summaryrefslogtreecommitdiff
path: root/fs/file.c
blob: 92b5f25985d2f75d09022ebbe1e4a6008cd2132d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/*
 *  linux/fs/file.c
 *
 *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
 *
 *  Manage the dynamic fd arrays in the process files_struct.
 */

#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/time.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/file.h>
#include <linux/bitops.h>


/*
 * Allocate an fd array, using kmalloc or vmalloc.
 * Note: the array isn't cleared at allocation time.
 */
struct file ** alloc_fd_array(int num)
{
	struct file **new_fds;
	int size = num * sizeof(struct file *);

	if (size <= PAGE_SIZE)
		new_fds = (struct file **) kmalloc(size, GFP_KERNEL);
	else 
		new_fds = (struct file **) vmalloc(size);
	return new_fds;
}

void free_fd_array(struct file **array, int num)
{
	int size = num * sizeof(struct file *);

	if (!array) {
		printk (KERN_ERR "free_fd_array: array = 0 (num = %d)\n", num);
		return;
	}

	if (num <= NR_OPEN_DEFAULT) /* Don't free the embedded fd array! */
		return;
	else if (size <= PAGE_SIZE)
		kfree(array);
	else
		vfree(array);
}

/*
 * Expand the fd array in the files_struct.  Called with the files
 * spinlock held for write.
 */

static int expand_fd_array(struct files_struct *files, int nr)
	__releases(files->file_lock)
	__acquires(files->file_lock)
{
	struct file **new_fds;
	int error, nfds;

	
	error = -EMFILE;
	if (files->max_fds >= NR_OPEN || nr >= NR_OPEN)
		goto out;

	nfds = files->max_fds;
	spin_unlock(&files->file_lock);

	/* 
	 * Expand to the max in easy steps, and keep expanding it until
	 * we have enough for the requested fd array size. 
	 */

	do {
#if NR_OPEN_DEFAULT < 256
		if (nfds < 256)
			nfds = 256;
		else 
#endif
		if (nfds < (PAGE_SIZE / sizeof(struct file *)))
			nfds = PAGE_SIZE / sizeof(struct file *);
		else {
			nfds = nfds * 2;
			if (nfds > NR_OPEN)
				nfds = NR_OPEN;
		}
	} while (nfds <= nr);

	error = -ENOMEM;
	new_fds = alloc_fd_array(nfds);
	spin_lock(&files->file_lock);
	if (!new_fds)
		goto out;

	/* Copy the existing array and install the new pointer */

	if (nfds > files->max_fds) {
		struct file **old_fds;
		int i;
		
		old_fds = xchg(&files->fd, new_fds);
		i = xchg(&files->max_fds, nfds);

		/* Don't copy/clear the array if we are creating a new
		   fd array for fork() */
		if (i) {
			memcpy(new_fds, old_fds, i * sizeof(struct file *));
			/* clear the remainder of the array */
			memset(&new_fds[i], 0,
			       (nfds-i) * sizeof(struct file *)); 

			spin_unlock(&files->file_lock);
			free_fd_array(old_fds, i);
			spin_lock(&files->file_lock);
		}
	} else {
		/* Somebody expanded the array while we slept ... */
		spin_unlock(&files->file_lock);
		free_fd_array(new_fds, nfds);
		spin_lock(&files->file_lock);
	}
	error = 0;
out:
	return error;
}

/*
 * Allocate an fdset array, using kmalloc or vmalloc.
 * Note: the array isn't cleared at allocation time.
 */
fd_set * alloc_fdset(int num)
{
	fd_set *new_fdset;
	int size = num / 8;

	if (size <= PAGE_SIZE)
		new_fdset = (fd_set *) kmalloc(size, GFP_KERNEL);
	else
		new_fdset = (fd_set *) vmalloc(size);
	return new_fdset;
}

void free_fdset(fd_set *array, int num)
{
	int size = num / 8;

	if (num <= __FD_SETSIZE) /* Don't free an embedded fdset */
		return;
	else if (size <= PAGE_SIZE)
		kfree(array);
	else
		vfree(array);
}

/*
 * Expand the fdset in the files_struct.  Called with the files spinlock
 * held for write.
 */
static int expand_fdset(struct files_struct *files, int nr)
	__releases(file->file_lock)
	__acquires(file->file_lock)
{
	fd_set *new_openset = NULL, *new_execset = NULL;
	int error, nfds = 0;

	error = -EMFILE;
	if (files->max_fdset >= NR_OPEN || nr >= NR_OPEN)
		goto out;

	nfds = files->max_fdset;
	spin_unlock(&files->file_lock);

	/* Expand to the max in easy steps */
	do {
		if (nfds < (PAGE_SIZE * 8))
			nfds = PAGE_SIZE * 8;
		else {
			nfds = nfds * 2;
			if (nfds > NR_OPEN)
				nfds = NR_OPEN;
		}
	} while (nfds <= nr);

	error = -ENOMEM;
	new_openset = alloc_fdset(nfds);
	new_execset = alloc_fdset(nfds);
	spin_lock(&files->file_lock);
	if (!new_openset || !new_execset)
		goto out;

	error = 0;
	
	/* Copy the existing tables and install the new pointers */
	if (nfds > files->max_fdset) {
		int i = files->max_fdset / (sizeof(unsigned long) * 8);
		int count = (nfds - files->max_fdset) / 8;
		
		/* 
		 * Don't copy the entire array if the current fdset is
		 * not yet initialised.  
		 */
		if (i) {
			memcpy (new_openset, files->open_fds, files->max_fdset/8);
			memcpy (new_execset, files->close_on_exec, files->max_fdset/8);
			memset (&new_openset->fds_bits[i], 0, count);
			memset (&new_execset->fds_bits[i], 0, count);
		}
		
		nfds = xchg(&files->max_fdset, nfds);
		new_openset = xchg(&files->open_fds, new_openset);
		new_execset = xchg(&files->close_on_exec, new_execset);
		spin_unlock(&files->file_lock);
		free_fdset (new_openset, nfds);
		free_fdset (new_execset, nfds);
		spin_lock(&files->file_lock);
		return 0;
	} 
	/* Somebody expanded the array while we slept ... */

out:
	spin_unlock(&files->file_lock);
	if (new_openset)
		free_fdset(new_openset, nfds);
	if (new_execset)
		free_fdset(new_execset, nfds);
	spin_lock(&files->file_lock);
	return error;
}

/*
 * Expand files.
 * Return <0 on error; 0 nothing done; 1 files expanded, we may have blocked.
 * Should be called with the files->file_lock spinlock held for write.
 */
int expand_files(struct files_struct *files, int nr)
{
	int err, expand = 0;

	if (nr >= files->max_fdset) {
		expand = 1;
		if ((err = expand_fdset(files, nr)))
			goto out;
	}
	if (nr >= files->max_fds) {
		expand = 1;
		if ((err = expand_fd_array(files, nr)))
			goto out;
	}
	err = expand;
out:
	return err;
}