summaryrefslogtreecommitdiff
path: root/drivers/power/supply/sc27xx_fuel_gauge.c
blob: bd23c4d9fed43482e972ccc086311e7bfcec2d54 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2018 Spreadtrum Communications Inc.

#include <linux/gpio/consumer.h>
#include <linux/iio/consumer.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/nvmem-consumer.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/power_supply.h>
#include <linux/regmap.h>
#include <linux/slab.h>

/* PMIC global control registers definition */
#define SC27XX_MODULE_EN0		0xc08
#define SC27XX_CLK_EN0			0xc18
#define SC27XX_FGU_EN			BIT(7)
#define SC27XX_FGU_RTC_EN		BIT(6)

/* FGU registers definition */
#define SC27XX_FGU_START		0x0
#define SC27XX_FGU_CONFIG		0x4
#define SC27XX_FGU_ADC_CONFIG		0x8
#define SC27XX_FGU_STATUS		0xc
#define SC27XX_FGU_INT_EN		0x10
#define SC27XX_FGU_INT_CLR		0x14
#define SC27XX_FGU_INT_STS		0x1c
#define SC27XX_FGU_VOLTAGE		0x20
#define SC27XX_FGU_OCV			0x24
#define SC27XX_FGU_POCV			0x28
#define SC27XX_FGU_CURRENT		0x2c
#define SC27XX_FGU_LOW_OVERLOAD		0x34
#define SC27XX_FGU_CLBCNT_SETH		0x50
#define SC27XX_FGU_CLBCNT_SETL		0x54
#define SC27XX_FGU_CLBCNT_DELTH		0x58
#define SC27XX_FGU_CLBCNT_DELTL		0x5c
#define SC27XX_FGU_CLBCNT_VALH		0x68
#define SC27XX_FGU_CLBCNT_VALL		0x6c
#define SC27XX_FGU_CLBCNT_QMAXL		0x74
#define SC27XX_FGU_USER_AREA_SET	0xa0
#define SC27XX_FGU_USER_AREA_CLEAR	0xa4
#define SC27XX_FGU_USER_AREA_STATUS	0xa8
#define SC27XX_FGU_VOLTAGE_BUF		0xd0
#define SC27XX_FGU_CURRENT_BUF		0xf0

#define SC27XX_WRITE_SELCLB_EN		BIT(0)
#define SC27XX_FGU_CLBCNT_MASK		GENMASK(15, 0)
#define SC27XX_FGU_CLBCNT_SHIFT		16
#define SC27XX_FGU_LOW_OVERLOAD_MASK	GENMASK(12, 0)

#define SC27XX_FGU_INT_MASK		GENMASK(9, 0)
#define SC27XX_FGU_LOW_OVERLOAD_INT	BIT(0)
#define SC27XX_FGU_CLBCNT_DELTA_INT	BIT(2)

#define SC27XX_FGU_MODE_AREA_MASK	GENMASK(15, 12)
#define SC27XX_FGU_CAP_AREA_MASK	GENMASK(11, 0)
#define SC27XX_FGU_MODE_AREA_SHIFT	12

#define SC27XX_FGU_FIRST_POWERTON	GENMASK(3, 0)
#define SC27XX_FGU_DEFAULT_CAP		GENMASK(11, 0)
#define SC27XX_FGU_NORMAIL_POWERTON	0x5

#define SC27XX_FGU_CUR_BASIC_ADC	8192
#define SC27XX_FGU_SAMPLE_HZ		2
/* micro Ohms */
#define SC27XX_FGU_IDEAL_RESISTANCE	20000

/*
 * struct sc27xx_fgu_data: describe the FGU device
 * @regmap: regmap for register access
 * @dev: platform device
 * @battery: battery power supply
 * @base: the base offset for the controller
 * @lock: protect the structure
 * @gpiod: GPIO for battery detection
 * @channel: IIO channel to get battery temperature
 * @charge_chan: IIO channel to get charge voltage
 * @internal_resist: the battery internal resistance in mOhm
 * @total_cap: the total capacity of the battery in mAh
 * @init_cap: the initial capacity of the battery in mAh
 * @alarm_cap: the alarm capacity
 * @init_clbcnt: the initial coulomb counter
 * @max_volt: the maximum constant input voltage in millivolt
 * @min_volt: the minimum drained battery voltage in microvolt
 * @boot_volt: the voltage measured during boot in microvolt
 * @table_len: the capacity table length
 * @resist_table_len: the resistance table length
 * @cur_1000ma_adc: ADC value corresponding to 1000 mA
 * @vol_1000mv_adc: ADC value corresponding to 1000 mV
 * @calib_resist: the real resistance of coulomb counter chip in uOhm
 * @cap_table: capacity table with corresponding ocv
 * @resist_table: resistance percent table with corresponding temperature
 */
struct sc27xx_fgu_data {
	struct regmap *regmap;
	struct device *dev;
	struct power_supply *battery;
	u32 base;
	struct mutex lock;
	struct gpio_desc *gpiod;
	struct iio_channel *channel;
	struct iio_channel *charge_chan;
	bool bat_present;
	int internal_resist;
	int total_cap;
	int init_cap;
	int alarm_cap;
	int init_clbcnt;
	int max_volt;
	int min_volt;
	int boot_volt;
	int table_len;
	int resist_table_len;
	int cur_1000ma_adc;
	int vol_1000mv_adc;
	int calib_resist;
	struct power_supply_battery_ocv_table *cap_table;
	struct power_supply_resistance_temp_table *resist_table;
};

static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity);
static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data *data,
					    int cap, bool int_mode);
static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap);
static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data *data, int *temp);

static const char * const sc27xx_charger_supply_name[] = {
	"sc2731_charger",
	"sc2720_charger",
	"sc2721_charger",
	"sc2723_charger",
};

static int sc27xx_fgu_adc_to_current(struct sc27xx_fgu_data *data, s64 adc)
{
	return DIV_S64_ROUND_CLOSEST(adc * 1000, data->cur_1000ma_adc);
}

static int sc27xx_fgu_adc_to_voltage(struct sc27xx_fgu_data *data, s64 adc)
{
	return DIV_S64_ROUND_CLOSEST(adc * 1000, data->vol_1000mv_adc);
}

static int sc27xx_fgu_voltage_to_adc(struct sc27xx_fgu_data *data, int vol)
{
	return DIV_ROUND_CLOSEST(vol * data->vol_1000mv_adc, 1000);
}

static bool sc27xx_fgu_is_first_poweron(struct sc27xx_fgu_data *data)
{
	int ret, status, cap, mode;

	ret = regmap_read(data->regmap,
			  data->base + SC27XX_FGU_USER_AREA_STATUS, &status);
	if (ret)
		return false;

	/*
	 * We use low 4 bits to save the last battery capacity and high 12 bits
	 * to save the system boot mode.
	 */
	mode = (status & SC27XX_FGU_MODE_AREA_MASK) >> SC27XX_FGU_MODE_AREA_SHIFT;
	cap = status & SC27XX_FGU_CAP_AREA_MASK;

	/*
	 * When FGU has been powered down, the user area registers became
	 * default value (0xffff), which can be used to valid if the system is
	 * first power on or not.
	 */
	if (mode == SC27XX_FGU_FIRST_POWERTON || cap == SC27XX_FGU_DEFAULT_CAP)
		return true;

	return false;
}

static int sc27xx_fgu_save_boot_mode(struct sc27xx_fgu_data *data,
				     int boot_mode)
{
	int ret;

	ret = regmap_update_bits(data->regmap,
				 data->base + SC27XX_FGU_USER_AREA_CLEAR,
				 SC27XX_FGU_MODE_AREA_MASK,
				 SC27XX_FGU_MODE_AREA_MASK);
	if (ret)
		return ret;

	/*
	 * Since the user area registers are put on power always-on region,
	 * then these registers changing time will be a little long. Thus
	 * here we should delay 200us to wait until values are updated
	 * successfully according to the datasheet.
	 */
	udelay(200);

	ret = regmap_update_bits(data->regmap,
				 data->base + SC27XX_FGU_USER_AREA_SET,
				 SC27XX_FGU_MODE_AREA_MASK,
				 boot_mode << SC27XX_FGU_MODE_AREA_SHIFT);
	if (ret)
		return ret;

	/*
	 * Since the user area registers are put on power always-on region,
	 * then these registers changing time will be a little long. Thus
	 * here we should delay 200us to wait until values are updated
	 * successfully according to the datasheet.
	 */
	udelay(200);

	/*
	 * According to the datasheet, we should set the USER_AREA_CLEAR to 0 to
	 * make the user area data available, otherwise we can not save the user
	 * area data.
	 */
	return regmap_update_bits(data->regmap,
				  data->base + SC27XX_FGU_USER_AREA_CLEAR,
				  SC27XX_FGU_MODE_AREA_MASK, 0);
}

static int sc27xx_fgu_save_last_cap(struct sc27xx_fgu_data *data, int cap)
{
	int ret;

	ret = regmap_update_bits(data->regmap,
				 data->base + SC27XX_FGU_USER_AREA_CLEAR,
				 SC27XX_FGU_CAP_AREA_MASK,
				 SC27XX_FGU_CAP_AREA_MASK);
	if (ret)
		return ret;

	/*
	 * Since the user area registers are put on power always-on region,
	 * then these registers changing time will be a little long. Thus
	 * here we should delay 200us to wait until values are updated
	 * successfully according to the datasheet.
	 */
	udelay(200);

	ret = regmap_update_bits(data->regmap,
				 data->base + SC27XX_FGU_USER_AREA_SET,
				 SC27XX_FGU_CAP_AREA_MASK, cap);
	if (ret)
		return ret;

	/*
	 * Since the user area registers are put on power always-on region,
	 * then these registers changing time will be a little long. Thus
	 * here we should delay 200us to wait until values are updated
	 * successfully according to the datasheet.
	 */
	udelay(200);

	/*
	 * According to the datasheet, we should set the USER_AREA_CLEAR to 0 to
	 * make the user area data available, otherwise we can not save the user
	 * area data.
	 */
	return regmap_update_bits(data->regmap,
				  data->base + SC27XX_FGU_USER_AREA_CLEAR,
				  SC27XX_FGU_CAP_AREA_MASK, 0);
}

static int sc27xx_fgu_read_last_cap(struct sc27xx_fgu_data *data, int *cap)
{
	int ret, value;

	ret = regmap_read(data->regmap,
			  data->base + SC27XX_FGU_USER_AREA_STATUS, &value);
	if (ret)
		return ret;

	*cap = value & SC27XX_FGU_CAP_AREA_MASK;
	return 0;
}

/*
 * When system boots on, we can not read battery capacity from coulomb
 * registers, since now the coulomb registers are invalid. So we should
 * calculate the battery open circuit voltage, and get current battery
 * capacity according to the capacity table.
 */
static int sc27xx_fgu_get_boot_capacity(struct sc27xx_fgu_data *data, int *cap)
{
	int volt, cur, oci, ocv, ret;
	bool is_first_poweron = sc27xx_fgu_is_first_poweron(data);

	/*
	 * If system is not the first power on, we should use the last saved
	 * battery capacity as the initial battery capacity. Otherwise we should
	 * re-calculate the initial battery capacity.
	 */
	if (!is_first_poweron) {
		ret = sc27xx_fgu_read_last_cap(data, cap);
		if (ret)
			return ret;

		return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON);
	}

	/*
	 * After system booting on, the SC27XX_FGU_CLBCNT_QMAXL register saved
	 * the first sampled open circuit current.
	 */
	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_QMAXL,
			  &cur);
	if (ret)
		return ret;

	cur <<= 1;
	oci = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);

	/*
	 * Should get the OCV from SC27XX_FGU_POCV register at the system
	 * beginning. It is ADC values reading from registers which need to
	 * convert the corresponding voltage.
	 */
	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_POCV, &volt);
	if (ret)
		return ret;

	volt = sc27xx_fgu_adc_to_voltage(data, volt);
	ocv = volt * 1000 - oci * data->internal_resist;
	data->boot_volt = ocv;

	/*
	 * Parse the capacity table to look up the correct capacity percent
	 * according to current battery's corresponding OCV values.
	 */
	*cap = power_supply_ocv2cap_simple(data->cap_table, data->table_len,
					   ocv);

	ret = sc27xx_fgu_save_last_cap(data, *cap);
	if (ret)
		return ret;

	return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON);
}

static int sc27xx_fgu_set_clbcnt(struct sc27xx_fgu_data *data, int clbcnt)
{
	int ret;

	ret = regmap_update_bits(data->regmap,
				 data->base + SC27XX_FGU_CLBCNT_SETL,
				 SC27XX_FGU_CLBCNT_MASK, clbcnt);
	if (ret)
		return ret;

	ret = regmap_update_bits(data->regmap,
				 data->base + SC27XX_FGU_CLBCNT_SETH,
				 SC27XX_FGU_CLBCNT_MASK,
				 clbcnt >> SC27XX_FGU_CLBCNT_SHIFT);
	if (ret)
		return ret;

	return regmap_update_bits(data->regmap, data->base + SC27XX_FGU_START,
				 SC27XX_WRITE_SELCLB_EN,
				 SC27XX_WRITE_SELCLB_EN);
}

static int sc27xx_fgu_get_clbcnt(struct sc27xx_fgu_data *data, int *clb_cnt)
{
	int ccl, cch, ret;

	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_VALL,
			  &ccl);
	if (ret)
		return ret;

	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_VALH,
			  &cch);
	if (ret)
		return ret;

	*clb_cnt = ccl & SC27XX_FGU_CLBCNT_MASK;
	*clb_cnt |= (cch & SC27XX_FGU_CLBCNT_MASK) << SC27XX_FGU_CLBCNT_SHIFT;

	return 0;
}

static int sc27xx_fgu_get_vol_now(struct sc27xx_fgu_data *data, int *val)
{
	int ret;
	u32 vol;

	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_VOLTAGE_BUF,
			  &vol);
	if (ret)
		return ret;

	/*
	 * It is ADC values reading from registers which need to convert to
	 * corresponding voltage values.
	 */
	*val = sc27xx_fgu_adc_to_voltage(data, vol);

	return 0;
}

static int sc27xx_fgu_get_cur_now(struct sc27xx_fgu_data *data, int *val)
{
	int ret;
	u32 cur;

	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CURRENT_BUF,
			  &cur);
	if (ret)
		return ret;

	/*
	 * It is ADC values reading from registers which need to convert to
	 * corresponding current values.
	 */
	*val = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);

	return 0;
}

static int sc27xx_fgu_get_capacity(struct sc27xx_fgu_data *data, int *cap)
{
	int ret, cur_clbcnt, delta_clbcnt, delta_cap, temp;

	/* Get current coulomb counters firstly */
	ret = sc27xx_fgu_get_clbcnt(data, &cur_clbcnt);
	if (ret)
		return ret;

	delta_clbcnt = cur_clbcnt - data->init_clbcnt;

	/*
	 * Convert coulomb counter to delta capacity (mAh), and set multiplier
	 * as 10 to improve the precision.
	 */
	temp = DIV_ROUND_CLOSEST(delta_clbcnt * 10, 36 * SC27XX_FGU_SAMPLE_HZ);
	temp = sc27xx_fgu_adc_to_current(data, temp / 1000);

	/*
	 * Convert to capacity percent of the battery total capacity,
	 * and multiplier is 100 too.
	 */
	delta_cap = DIV_ROUND_CLOSEST(temp * 100, data->total_cap);
	*cap = delta_cap + data->init_cap;

	/* Calibrate the battery capacity in a normal range. */
	sc27xx_fgu_capacity_calibration(data, *cap, false);

	return 0;
}

static int sc27xx_fgu_get_vbat_vol(struct sc27xx_fgu_data *data, int *val)
{
	int ret, vol;

	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_VOLTAGE, &vol);
	if (ret)
		return ret;

	/*
	 * It is ADC values reading from registers which need to convert to
	 * corresponding voltage values.
	 */
	*val = sc27xx_fgu_adc_to_voltage(data, vol);

	return 0;
}

static int sc27xx_fgu_get_current(struct sc27xx_fgu_data *data, int *val)
{
	int ret, cur;

	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CURRENT, &cur);
	if (ret)
		return ret;

	/*
	 * It is ADC values reading from registers which need to convert to
	 * corresponding current values.
	 */
	*val = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);

	return 0;
}

static int sc27xx_fgu_get_vbat_ocv(struct sc27xx_fgu_data *data, int *val)
{
	int vol, cur, ret, temp, resistance;

	ret = sc27xx_fgu_get_vbat_vol(data, &vol);
	if (ret)
		return ret;

	ret = sc27xx_fgu_get_current(data, &cur);
	if (ret)
		return ret;

	resistance = data->internal_resist;
	if (data->resist_table_len > 0) {
		ret = sc27xx_fgu_get_temp(data, &temp);
		if (ret)
			return ret;

		resistance = power_supply_temp2resist_simple(data->resist_table,
						data->resist_table_len, temp);
		resistance = data->internal_resist * resistance / 100;
	}

	/* Return the battery OCV in micro volts. */
	*val = vol * 1000 - cur * resistance;

	return 0;
}

static int sc27xx_fgu_get_charge_vol(struct sc27xx_fgu_data *data, int *val)
{
	int ret, vol;

	ret = iio_read_channel_processed(data->charge_chan, &vol);
	if (ret < 0)
		return ret;

	*val = vol * 1000;
	return 0;
}

static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data *data, int *temp)
{
	return iio_read_channel_processed(data->channel, temp);
}

static int sc27xx_fgu_get_health(struct sc27xx_fgu_data *data, int *health)
{
	int ret, vol;

	ret = sc27xx_fgu_get_vbat_vol(data, &vol);
	if (ret)
		return ret;

	if (vol > data->max_volt)
		*health = POWER_SUPPLY_HEALTH_OVERVOLTAGE;
	else
		*health = POWER_SUPPLY_HEALTH_GOOD;

	return 0;
}

static int sc27xx_fgu_get_status(struct sc27xx_fgu_data *data, int *status)
{
	union power_supply_propval val;
	struct power_supply *psy;
	int i, ret = -EINVAL;

	for (i = 0; i < ARRAY_SIZE(sc27xx_charger_supply_name); i++) {
		psy = power_supply_get_by_name(sc27xx_charger_supply_name[i]);
		if (!psy)
			continue;

		ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_STATUS,
						&val);
		power_supply_put(psy);
		if (ret)
			return ret;

		*status = val.intval;
	}

	return ret;
}

static int sc27xx_fgu_get_property(struct power_supply *psy,
				   enum power_supply_property psp,
				   union power_supply_propval *val)
{
	struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
	int ret = 0;
	int value;

	mutex_lock(&data->lock);

	switch (psp) {
	case POWER_SUPPLY_PROP_STATUS:
		ret = sc27xx_fgu_get_status(data, &value);
		if (ret)
			goto error;

		val->intval = value;
		break;

	case POWER_SUPPLY_PROP_HEALTH:
		ret = sc27xx_fgu_get_health(data, &value);
		if (ret)
			goto error;

		val->intval = value;
		break;

	case POWER_SUPPLY_PROP_PRESENT:
		val->intval = data->bat_present;
		break;

	case POWER_SUPPLY_PROP_TEMP:
		ret = sc27xx_fgu_get_temp(data, &value);
		if (ret)
			goto error;

		val->intval = value;
		break;

	case POWER_SUPPLY_PROP_TECHNOLOGY:
		val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
		break;

	case POWER_SUPPLY_PROP_CAPACITY:
		ret = sc27xx_fgu_get_capacity(data, &value);
		if (ret)
			goto error;

		val->intval = value;
		break;

	case POWER_SUPPLY_PROP_VOLTAGE_AVG:
		ret = sc27xx_fgu_get_vbat_vol(data, &value);
		if (ret)
			goto error;

		val->intval = value * 1000;
		break;

	case POWER_SUPPLY_PROP_VOLTAGE_OCV:
		ret = sc27xx_fgu_get_vbat_ocv(data, &value);
		if (ret)
			goto error;

		val->intval = value;
		break;

	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
		ret = sc27xx_fgu_get_charge_vol(data, &value);
		if (ret)
			goto error;

		val->intval = value;
		break;

	case POWER_SUPPLY_PROP_CURRENT_AVG:
		ret = sc27xx_fgu_get_current(data, &value);
		if (ret)
			goto error;

		val->intval = value * 1000;
		break;

	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
		val->intval = data->total_cap * 1000;
		break;

	case POWER_SUPPLY_PROP_CHARGE_NOW:
		ret = sc27xx_fgu_get_clbcnt(data, &value);
		if (ret)
			goto error;

		value = DIV_ROUND_CLOSEST(value * 10,
					  36 * SC27XX_FGU_SAMPLE_HZ);
		val->intval = sc27xx_fgu_adc_to_current(data, value);

		break;

	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
		ret = sc27xx_fgu_get_vol_now(data, &value);
		if (ret)
			goto error;

		val->intval = value * 1000;
		break;

	case POWER_SUPPLY_PROP_CURRENT_NOW:
		ret = sc27xx_fgu_get_cur_now(data, &value);
		if (ret)
			goto error;

		val->intval = value * 1000;
		break;

	case POWER_SUPPLY_PROP_VOLTAGE_BOOT:
		val->intval = data->boot_volt;
		break;

	default:
		ret = -EINVAL;
		break;
	}

error:
	mutex_unlock(&data->lock);
	return ret;
}

static int sc27xx_fgu_set_property(struct power_supply *psy,
				   enum power_supply_property psp,
				   const union power_supply_propval *val)
{
	struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
	int ret;

	mutex_lock(&data->lock);

	switch (psp) {
	case POWER_SUPPLY_PROP_CAPACITY:
		ret = sc27xx_fgu_save_last_cap(data, val->intval);
		if (ret < 0)
			dev_err(data->dev, "failed to save battery capacity\n");
		break;

	case POWER_SUPPLY_PROP_CALIBRATE:
		sc27xx_fgu_adjust_cap(data, val->intval);
		ret = 0;
		break;

	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
		data->total_cap = val->intval / 1000;
		ret = 0;
		break;

	default:
		ret = -EINVAL;
	}

	mutex_unlock(&data->lock);

	return ret;
}

static int sc27xx_fgu_property_is_writeable(struct power_supply *psy,
					    enum power_supply_property psp)
{
	return psp == POWER_SUPPLY_PROP_CAPACITY ||
		psp == POWER_SUPPLY_PROP_CALIBRATE ||
		psp == POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN;
}

static enum power_supply_property sc27xx_fgu_props[] = {
	POWER_SUPPLY_PROP_STATUS,
	POWER_SUPPLY_PROP_HEALTH,
	POWER_SUPPLY_PROP_PRESENT,
	POWER_SUPPLY_PROP_TEMP,
	POWER_SUPPLY_PROP_TECHNOLOGY,
	POWER_SUPPLY_PROP_CAPACITY,
	POWER_SUPPLY_PROP_VOLTAGE_NOW,
	POWER_SUPPLY_PROP_VOLTAGE_OCV,
	POWER_SUPPLY_PROP_VOLTAGE_AVG,
	POWER_SUPPLY_PROP_VOLTAGE_BOOT,
	POWER_SUPPLY_PROP_CURRENT_NOW,
	POWER_SUPPLY_PROP_CURRENT_AVG,
	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
	POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
	POWER_SUPPLY_PROP_CALIBRATE,
	POWER_SUPPLY_PROP_CHARGE_NOW
};

static const struct power_supply_desc sc27xx_fgu_desc = {
	.name			= "sc27xx-fgu",
	.type			= POWER_SUPPLY_TYPE_BATTERY,
	.properties		= sc27xx_fgu_props,
	.num_properties		= ARRAY_SIZE(sc27xx_fgu_props),
	.get_property		= sc27xx_fgu_get_property,
	.set_property		= sc27xx_fgu_set_property,
	.external_power_changed	= power_supply_changed,
	.property_is_writeable	= sc27xx_fgu_property_is_writeable,
	.no_thermal		= true,
};

static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap)
{
	int ret;

	data->init_cap = cap;
	ret = sc27xx_fgu_get_clbcnt(data, &data->init_clbcnt);
	if (ret)
		dev_err(data->dev, "failed to get init coulomb counter\n");
}

static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data *data,
					    int cap, bool int_mode)
{
	int ret, ocv, chg_sts, adc;

	ret = sc27xx_fgu_get_vbat_ocv(data, &ocv);
	if (ret) {
		dev_err(data->dev, "get battery ocv error.\n");
		return;
	}

	ret = sc27xx_fgu_get_status(data, &chg_sts);
	if (ret) {
		dev_err(data->dev, "get charger status error.\n");
		return;
	}

	/*
	 * If we are in charging mode, then we do not need to calibrate the
	 * lower capacity.
	 */
	if (chg_sts == POWER_SUPPLY_STATUS_CHARGING)
		return;

	if ((ocv > data->cap_table[0].ocv && cap < 100) || cap > 100) {
		/*
		 * If current OCV value is larger than the max OCV value in
		 * OCV table, or the current capacity is larger than 100,
		 * we should force the inititial capacity to 100.
		 */
		sc27xx_fgu_adjust_cap(data, 100);
	} else if (ocv <= data->cap_table[data->table_len - 1].ocv) {
		/*
		 * If current OCV value is leass than the minimum OCV value in
		 * OCV table, we should force the inititial capacity to 0.
		 */
		sc27xx_fgu_adjust_cap(data, 0);
	} else if ((ocv > data->cap_table[data->table_len - 1].ocv && cap <= 0) ||
		   (ocv > data->min_volt && cap <= data->alarm_cap)) {
		/*
		 * If current OCV value is not matchable with current capacity,
		 * we should re-calculate current capacity by looking up the
		 * OCV table.
		 */
		int cur_cap = power_supply_ocv2cap_simple(data->cap_table,
							  data->table_len, ocv);

		sc27xx_fgu_adjust_cap(data, cur_cap);
	} else if (ocv <= data->min_volt) {
		/*
		 * If current OCV value is less than the low alarm voltage, but
		 * current capacity is larger than the alarm capacity, we should
		 * adjust the inititial capacity to alarm capacity.
		 */
		if (cap > data->alarm_cap) {
			sc27xx_fgu_adjust_cap(data, data->alarm_cap);
		} else {
			int cur_cap;

			/*
			 * If current capacity is equal with 0 or less than 0
			 * (some error occurs), we should adjust inititial
			 * capacity to the capacity corresponding to current OCV
			 * value.
			 */
			cur_cap = power_supply_ocv2cap_simple(data->cap_table,
							      data->table_len,
							      ocv);
			sc27xx_fgu_adjust_cap(data, cur_cap);
		}

		if (!int_mode)
			return;

		/*
		 * After adjusting the battery capacity, we should set the
		 * lowest alarm voltage instead.
		 */
		data->min_volt = data->cap_table[data->table_len - 1].ocv;
		data->alarm_cap = power_supply_ocv2cap_simple(data->cap_table,
							      data->table_len,
							      data->min_volt);

		adc = sc27xx_fgu_voltage_to_adc(data, data->min_volt / 1000);
		regmap_update_bits(data->regmap,
				   data->base + SC27XX_FGU_LOW_OVERLOAD,
				   SC27XX_FGU_LOW_OVERLOAD_MASK, adc);
	}
}

static irqreturn_t sc27xx_fgu_interrupt(int irq, void *dev_id)
{
	struct sc27xx_fgu_data *data = dev_id;
	int ret, cap;
	u32 status;

	mutex_lock(&data->lock);

	ret = regmap_read(data->regmap, data->base + SC27XX_FGU_INT_STS,
			  &status);
	if (ret)
		goto out;

	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_CLR,
				 status, status);
	if (ret)
		goto out;

	/*
	 * When low overload voltage interrupt happens, we should calibrate the
	 * battery capacity in lower voltage stage.
	 */
	if (!(status & SC27XX_FGU_LOW_OVERLOAD_INT))
		goto out;

	ret = sc27xx_fgu_get_capacity(data, &cap);
	if (ret)
		goto out;

	sc27xx_fgu_capacity_calibration(data, cap, true);

out:
	mutex_unlock(&data->lock);

	power_supply_changed(data->battery);
	return IRQ_HANDLED;
}

static irqreturn_t sc27xx_fgu_bat_detection(int irq, void *dev_id)
{
	struct sc27xx_fgu_data *data = dev_id;
	int state;

	mutex_lock(&data->lock);

	state = gpiod_get_value_cansleep(data->gpiod);
	if (state < 0) {
		dev_err(data->dev, "failed to get gpio state\n");
		mutex_unlock(&data->lock);
		return IRQ_RETVAL(state);
	}

	data->bat_present = !!state;

	mutex_unlock(&data->lock);

	power_supply_changed(data->battery);
	return IRQ_HANDLED;
}

static void sc27xx_fgu_disable(void *_data)
{
	struct sc27xx_fgu_data *data = _data;

	regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, 0);
	regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, 0);
}

static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity)
{
	/*
	 * Get current capacity (mAh) = battery total capacity (mAh) *
	 * current capacity percent (capacity / 100).
	 */
	int cur_cap = DIV_ROUND_CLOSEST(data->total_cap * capacity, 100);

	/*
	 * Convert current capacity (mAh) to coulomb counter according to the
	 * formula: 1 mAh =3.6 coulomb.
	 */
	return DIV_ROUND_CLOSEST(cur_cap * 36 * data->cur_1000ma_adc * SC27XX_FGU_SAMPLE_HZ, 10);
}

static int sc27xx_fgu_calibration(struct sc27xx_fgu_data *data)
{
	struct nvmem_cell *cell;
	int calib_data, cal_4200mv;
	void *buf;
	size_t len;

	cell = nvmem_cell_get(data->dev, "fgu_calib");
	if (IS_ERR(cell))
		return PTR_ERR(cell);

	buf = nvmem_cell_read(cell, &len);
	nvmem_cell_put(cell);

	if (IS_ERR(buf))
		return PTR_ERR(buf);

	memcpy(&calib_data, buf, min(len, sizeof(u32)));

	/*
	 * Get the ADC value corresponding to 4200 mV from eFuse controller
	 * according to below formula. Then convert to ADC values corresponding
	 * to 1000 mV and 1000 mA.
	 */
	cal_4200mv = (calib_data & 0x1ff) + 6963 - 4096 - 256;
	data->vol_1000mv_adc = DIV_ROUND_CLOSEST(cal_4200mv * 10, 42);
	data->cur_1000ma_adc =
		DIV_ROUND_CLOSEST(data->vol_1000mv_adc * 4 * data->calib_resist,
				  SC27XX_FGU_IDEAL_RESISTANCE);

	kfree(buf);
	return 0;
}

static int sc27xx_fgu_hw_init(struct sc27xx_fgu_data *data)
{
	struct power_supply_battery_info *info;
	struct power_supply_battery_ocv_table *table;
	int ret, delta_clbcnt, alarm_adc;

	ret = power_supply_get_battery_info(data->battery, &info);
	if (ret) {
		dev_err(data->dev, "failed to get battery information\n");
		return ret;
	}

	data->total_cap = info->charge_full_design_uah / 1000;
	data->max_volt = info->constant_charge_voltage_max_uv / 1000;
	data->internal_resist = info->factory_internal_resistance_uohm / 1000;
	data->min_volt = info->voltage_min_design_uv;

	/*
	 * For SC27XX fuel gauge device, we only use one ocv-capacity
	 * table in normal temperature 20 Celsius.
	 */
	table = power_supply_find_ocv2cap_table(info, 20, &data->table_len);
	if (!table)
		return -EINVAL;

	data->cap_table = devm_kmemdup(data->dev, table,
				       data->table_len * sizeof(*table),
				       GFP_KERNEL);
	if (!data->cap_table) {
		power_supply_put_battery_info(data->battery, info);
		return -ENOMEM;
	}

	data->alarm_cap = power_supply_ocv2cap_simple(data->cap_table,
						      data->table_len,
						      data->min_volt);
	if (!data->alarm_cap)
		data->alarm_cap += 1;

	data->resist_table_len = info->resist_table_size;
	if (data->resist_table_len > 0) {
		data->resist_table = devm_kmemdup(data->dev, info->resist_table,
						  data->resist_table_len *
						  sizeof(struct power_supply_resistance_temp_table),
						  GFP_KERNEL);
		if (!data->resist_table) {
			power_supply_put_battery_info(data->battery, info);
			return -ENOMEM;
		}
	}

	power_supply_put_battery_info(data->battery, info);

	ret = sc27xx_fgu_calibration(data);
	if (ret)
		return ret;

	/* Enable the FGU module */
	ret = regmap_update_bits(data->regmap, SC27XX_MODULE_EN0,
				 SC27XX_FGU_EN, SC27XX_FGU_EN);
	if (ret) {
		dev_err(data->dev, "failed to enable fgu\n");
		return ret;
	}

	/* Enable the FGU RTC clock to make it work */
	ret = regmap_update_bits(data->regmap, SC27XX_CLK_EN0,
				 SC27XX_FGU_RTC_EN, SC27XX_FGU_RTC_EN);
	if (ret) {
		dev_err(data->dev, "failed to enable fgu RTC clock\n");
		goto disable_fgu;
	}

	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_CLR,
				 SC27XX_FGU_INT_MASK, SC27XX_FGU_INT_MASK);
	if (ret) {
		dev_err(data->dev, "failed to clear interrupt status\n");
		goto disable_clk;
	}

	/*
	 * Set the voltage low overload threshold, which means when the battery
	 * voltage is lower than this threshold, the controller will generate
	 * one interrupt to notify.
	 */
	alarm_adc = sc27xx_fgu_voltage_to_adc(data, data->min_volt / 1000);
	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_LOW_OVERLOAD,
				 SC27XX_FGU_LOW_OVERLOAD_MASK, alarm_adc);
	if (ret) {
		dev_err(data->dev, "failed to set fgu low overload\n");
		goto disable_clk;
	}

	/*
	 * Set the coulomb counter delta threshold, that means when the coulomb
	 * counter change is multiples of the delta threshold, the controller
	 * will generate one interrupt to notify the users to update the battery
	 * capacity. Now we set the delta threshold as a counter value of 1%
	 * capacity.
	 */
	delta_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, 1);

	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_DELTL,
				 SC27XX_FGU_CLBCNT_MASK, delta_clbcnt);
	if (ret) {
		dev_err(data->dev, "failed to set low delta coulomb counter\n");
		goto disable_clk;
	}

	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_DELTH,
				 SC27XX_FGU_CLBCNT_MASK,
				 delta_clbcnt >> SC27XX_FGU_CLBCNT_SHIFT);
	if (ret) {
		dev_err(data->dev, "failed to set high delta coulomb counter\n");
		goto disable_clk;
	}

	/*
	 * Get the boot battery capacity when system powers on, which is used to
	 * initialize the coulomb counter. After that, we can read the coulomb
	 * counter to measure the battery capacity.
	 */
	ret = sc27xx_fgu_get_boot_capacity(data, &data->init_cap);
	if (ret) {
		dev_err(data->dev, "failed to get boot capacity\n");
		goto disable_clk;
	}

	/*
	 * Convert battery capacity to the corresponding initial coulomb counter
	 * and set into coulomb counter registers.
	 */
	data->init_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, data->init_cap);
	ret = sc27xx_fgu_set_clbcnt(data, data->init_clbcnt);
	if (ret) {
		dev_err(data->dev, "failed to initialize coulomb counter\n");
		goto disable_clk;
	}

	return 0;

disable_clk:
	regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, 0);
disable_fgu:
	regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, 0);

	return ret;
}

static int sc27xx_fgu_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct device_node *np = dev->of_node;
	struct power_supply_config fgu_cfg = { };
	struct sc27xx_fgu_data *data;
	int ret, irq;

	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	data->regmap = dev_get_regmap(dev->parent, NULL);
	if (!data->regmap) {
		dev_err(dev, "failed to get regmap\n");
		return -ENODEV;
	}

	ret = device_property_read_u32(dev, "reg", &data->base);
	if (ret) {
		dev_err(dev, "failed to get fgu address\n");
		return ret;
	}

	ret = device_property_read_u32(&pdev->dev,
				       "sprd,calib-resistance-micro-ohms",
				       &data->calib_resist);
	if (ret) {
		dev_err(&pdev->dev,
			"failed to get fgu calibration resistance\n");
		return ret;
	}

	data->channel = devm_iio_channel_get(dev, "bat-temp");
	if (IS_ERR(data->channel)) {
		dev_err(dev, "failed to get IIO channel\n");
		return PTR_ERR(data->channel);
	}

	data->charge_chan = devm_iio_channel_get(dev, "charge-vol");
	if (IS_ERR(data->charge_chan)) {
		dev_err(dev, "failed to get charge IIO channel\n");
		return PTR_ERR(data->charge_chan);
	}

	data->gpiod = devm_gpiod_get(dev, "bat-detect", GPIOD_IN);
	if (IS_ERR(data->gpiod)) {
		dev_err(dev, "failed to get battery detection GPIO\n");
		return PTR_ERR(data->gpiod);
	}

	ret = gpiod_get_value_cansleep(data->gpiod);
	if (ret < 0) {
		dev_err(dev, "failed to get gpio state\n");
		return ret;
	}

	data->bat_present = !!ret;
	mutex_init(&data->lock);
	data->dev = dev;
	platform_set_drvdata(pdev, data);

	fgu_cfg.drv_data = data;
	fgu_cfg.of_node = np;
	data->battery = devm_power_supply_register(dev, &sc27xx_fgu_desc,
						   &fgu_cfg);
	if (IS_ERR(data->battery)) {
		dev_err(dev, "failed to register power supply\n");
		return PTR_ERR(data->battery);
	}

	ret = sc27xx_fgu_hw_init(data);
	if (ret) {
		dev_err(dev, "failed to initialize fgu hardware\n");
		return ret;
	}

	ret = devm_add_action_or_reset(dev, sc27xx_fgu_disable, data);
	if (ret) {
		dev_err(dev, "failed to add fgu disable action\n");
		return ret;
	}

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

	ret = devm_request_threaded_irq(data->dev, irq, NULL,
					sc27xx_fgu_interrupt,
					IRQF_NO_SUSPEND | IRQF_ONESHOT,
					pdev->name, data);
	if (ret) {
		dev_err(data->dev, "failed to request fgu IRQ\n");
		return ret;
	}

	irq = gpiod_to_irq(data->gpiod);
	if (irq < 0) {
		dev_err(dev, "failed to translate GPIO to IRQ\n");
		return irq;
	}

	ret = devm_request_threaded_irq(dev, irq, NULL,
					sc27xx_fgu_bat_detection,
					IRQF_ONESHOT | IRQF_TRIGGER_RISING |
					IRQF_TRIGGER_FALLING,
					pdev->name, data);
	if (ret) {
		dev_err(dev, "failed to request IRQ\n");
		return ret;
	}

	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int sc27xx_fgu_resume(struct device *dev)
{
	struct sc27xx_fgu_data *data = dev_get_drvdata(dev);
	int ret;

	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
				 SC27XX_FGU_LOW_OVERLOAD_INT |
				 SC27XX_FGU_CLBCNT_DELTA_INT, 0);
	if (ret) {
		dev_err(data->dev, "failed to disable fgu interrupts\n");
		return ret;
	}

	return 0;
}

static int sc27xx_fgu_suspend(struct device *dev)
{
	struct sc27xx_fgu_data *data = dev_get_drvdata(dev);
	int ret, status, ocv;

	ret = sc27xx_fgu_get_status(data, &status);
	if (ret)
		return ret;

	/*
	 * If we are charging, then no need to enable the FGU interrupts to
	 * adjust the battery capacity.
	 */
	if (status != POWER_SUPPLY_STATUS_NOT_CHARGING &&
	    status != POWER_SUPPLY_STATUS_DISCHARGING)
		return 0;

	ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
				 SC27XX_FGU_LOW_OVERLOAD_INT,
				 SC27XX_FGU_LOW_OVERLOAD_INT);
	if (ret) {
		dev_err(data->dev, "failed to enable low voltage interrupt\n");
		return ret;
	}

	ret = sc27xx_fgu_get_vbat_ocv(data, &ocv);
	if (ret)
		goto disable_int;

	/*
	 * If current OCV is less than the minimum voltage, we should enable the
	 * coulomb counter threshold interrupt to notify events to adjust the
	 * battery capacity.
	 */
	if (ocv < data->min_volt) {
		ret = regmap_update_bits(data->regmap,
					 data->base + SC27XX_FGU_INT_EN,
					 SC27XX_FGU_CLBCNT_DELTA_INT,
					 SC27XX_FGU_CLBCNT_DELTA_INT);
		if (ret) {
			dev_err(data->dev,
				"failed to enable coulomb threshold int\n");
			goto disable_int;
		}
	}

	return 0;

disable_int:
	regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
			   SC27XX_FGU_LOW_OVERLOAD_INT, 0);
	return ret;
}
#endif

static const struct dev_pm_ops sc27xx_fgu_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(sc27xx_fgu_suspend, sc27xx_fgu_resume)
};

static const struct of_device_id sc27xx_fgu_of_match[] = {
	{ .compatible = "sprd,sc2731-fgu", },
	{ }
};
MODULE_DEVICE_TABLE(of, sc27xx_fgu_of_match);

static struct platform_driver sc27xx_fgu_driver = {
	.probe = sc27xx_fgu_probe,
	.driver = {
		.name = "sc27xx-fgu",
		.of_match_table = sc27xx_fgu_of_match,
		.pm = &sc27xx_fgu_pm_ops,
	}
};

module_platform_driver(sc27xx_fgu_driver);

MODULE_DESCRIPTION("Spreadtrum SC27XX PMICs Fual Gauge Unit Driver");
MODULE_LICENSE("GPL v2");