			goto out_free;
	}

out_free:
	trace_xfarray_sort_stats(si, error);
	kvfree(si);
	return error;
}