summaryrefslogtreecommitdiff
path: root/fs/btrfs/fiemap.c
blob: 8f95f3e44e99e23c9acea9c27f97f79e09631d05 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
// SPDX-License-Identifier: GPL-2.0

#include "backref.h"
#include "btrfs_inode.h"
#include "fiemap.h"
#include "file.h"
#include "file-item.h"

struct btrfs_fiemap_entry {
	u64 offset;
	u64 phys;
	u64 len;
	u32 flags;
};

/*
 * Indicate the caller of emit_fiemap_extent() that it needs to unlock the file
 * range from the inode's io tree, unlock the subvolume tree search path, flush
 * the fiemap cache and relock the file range and research the subvolume tree.
 * The value here is something negative that can't be confused with a valid
 * errno value and different from 1 because that's also a return value from
 * fiemap_fill_next_extent() and also it's often used to mean some btree search
 * did not find a key, so make it some distinct negative value.
 */
#define BTRFS_FIEMAP_FLUSH_CACHE (-(MAX_ERRNO + 1))

/*
 * Used to:
 *
 * - Cache the next entry to be emitted to the fiemap buffer, so that we can
 *   merge extents that are contiguous and can be grouped as a single one;
 *
 * - Store extents ready to be written to the fiemap buffer in an intermediary
 *   buffer. This intermediary buffer is to ensure that in case the fiemap
 *   buffer is memory mapped to the fiemap target file, we don't deadlock
 *   during btrfs_page_mkwrite(). This is because during fiemap we are locking
 *   an extent range in order to prevent races with delalloc flushing and
 *   ordered extent completion, which is needed in order to reliably detect
 *   delalloc in holes and prealloc extents. And this can lead to a deadlock
 *   if the fiemap buffer is memory mapped to the file we are running fiemap
 *   against (a silly, useless in practice scenario, but possible) because
 *   btrfs_page_mkwrite() will try to lock the same extent range.
 */
struct fiemap_cache {
	/* An array of ready fiemap entries. */
	struct btrfs_fiemap_entry *entries;
	/* Number of entries in the entries array. */
	int entries_size;
	/* Index of the next entry in the entries array to write to. */
	int entries_pos;
	/*
	 * Once the entries array is full, this indicates what's the offset for
	 * the next file extent item we must search for in the inode's subvolume
	 * tree after unlocking the extent range in the inode's io tree and
	 * releasing the search path.
	 */
	u64 next_search_offset;
	/*
	 * This matches struct fiemap_extent_info::fi_mapped_extents, we use it
	 * to count ourselves emitted extents and stop instead of relying on
	 * fiemap_fill_next_extent() because we buffer ready fiemap entries at
	 * the @entries array, and we want to stop as soon as we hit the max
	 * amount of extents to map, not just to save time but also to make the
	 * logic at extent_fiemap() simpler.
	 */
	unsigned int extents_mapped;
	/* Fields for the cached extent (unsubmitted, not ready, extent). */
	u64 offset;
	u64 phys;
	u64 len;
	u32 flags;
	bool cached;
};

static int flush_fiemap_cache(struct fiemap_extent_info *fieinfo,
			      struct fiemap_cache *cache)
{
	for (int i = 0; i < cache->entries_pos; i++) {
		struct btrfs_fiemap_entry *entry = &cache->entries[i];
		int ret;

		ret = fiemap_fill_next_extent(fieinfo, entry->offset,
					      entry->phys, entry->len,
					      entry->flags);
		/*
		 * Ignore 1 (reached max entries) because we keep track of that
		 * ourselves in emit_fiemap_extent().
		 */
		if (ret < 0)
			return ret;
	}
	cache->entries_pos = 0;

	return 0;
}

/*
 * Helper to submit fiemap extent.
 *
 * Will try to merge current fiemap extent specified by @offset, @phys,
 * @len and @flags with cached one.
 * And only when we fails to merge, cached one will be submitted as
 * fiemap extent.
 *
 * Return value is the same as fiemap_fill_next_extent().
 */
static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
				struct fiemap_cache *cache,
				u64 offset, u64 phys, u64 len, u32 flags)
{
	struct btrfs_fiemap_entry *entry;
	u64 cache_end;

	/* Set at the end of extent_fiemap(). */
	ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);

	if (!cache->cached)
		goto assign;

	/*
	 * When iterating the extents of the inode, at extent_fiemap(), we may
	 * find an extent that starts at an offset behind the end offset of the
	 * previous extent we processed. This happens if fiemap is called
	 * without FIEMAP_FLAG_SYNC and there are ordered extents completing
	 * after we had to unlock the file range, release the search path, emit
	 * the fiemap extents stored in the buffer (cache->entries array) and
	 * the lock the remainder of the range and re-search the btree.
	 *
	 * For example we are in leaf X processing its last item, which is the
	 * file extent item for file range [512K, 1M[, and after
	 * btrfs_next_leaf() releases the path, there's an ordered extent that
	 * completes for the file range [768K, 2M[, and that results in trimming
	 * the file extent item so that it now corresponds to the file range
	 * [512K, 768K[ and a new file extent item is inserted for the file
	 * range [768K, 2M[, which may end up as the last item of leaf X or as
	 * the first item of the next leaf - in either case btrfs_next_leaf()
	 * will leave us with a path pointing to the new extent item, for the
	 * file range [768K, 2M[, since that's the first key that follows the
	 * last one we processed. So in order not to report overlapping extents
	 * to user space, we trim the length of the previously cached extent and
	 * emit it.
	 *
	 * Upon calling btrfs_next_leaf() we may also find an extent with an
	 * offset smaller than or equals to cache->offset, and this happens
	 * when we had a hole or prealloc extent with several delalloc ranges in
	 * it, but after btrfs_next_leaf() released the path, delalloc was
	 * flushed and the resulting ordered extents were completed, so we can
	 * now have found a file extent item for an offset that is smaller than
	 * or equals to what we have in cache->offset. We deal with this as
	 * described below.
	 */
	cache_end = cache->offset + cache->len;
	if (cache_end > offset) {
		if (offset == cache->offset) {
			/*
			 * We cached a dealloc range (found in the io tree) for
			 * a hole or prealloc extent and we have now found a
			 * file extent item for the same offset. What we have
			 * now is more recent and up to date, so discard what
			 * we had in the cache and use what we have just found.
			 */
			goto assign;
		} else if (offset > cache->offset) {
			/*
			 * The extent range we previously found ends after the
			 * offset of the file extent item we found and that
			 * offset falls somewhere in the middle of that previous
			 * extent range. So adjust the range we previously found
			 * to end at the offset of the file extent item we have
			 * just found, since this extent is more up to date.
			 * Emit that adjusted range and cache the file extent
			 * item we have just found. This corresponds to the case
			 * where a previously found file extent item was split
			 * due to an ordered extent completing.
			 */
			cache->len = offset - cache->offset;
			goto emit;
		} else {
			const u64 range_end = offset + len;

			/*
			 * The offset of the file extent item we have just found
			 * is behind the cached offset. This means we were
			 * processing a hole or prealloc extent for which we
			 * have found delalloc ranges (in the io tree), so what
			 * we have in the cache is the last delalloc range we
			 * found while the file extent item we found can be
			 * either for a whole delalloc range we previously
			 * emmitted or only a part of that range.
			 *
			 * We have two cases here:
			 *
			 * 1) The file extent item's range ends at or behind the
			 *    cached extent's end. In this case just ignore the
			 *    current file extent item because we don't want to
			 *    overlap with previous ranges that may have been
			 *    emmitted already;
			 *
			 * 2) The file extent item starts behind the currently
			 *    cached extent but its end offset goes beyond the
			 *    end offset of the cached extent. We don't want to
			 *    overlap with a previous range that may have been
			 *    emmitted already, so we emit the currently cached
			 *    extent and then partially store the current file
			 *    extent item's range in the cache, for the subrange
			 *    going the cached extent's end to the end of the
			 *    file extent item.
			 */
			if (range_end <= cache_end)
				return 0;

			if (!(flags & (FIEMAP_EXTENT_ENCODED | FIEMAP_EXTENT_DELALLOC)))
				phys += cache_end - offset;

			offset = cache_end;
			len = range_end - cache_end;
			goto emit;
		}
	}

	/*
	 * Only merges fiemap extents if
	 * 1) Their logical addresses are continuous
	 *
	 * 2) Their physical addresses are continuous
	 *    So truly compressed (physical size smaller than logical size)
	 *    extents won't get merged with each other
	 *
	 * 3) Share same flags
	 */
	if (cache->offset + cache->len  == offset &&
	    cache->phys + cache->len == phys  &&
	    cache->flags == flags) {
		cache->len += len;
		return 0;
	}

emit:
	/* Not mergeable, need to submit cached one */

	if (cache->entries_pos == cache->entries_size) {
		/*
		 * We will need to research for the end offset of the last
		 * stored extent and not from the current offset, because after
		 * unlocking the range and releasing the path, if there's a hole
		 * between that end offset and this current offset, a new extent
		 * may have been inserted due to a new write, so we don't want
		 * to miss it.
		 */
		entry = &cache->entries[cache->entries_size - 1];
		cache->next_search_offset = entry->offset + entry->len;
		cache->cached = false;

		return BTRFS_FIEMAP_FLUSH_CACHE;
	}

	entry = &cache->entries[cache->entries_pos];
	entry->offset = cache->offset;
	entry->phys = cache->phys;
	entry->len = cache->len;
	entry->flags = cache->flags;
	cache->entries_pos++;
	cache->extents_mapped++;

	if (cache->extents_mapped == fieinfo->fi_extents_max) {
		cache->cached = false;
		return 1;
	}
assign:
	cache->cached = true;
	cache->offset = offset;
	cache->phys = phys;
	cache->len = len;
	cache->flags = flags;

	return 0;
}

/*
 * Emit last fiemap cache
 *
 * The last fiemap cache may still be cached in the following case:
 * 0		      4k		    8k
 * |<- Fiemap range ->|
 * |<------------  First extent ----------->|
 *
 * In this case, the first extent range will be cached but not emitted.
 * So we must emit it before ending extent_fiemap().
 */
static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
				  struct fiemap_cache *cache)
{
	int ret;

	if (!cache->cached)
		return 0;

	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret > 0)
		ret = 0;
	return ret;
}

static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
{
	struct extent_buffer *clone = path->nodes[0];
	struct btrfs_key key;
	int slot;
	int ret;

	path->slots[0]++;
	if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
		return 0;

	/*
	 * Add a temporary extra ref to an already cloned extent buffer to
	 * prevent btrfs_next_leaf() freeing it, we want to reuse it to avoid
	 * the cost of allocating a new one.
	 */
	ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, &clone->bflags));
	atomic_inc(&clone->refs);

	ret = btrfs_next_leaf(inode->root, path);
	if (ret != 0)
		goto out;

	/*
	 * Don't bother with cloning if there are no more file extent items for
	 * our inode.
	 */
	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY) {
		ret = 1;
		goto out;
	}

	/*
	 * Important to preserve the start field, for the optimizations when
	 * checking if extents are shared (see extent_fiemap()).
	 *
	 * We must set ->start before calling copy_extent_buffer_full().  If we
	 * are on sub-pagesize blocksize, we use ->start to determine the offset
	 * into the folio where our eb exists, and if we update ->start after
	 * the fact then any subsequent reads of the eb may read from a
	 * different offset in the folio than where we originally copied into.
	 */
	clone->start = path->nodes[0]->start;
	/* See the comment at fiemap_search_slot() about why we clone. */
	copy_extent_buffer_full(clone, path->nodes[0]);

	slot = path->slots[0];
	btrfs_release_path(path);
	path->nodes[0] = clone;
	path->slots[0] = slot;
out:
	if (ret)
		free_extent_buffer(clone);

	return ret;
}

/*
 * Search for the first file extent item that starts at a given file offset or
 * the one that starts immediately before that offset.
 * Returns: 0 on success, < 0 on error, 1 if not found.
 */
static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
			      u64 file_offset)
{
	const u64 ino = btrfs_ino(inode);
	struct btrfs_root *root = inode->root;
	struct extent_buffer *clone;
	struct btrfs_key key;
	int slot;
	int ret;

	key.objectid = ino;
	key.type = BTRFS_EXTENT_DATA_KEY;
	key.offset = file_offset;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	if (ret > 0 && path->slots[0] > 0) {
		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
			path->slots[0]--;
	}

	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
		ret = btrfs_next_leaf(root, path);
		if (ret != 0)
			return ret;

		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
			return 1;
	}

	/*
	 * We clone the leaf and use it during fiemap. This is because while
	 * using the leaf we do expensive things like checking if an extent is
	 * shared, which can take a long time. In order to prevent blocking
	 * other tasks for too long, we use a clone of the leaf. We have locked
	 * the file range in the inode's io tree, so we know none of our file
	 * extent items can change. This way we avoid blocking other tasks that
	 * want to insert items for other inodes in the same leaf or b+tree
	 * rebalance operations (triggered for example when someone is trying
	 * to push items into this leaf when trying to insert an item in a
	 * neighbour leaf).
	 * We also need the private clone because holding a read lock on an
	 * extent buffer of the subvolume's b+tree will make lockdep unhappy
	 * when we check if extents are shared, as backref walking may need to
	 * lock the same leaf we are processing.
	 */
	clone = btrfs_clone_extent_buffer(path->nodes[0]);
	if (!clone)
		return -ENOMEM;

	slot = path->slots[0];
	btrfs_release_path(path);
	path->nodes[0] = clone;
	path->slots[0] = slot;

	return 0;
}

/*
 * Process a range which is a hole or a prealloc extent in the inode's subvolume
 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
 * extent. The end offset (@end) is inclusive.
 */
static int fiemap_process_hole(struct btrfs_inode *inode,
			       struct fiemap_extent_info *fieinfo,
			       struct fiemap_cache *cache,
			       struct extent_state **delalloc_cached_state,
			       struct btrfs_backref_share_check_ctx *backref_ctx,
			       u64 disk_bytenr, u64 extent_offset,
			       u64 extent_gen,
			       u64 start, u64 end)
{
	const u64 i_size = i_size_read(&inode->vfs_inode);
	u64 cur_offset = start;
	u64 last_delalloc_end = 0;
	u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
	bool checked_extent_shared = false;
	int ret;

	/*
	 * There can be no delalloc past i_size, so don't waste time looking for
	 * it beyond i_size.
	 */
	while (cur_offset < end && cur_offset < i_size) {
		u64 delalloc_start;
		u64 delalloc_end;
		u64 prealloc_start;
		u64 prealloc_len = 0;
		bool delalloc;

		delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
							delalloc_cached_state,
							&delalloc_start,
							&delalloc_end);
		if (!delalloc)
			break;

		/*
		 * If this is a prealloc extent we have to report every section
		 * of it that has no delalloc.
		 */
		if (disk_bytenr != 0) {
			if (last_delalloc_end == 0) {
				prealloc_start = start;
				prealloc_len = delalloc_start - start;
			} else {
				prealloc_start = last_delalloc_end + 1;
				prealloc_len = delalloc_start - prealloc_start;
			}
		}

		if (prealloc_len > 0) {
			if (!checked_extent_shared && fieinfo->fi_extents_max) {
				ret = btrfs_is_data_extent_shared(inode,
								  disk_bytenr,
								  extent_gen,
								  backref_ctx);
				if (ret < 0)
					return ret;
				else if (ret > 0)
					prealloc_flags |= FIEMAP_EXTENT_SHARED;

				checked_extent_shared = true;
			}
			ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
						 disk_bytenr + extent_offset,
						 prealloc_len, prealloc_flags);
			if (ret)
				return ret;
			extent_offset += prealloc_len;
		}

		ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
					 delalloc_end + 1 - delalloc_start,
					 FIEMAP_EXTENT_DELALLOC |
					 FIEMAP_EXTENT_UNKNOWN);
		if (ret)
			return ret;

		last_delalloc_end = delalloc_end;
		cur_offset = delalloc_end + 1;
		extent_offset += cur_offset - delalloc_start;
		cond_resched();
	}

	/*
	 * Either we found no delalloc for the whole prealloc extent or we have
	 * a prealloc extent that spans i_size or starts at or after i_size.
	 */
	if (disk_bytenr != 0 && last_delalloc_end < end) {
		u64 prealloc_start;
		u64 prealloc_len;

		if (last_delalloc_end == 0) {
			prealloc_start = start;
			prealloc_len = end + 1 - start;
		} else {
			prealloc_start = last_delalloc_end + 1;
			prealloc_len = end + 1 - prealloc_start;
		}

		if (!checked_extent_shared && fieinfo->fi_extents_max) {
			ret = btrfs_is_data_extent_shared(inode,
							  disk_bytenr,
							  extent_gen,
							  backref_ctx);
			if (ret < 0)
				return ret;
			else if (ret > 0)
				prealloc_flags |= FIEMAP_EXTENT_SHARED;
		}
		ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
					 disk_bytenr + extent_offset,
					 prealloc_len, prealloc_flags);
		if (ret)
			return ret;
	}

	return 0;
}

static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
					  struct btrfs_path *path,
					  u64 *last_extent_end_ret)
{
	const u64 ino = btrfs_ino(inode);
	struct btrfs_root *root = inode->root;
	struct extent_buffer *leaf;
	struct btrfs_file_extent_item *ei;
	struct btrfs_key key;
	u64 disk_bytenr;
	int ret;

	/*
	 * Lookup the last file extent. We're not using i_size here because
	 * there might be preallocation past i_size.
	 */
	ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
	/* There can't be a file extent item at offset (u64)-1 */
	ASSERT(ret != 0);
	if (ret < 0)
		return ret;

	/*
	 * For a non-existing key, btrfs_search_slot() always leaves us at a
	 * slot > 0, except if the btree is empty, which is impossible because
	 * at least it has the inode item for this inode and all the items for
	 * the root inode 256.
	 */
	ASSERT(path->slots[0] > 0);
	path->slots[0]--;
	leaf = path->nodes[0];
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
		/* No file extent items in the subvolume tree. */
		*last_extent_end_ret = 0;
		return 0;
	}

	/*
	 * For an inline extent, the disk_bytenr is where inline data starts at,
	 * so first check if we have an inline extent item before checking if we
	 * have an implicit hole (disk_bytenr == 0).
	 */
	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
	if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
		*last_extent_end_ret = btrfs_file_extent_end(path);
		return 0;
	}

	/*
	 * Find the last file extent item that is not a hole (when NO_HOLES is
	 * not enabled). This should take at most 2 iterations in the worst
	 * case: we have one hole file extent item at slot 0 of a leaf and
	 * another hole file extent item as the last item in the previous leaf.
	 * This is because we merge file extent items that represent holes.
	 */
	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
	while (disk_bytenr == 0) {
		ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
		if (ret < 0) {
			return ret;
		} else if (ret > 0) {
			/* No file extent items that are not holes. */
			*last_extent_end_ret = 0;
			return 0;
		}
		leaf = path->nodes[0];
		ei = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
	}

	*last_extent_end_ret = btrfs_file_extent_end(path);
	return 0;
}

static int extent_fiemap(struct btrfs_inode *inode,
			 struct fiemap_extent_info *fieinfo,
			 u64 start, u64 len)
{
	const u64 ino = btrfs_ino(inode);
	struct extent_state *cached_state = NULL;
	struct extent_state *delalloc_cached_state = NULL;
	struct btrfs_path *path;
	struct fiemap_cache cache = { 0 };
	struct btrfs_backref_share_check_ctx *backref_ctx;
	u64 last_extent_end;
	u64 prev_extent_end;
	u64 range_start;
	u64 range_end;
	const u64 sectorsize = inode->root->fs_info->sectorsize;
	bool stopped = false;
	int ret;

	cache.entries_size = PAGE_SIZE / sizeof(struct btrfs_fiemap_entry);
	cache.entries = kmalloc_array(cache.entries_size,
				      sizeof(struct btrfs_fiemap_entry),
				      GFP_KERNEL);
	backref_ctx = btrfs_alloc_backref_share_check_ctx();
	path = btrfs_alloc_path();
	if (!cache.entries || !backref_ctx || !path) {
		ret = -ENOMEM;
		goto out;
	}

restart:
	range_start = round_down(start, sectorsize);
	range_end = round_up(start + len, sectorsize);
	prev_extent_end = range_start;

	lock_extent(&inode->io_tree, range_start, range_end, &cached_state);

	ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
	if (ret < 0)
		goto out_unlock;
	btrfs_release_path(path);

	path->reada = READA_FORWARD;
	ret = fiemap_search_slot(inode, path, range_start);
	if (ret < 0) {
		goto out_unlock;
	} else if (ret > 0) {
		/*
		 * No file extent item found, but we may have delalloc between
		 * the current offset and i_size. So check for that.
		 */
		ret = 0;
		goto check_eof_delalloc;
	}

	while (prev_extent_end < range_end) {
		struct extent_buffer *leaf = path->nodes[0];
		struct btrfs_file_extent_item *ei;
		struct btrfs_key key;
		u64 extent_end;
		u64 extent_len;
		u64 extent_offset = 0;
		u64 extent_gen;
		u64 disk_bytenr = 0;
		u64 flags = 0;
		int extent_type;
		u8 compression;

		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
			break;

		extent_end = btrfs_file_extent_end(path);

		/*
		 * The first iteration can leave us at an extent item that ends
		 * before our range's start. Move to the next item.
		 */
		if (extent_end <= range_start)
			goto next_item;

		backref_ctx->curr_leaf_bytenr = leaf->start;

		/* We have in implicit hole (NO_HOLES feature enabled). */
		if (prev_extent_end < key.offset) {
			const u64 hole_end = min(key.offset, range_end) - 1;

			ret = fiemap_process_hole(inode, fieinfo, &cache,
						  &delalloc_cached_state,
						  backref_ctx, 0, 0, 0,
						  prev_extent_end, hole_end);
			if (ret < 0) {
				goto out_unlock;
			} else if (ret > 0) {
				/* fiemap_fill_next_extent() told us to stop. */
				stopped = true;
				break;
			}

			/* We've reached the end of the fiemap range, stop. */
			if (key.offset >= range_end) {
				stopped = true;
				break;
			}
		}

		extent_len = extent_end - key.offset;
		ei = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		compression = btrfs_file_extent_compression(leaf, ei);
		extent_type = btrfs_file_extent_type(leaf, ei);
		extent_gen = btrfs_file_extent_generation(leaf, ei);

		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
			if (compression == BTRFS_COMPRESS_NONE)
				extent_offset = btrfs_file_extent_offset(leaf, ei);
		}

		if (compression != BTRFS_COMPRESS_NONE)
			flags |= FIEMAP_EXTENT_ENCODED;

		if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
			flags |= FIEMAP_EXTENT_DATA_INLINE;
			flags |= FIEMAP_EXTENT_NOT_ALIGNED;
			ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
						 extent_len, flags);
		} else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
			ret = fiemap_process_hole(inode, fieinfo, &cache,
						  &delalloc_cached_state,
						  backref_ctx,
						  disk_bytenr, extent_offset,
						  extent_gen, key.offset,
						  extent_end - 1);
		} else if (disk_bytenr == 0) {
			/* We have an explicit hole. */
			ret = fiemap_process_hole(inode, fieinfo, &cache,
						  &delalloc_cached_state,
						  backref_ctx, 0, 0, 0,
						  key.offset, extent_end - 1);
		} else {
			/* We have a regular extent. */
			if (fieinfo->fi_extents_max) {
				ret = btrfs_is_data_extent_shared(inode,
								  disk_bytenr,
								  extent_gen,
								  backref_ctx);
				if (ret < 0)
					goto out_unlock;
				else if (ret > 0)
					flags |= FIEMAP_EXTENT_SHARED;
			}

			ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
						 disk_bytenr + extent_offset,
						 extent_len, flags);
		}

		if (ret < 0) {
			goto out_unlock;
		} else if (ret > 0) {
			/* emit_fiemap_extent() told us to stop. */
			stopped = true;
			break;
		}

		prev_extent_end = extent_end;
next_item:
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			goto out_unlock;
		}

		ret = fiemap_next_leaf_item(inode, path);
		if (ret < 0) {
			goto out_unlock;
		} else if (ret > 0) {
			/* No more file extent items for this inode. */
			break;
		}
		cond_resched();
	}

check_eof_delalloc:
	if (!stopped && prev_extent_end < range_end) {
		ret = fiemap_process_hole(inode, fieinfo, &cache,
					  &delalloc_cached_state, backref_ctx,
					  0, 0, 0, prev_extent_end, range_end - 1);
		if (ret < 0)
			goto out_unlock;
		prev_extent_end = range_end;
	}

	if (cache.cached && cache.offset + cache.len >= last_extent_end) {
		const u64 i_size = i_size_read(&inode->vfs_inode);

		if (prev_extent_end < i_size) {
			u64 delalloc_start;
			u64 delalloc_end;
			bool delalloc;

			delalloc = btrfs_find_delalloc_in_range(inode,
								prev_extent_end,
								i_size - 1,
								&delalloc_cached_state,
								&delalloc_start,
								&delalloc_end);
			if (!delalloc)
				cache.flags |= FIEMAP_EXTENT_LAST;
		} else {
			cache.flags |= FIEMAP_EXTENT_LAST;
		}
	}

out_unlock:
	unlock_extent(&inode->io_tree, range_start, range_end, &cached_state);

	if (ret == BTRFS_FIEMAP_FLUSH_CACHE) {
		btrfs_release_path(path);
		ret = flush_fiemap_cache(fieinfo, &cache);
		if (ret)
			goto out;
		len -= cache.next_search_offset - start;
		start = cache.next_search_offset;
		goto restart;
	} else if (ret < 0) {
		goto out;
	}

	/*
	 * Must free the path before emitting to the fiemap buffer because we
	 * may have a non-cloned leaf and if the fiemap buffer is memory mapped
	 * to a file, a write into it (through btrfs_page_mkwrite()) may trigger
	 * waiting for an ordered extent that in order to complete needs to
	 * modify that leaf, therefore leading to a deadlock.
	 */
	btrfs_free_path(path);
	path = NULL;

	ret = flush_fiemap_cache(fieinfo, &cache);
	if (ret)
		goto out;

	ret = emit_last_fiemap_cache(fieinfo, &cache);
out:
	free_extent_state(delalloc_cached_state);
	kfree(cache.entries);
	btrfs_free_backref_share_ctx(backref_ctx);
	btrfs_free_path(path);
	return ret;
}

int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
		 u64 start, u64 len)
{
	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
	int ret;

	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
	if (ret)
		return ret;

	/*
	 * fiemap_prep() called filemap_write_and_wait() for the whole possible
	 * file range (0 to LLONG_MAX), but that is not enough if we have
	 * compression enabled. The first filemap_fdatawrite_range() only kicks
	 * in the compression of data (in an async thread) and will return
	 * before the compression is done and writeback is started. A second
	 * filemap_fdatawrite_range() is needed to wait for the compression to
	 * complete and writeback to start. We also need to wait for ordered
	 * extents to complete, because our fiemap implementation uses mainly
	 * file extent items to list the extents, searching for extent maps
	 * only for file ranges with holes or prealloc extents to figure out
	 * if we have delalloc in those ranges.
	 */
	if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
		ret = btrfs_wait_ordered_range(btrfs_inode, 0, LLONG_MAX);
		if (ret)
			return ret;
	}

	btrfs_inode_lock(btrfs_inode, BTRFS_ILOCK_SHARED);

	/*
	 * We did an initial flush to avoid holding the inode's lock while
	 * triggering writeback and waiting for the completion of IO and ordered
	 * extents. Now after we locked the inode we do it again, because it's
	 * possible a new write may have happened in between those two steps.
	 */
	if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
		ret = btrfs_wait_ordered_range(btrfs_inode, 0, LLONG_MAX);
		if (ret) {
			btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED);
			return ret;
		}
	}

	ret = extent_fiemap(btrfs_inode, fieinfo, start, len);
	btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED);

	return ret;
}