summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/intel/ice/ice_txrx.c
blob: c289d97f477d5251d4456e610fc544059c227c21 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */

/* The driver transmit and receive code */

#include <linux/prefetch.h>
#include <linux/mm.h>
#include "ice.h"

#define ICE_RX_HDR_SIZE		256

/**
 * ice_unmap_and_free_tx_buf - Release a Tx buffer
 * @ring: the ring that owns the buffer
 * @tx_buf: the buffer to free
 */
static void
ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
{
	if (tx_buf->skb) {
		dev_kfree_skb_any(tx_buf->skb);
		if (dma_unmap_len(tx_buf, len))
			dma_unmap_single(ring->dev,
					 dma_unmap_addr(tx_buf, dma),
					 dma_unmap_len(tx_buf, len),
					 DMA_TO_DEVICE);
	} else if (dma_unmap_len(tx_buf, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buf, dma),
			       dma_unmap_len(tx_buf, len),
			       DMA_TO_DEVICE);
	}

	tx_buf->next_to_watch = NULL;
	tx_buf->skb = NULL;
	dma_unmap_len_set(tx_buf, len, 0);
	/* tx_buf must be completely set up in the transmit path */
}

static struct netdev_queue *txring_txq(const struct ice_ring *ring)
{
	return netdev_get_tx_queue(ring->netdev, ring->q_index);
}

/**
 * ice_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 */
void ice_clean_tx_ring(struct ice_ring *tx_ring)
{
	u16 i;

	/* ring already cleared, nothing to do */
	if (!tx_ring->tx_buf)
		return;

	/* Free all the Tx ring sk_bufss */
	for (i = 0; i < tx_ring->count; i++)
		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);

	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
	netdev_tx_reset_queue(txring_txq(tx_ring));
}

/**
 * ice_free_tx_ring - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 */
void ice_free_tx_ring(struct ice_ring *tx_ring)
{
	ice_clean_tx_ring(tx_ring);
	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
	tx_ring->tx_buf = NULL;

	if (tx_ring->desc) {
		dmam_free_coherent(tx_ring->dev, tx_ring->size,
				   tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

/**
 * ice_clean_tx_irq - Reclaim resources after transmit completes
 * @vsi: the VSI we care about
 * @tx_ring: Tx ring to clean
 * @napi_budget: Used to determine if we are in netpoll
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 */
static bool ice_clean_tx_irq(struct ice_vsi *vsi, struct ice_ring *tx_ring,
			     int napi_budget)
{
	unsigned int total_bytes = 0, total_pkts = 0;
	unsigned int budget = vsi->work_lmt;
	s16 i = tx_ring->next_to_clean;
	struct ice_tx_desc *tx_desc;
	struct ice_tx_buf *tx_buf;

	tx_buf = &tx_ring->tx_buf[i];
	tx_desc = ICE_TX_DESC(tx_ring, i);
	i -= tx_ring->count;

	do {
		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

		smp_rmb();	/* prevent any other reads prior to eop_desc */

		/* if the descriptor isn't done, no work yet to do */
		if (!(eop_desc->cmd_type_offset_bsz &
		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
			break;

		/* clear next_to_watch to prevent false hangs */
		tx_buf->next_to_watch = NULL;

		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_pkts += tx_buf->gso_segs;

		/* free the skb */
		napi_consume_skb(tx_buf->skb, napi_budget);

		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);

		/* clear tx_buf data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);

		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {
			tx_buf++;
			tx_desc++;
			i++;
			if (unlikely(!i)) {
				i -= tx_ring->count;
				tx_buf = tx_ring->tx_buf;
				tx_desc = ICE_TX_DESC(tx_ring, 0);
			}

			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_buf;
			tx_desc = ICE_TX_DESC(tx_ring, 0);
		}

		prefetch(tx_desc);

		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
	tx_ring->next_to_clean = i;
	u64_stats_update_begin(&tx_ring->syncp);
	tx_ring->stats.bytes += total_bytes;
	tx_ring->stats.pkts += total_pkts;
	u64_stats_update_end(&tx_ring->syncp);
	tx_ring->q_vector->tx.total_bytes += total_bytes;
	tx_ring->q_vector->tx.total_pkts += total_pkts;

	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
				  total_bytes);

#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->q_index) &&
		   !test_bit(__ICE_DOWN, vsi->state)) {
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->q_index);
			++tx_ring->tx_stats.restart_q;
		}
	}

	return !!budget;
}

/**
 * ice_setup_tx_ring - Allocate the Tx descriptors
 * @tx_ring: the Tx ring to set up
 *
 * Return 0 on success, negative on error
 */
int ice_setup_tx_ring(struct ice_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;

	if (!dev)
		return -ENOMEM;

	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_buf);
	tx_ring->tx_buf =
		devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count,
			     GFP_KERNEL);
	if (!tx_ring->tx_buf)
		return -ENOMEM;

	/* round up to nearest 4K */
	tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
			      4096);
	tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
					    GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	tx_ring->tx_stats.prev_pkt = -1;
	return 0;

err:
	devm_kfree(dev, tx_ring->tx_buf);
	tx_ring->tx_buf = NULL;
	return -ENOMEM;
}

/**
 * ice_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 */
void ice_clean_rx_ring(struct ice_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_buf)
		return;

	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];

		if (rx_buf->skb) {
			dev_kfree_skb(rx_buf->skb);
			rx_buf->skb = NULL;
		}
		if (!rx_buf->page)
			continue;

		dma_unmap_page(dev, rx_buf->dma, PAGE_SIZE, DMA_FROM_DEVICE);
		__free_pages(rx_buf->page, 0);

		rx_buf->page = NULL;
		rx_buf->page_offset = 0;
	}

	memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_alloc = 0;
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * ice_free_rx_ring - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 */
void ice_free_rx_ring(struct ice_ring *rx_ring)
{
	ice_clean_rx_ring(rx_ring);
	devm_kfree(rx_ring->dev, rx_ring->rx_buf);
	rx_ring->rx_buf = NULL;

	if (rx_ring->desc) {
		dmam_free_coherent(rx_ring->dev, rx_ring->size,
				   rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

/**
 * ice_setup_rx_ring - Allocate the Rx descriptors
 * @rx_ring: the Rx ring to set up
 *
 * Return 0 on success, negative on error
 */
int ice_setup_rx_ring(struct ice_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;

	if (!dev)
		return -ENOMEM;

	/* warn if we are about to overwrite the pointer */
	WARN_ON(rx_ring->rx_buf);
	rx_ring->rx_buf =
		devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count,
			     GFP_KERNEL);
	if (!rx_ring->rx_buf)
		return -ENOMEM;

	/* round up to nearest 4K */
	rx_ring->size = rx_ring->count * sizeof(union ice_32byte_rx_desc);
	rx_ring->size = ALIGN(rx_ring->size, 4096);
	rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
					    GFP_KERNEL);
	if (!rx_ring->desc) {
		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			rx_ring->size);
		goto err;
	}

	rx_ring->next_to_use = 0;
	rx_ring->next_to_clean = 0;
	return 0;

err:
	devm_kfree(dev, rx_ring->rx_buf);
	rx_ring->rx_buf = NULL;
	return -ENOMEM;
}

/**
 * ice_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 */
static void ice_release_rx_desc(struct ice_ring *rx_ring, u32 val)
{
	rx_ring->next_to_use = val;

	/* update next to alloc since we have filled the ring */
	rx_ring->next_to_alloc = val;

	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch. (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64).
	 */
	wmb();
	writel(val, rx_ring->tail);
}

/**
 * ice_alloc_mapped_page - recycle or make a new page
 * @rx_ring: ring to use
 * @bi: rx_buf struct to modify
 *
 * Returns true if the page was successfully allocated or
 * reused.
 */
static bool ice_alloc_mapped_page(struct ice_ring *rx_ring,
				  struct ice_rx_buf *bi)
{
	struct page *page = bi->page;
	dma_addr_t dma;

	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page)) {
		rx_ring->rx_stats.page_reuse_count++;
		return true;
	}

	/* alloc new page for storage */
	page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
	}

	/* map page for use */
	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);

	/* if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
	 */
	if (dma_mapping_error(rx_ring->dev, dma)) {
		__free_pages(page, 0);
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
	}

	bi->dma = dma;
	bi->page = page;
	bi->page_offset = 0;

	return true;
}

/**
 * ice_alloc_rx_bufs - Replace used receive buffers
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
 *
 * Returns false if all allocations were successful, true if any fail
 */
bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
{
	union ice_32b_rx_flex_desc *rx_desc;
	u16 ntu = rx_ring->next_to_use;
	struct ice_rx_buf *bi;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
		return false;

	/* get the RX descriptor and buffer based on next_to_use */
	rx_desc = ICE_RX_DESC(rx_ring, ntu);
	bi = &rx_ring->rx_buf[ntu];

	do {
		if (!ice_alloc_mapped_page(rx_ring, bi))
			goto no_bufs;

		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);

		rx_desc++;
		bi++;
		ntu++;
		if (unlikely(ntu == rx_ring->count)) {
			rx_desc = ICE_RX_DESC(rx_ring, 0);
			bi = rx_ring->rx_buf;
			ntu = 0;
		}

		/* clear the status bits for the next_to_use descriptor */
		rx_desc->wb.status_error0 = 0;

		cleaned_count--;
	} while (cleaned_count);

	if (rx_ring->next_to_use != ntu)
		ice_release_rx_desc(rx_ring, ntu);

	return false;

no_bufs:
	if (rx_ring->next_to_use != ntu)
		ice_release_rx_desc(rx_ring, ntu);

	/* make sure to come back via polling to try again after
	 * allocation failure
	 */
	return true;
}

/**
 * ice_page_is_reserved - check if reuse is possible
 * @page: page struct to check
 */
static bool ice_page_is_reserved(struct page *page)
{
	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
}

/**
 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff
 * @rx_buf: buffer containing page to add
 * @rx_desc: descriptor containing length of buffer written by hardware
 * @skb: sk_buf to place the data into
 *
 * This function will add the data contained in rx_buf->page to the skb.
 * This is done either through a direct copy if the data in the buffer is
 * less than the skb header size, otherwise it will just attach the page as
 * a frag to the skb.
 *
 * The function will then update the page offset if necessary and return
 * true if the buffer can be reused by the adapter.
 */
static bool ice_add_rx_frag(struct ice_rx_buf *rx_buf,
			    union ice_32b_rx_flex_desc *rx_desc,
			    struct sk_buff *skb)
{
#if (PAGE_SIZE < 8192)
	unsigned int truesize = ICE_RXBUF_2048;
#else
	unsigned int last_offset = PAGE_SIZE - ICE_RXBUF_2048;
	unsigned int truesize;
#endif /* PAGE_SIZE < 8192) */

	struct page *page;
	unsigned int size;

	size = le16_to_cpu(rx_desc->wb.pkt_len) &
		ICE_RX_FLX_DESC_PKT_LEN_M;

	page = rx_buf->page;

#if (PAGE_SIZE >= 8192)
	truesize = ALIGN(size, L1_CACHE_BYTES);
#endif /* PAGE_SIZE >= 8192) */

	/* will the data fit in the skb we allocated? if so, just
	 * copy it as it is pretty small anyway
	 */
	if (size <= ICE_RX_HDR_SIZE && !skb_is_nonlinear(skb)) {
		unsigned char *va = page_address(page) + rx_buf->page_offset;

		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));

		/* page is not reserved, we can reuse buffer as-is */
		if (likely(!ice_page_is_reserved(page)))
			return true;

		/* this page cannot be reused so discard it */
		__free_pages(page, 0);
		return false;
	}

	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
			rx_buf->page_offset, size, truesize);

	/* avoid re-using remote pages */
	if (unlikely(ice_page_is_reserved(page)))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
	if (unlikely(page_count(page) != 1))
		return false;

	/* flip page offset to other buffer */
	rx_buf->page_offset ^= truesize;
#else
	/* move offset up to the next cache line */
	rx_buf->page_offset += truesize;

	if (rx_buf->page_offset > last_offset)
		return false;
#endif /* PAGE_SIZE < 8192) */

	/* Even if we own the page, we are not allowed to use atomic_set()
	 * This would break get_page_unless_zero() users.
	 */
	get_page(rx_buf->page);

	return true;
}

/**
 * ice_reuse_rx_page - page flip buffer and store it back on the ring
 * @rx_ring: Rx descriptor ring to store buffers on
 * @old_buf: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 */
static void ice_reuse_rx_page(struct ice_ring *rx_ring,
			      struct ice_rx_buf *old_buf)
{
	u16 nta = rx_ring->next_to_alloc;
	struct ice_rx_buf *new_buf;

	new_buf = &rx_ring->rx_buf[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
	*new_buf = *old_buf;
}

/**
 * ice_fetch_rx_buf - Allocate skb and populate it
 * @rx_ring: Rx descriptor ring to transact packets on
 * @rx_desc: descriptor containing info written by hardware
 *
 * This function allocates an skb on the fly, and populates it with the page
 * data from the current receive descriptor, taking care to set up the skb
 * correctly, as well as handling calling the page recycle function if
 * necessary.
 */
static struct sk_buff *ice_fetch_rx_buf(struct ice_ring *rx_ring,
					union ice_32b_rx_flex_desc *rx_desc)
{
	struct ice_rx_buf *rx_buf;
	struct sk_buff *skb;
	struct page *page;

	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
	page = rx_buf->page;
	prefetchw(page);

	skb = rx_buf->skb;

	if (likely(!skb)) {
		u8 *page_addr = page_address(page) + rx_buf->page_offset;

		/* prefetch first cache line of first page */
		prefetch(page_addr);
#if L1_CACHE_BYTES < 128
		prefetch((void *)(page_addr + L1_CACHE_BYTES));
#endif /* L1_CACHE_BYTES */

		/* allocate a skb to store the frags */
		skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
				       ICE_RX_HDR_SIZE,
				       GFP_ATOMIC | __GFP_NOWARN);
		if (unlikely(!skb)) {
			rx_ring->rx_stats.alloc_buf_failed++;
			return NULL;
		}

		/* we will be copying header into skb->data in
		 * pskb_may_pull so it is in our interest to prefetch
		 * it now to avoid a possible cache miss
		 */
		prefetchw(skb->data);

		skb_record_rx_queue(skb, rx_ring->q_index);
	} else {
		/* we are reusing so sync this buffer for CPU use */
		dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
					      rx_buf->page_offset,
					      ICE_RXBUF_2048,
					      DMA_FROM_DEVICE);

		rx_buf->skb = NULL;
	}

	/* pull page into skb */
	if (ice_add_rx_frag(rx_buf, rx_desc, skb)) {
		/* hand second half of page back to the ring */
		ice_reuse_rx_page(rx_ring, rx_buf);
		rx_ring->rx_stats.page_reuse_count++;
	} else {
		/* we are not reusing the buffer so unmap it */
		dma_unmap_page(rx_ring->dev, rx_buf->dma, PAGE_SIZE,
			       DMA_FROM_DEVICE);
	}

	/* clear contents of buffer_info */
	rx_buf->page = NULL;

	return skb;
}

/**
 * ice_pull_tail - ice specific version of skb_pull_tail
 * @skb: pointer to current skb being adjusted
 *
 * This function is an ice specific version of __pskb_pull_tail. The
 * main difference between this version and the original function is that
 * this function can make several assumptions about the state of things
 * that allow for significant optimizations versus the standard function.
 * As a result we can do things like drop a frag and maintain an accurate
 * truesize for the skb.
 */
static void ice_pull_tail(struct sk_buff *skb)
{
	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
	unsigned int pull_len;
	unsigned char *va;

	/* it is valid to use page_address instead of kmap since we are
	 * working with pages allocated out of the lomem pool per
	 * alloc_page(GFP_ATOMIC)
	 */
	va = skb_frag_address(frag);

	/* we need the header to contain the greater of either ETH_HLEN or
	 * 60 bytes if the skb->len is less than 60 for skb_pad.
	 */
	pull_len = eth_get_headlen(va, ICE_RX_HDR_SIZE);

	/* align pull length to size of long to optimize memcpy performance */
	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));

	/* update all of the pointers */
	skb_frag_size_sub(frag, pull_len);
	frag->page_offset += pull_len;
	skb->data_len -= pull_len;
	skb->tail += pull_len;
}

/**
 * ice_cleanup_headers - Correct empty headers
 * @skb: pointer to current skb being fixed
 *
 * Also address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 */
static bool ice_cleanup_headers(struct sk_buff *skb)
{
	/* place header in linear portion of buffer */
	if (skb_is_nonlinear(skb))
		ice_pull_tail(skb);

	/* if eth_skb_pad returns an error the skb was freed */
	if (eth_skb_pad(skb))
		return true;

	return false;
}

/**
 * ice_test_staterr - tests bits in Rx descriptor status and error fields
 * @rx_desc: pointer to receive descriptor (in le64 format)
 * @stat_err_bits: value to mask
 *
 * This function does some fast chicanery in order to return the
 * value of the mask which is really only used for boolean tests.
 * The status_error_len doesn't need to be shifted because it begins
 * at offset zero.
 */
static bool ice_test_staterr(union ice_32b_rx_flex_desc *rx_desc,
			     const u16 stat_err_bits)
{
	return !!(rx_desc->wb.status_error0 &
		  cpu_to_le16(stat_err_bits));
}

/**
 * ice_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: Current socket buffer containing buffer in progress
 *
 * This function updates next to clean. If the buffer is an EOP buffer
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
 */
static bool ice_is_non_eop(struct ice_ring *rx_ring,
			   union ice_32b_rx_flex_desc *rx_desc,
			   struct sk_buff *skb)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(ICE_RX_DESC(rx_ring, ntc));

	/* if we are the last buffer then there is nothing else to do */
#define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
	if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
		return false;

	/* place skb in next buffer to be received */
	rx_ring->rx_buf[ntc].skb = skb;
	rx_ring->rx_stats.non_eop_descs++;

	return true;
}

/**
 * ice_ptype_to_htype - get a hash type
 * @ptype: the ptype value from the descriptor
 *
 * Returns a hash type to be used by skb_set_hash
 */
static enum pkt_hash_types ice_ptype_to_htype(u8 __always_unused ptype)
{
	return PKT_HASH_TYPE_NONE;
}

/**
 * ice_rx_hash - set the hash value in the skb
 * @rx_ring: descriptor ring
 * @rx_desc: specific descriptor
 * @skb: pointer to current skb
 * @rx_ptype: the ptype value from the descriptor
 */
static void
ice_rx_hash(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
	    struct sk_buff *skb, u8 rx_ptype)
{
	struct ice_32b_rx_flex_desc_nic *nic_mdid;
	u32 hash;

	if (!(rx_ring->netdev->features & NETIF_F_RXHASH))
		return;

	if (rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC)
		return;

	nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc;
	hash = le32_to_cpu(nic_mdid->rss_hash);
	skb_set_hash(skb, hash, ice_ptype_to_htype(rx_ptype));
}

/**
 * ice_rx_csum - Indicate in skb if checksum is good
 * @vsi: the VSI we care about
 * @skb: skb currently being received and modified
 * @rx_desc: the receive descriptor
 * @ptype: the packet type decoded by hardware
 *
 * skb->protocol must be set before this function is called
 */
static void ice_rx_csum(struct ice_vsi *vsi, struct sk_buff *skb,
			union ice_32b_rx_flex_desc *rx_desc, u8 ptype)
{
	struct ice_rx_ptype_decoded decoded;
	u32 rx_error, rx_status;
	bool ipv4, ipv6;

	rx_status = le16_to_cpu(rx_desc->wb.status_error0);
	rx_error = rx_status;

	decoded = ice_decode_rx_desc_ptype(ptype);

	/* Start with CHECKSUM_NONE and by default csum_level = 0 */
	skb->ip_summed = CHECKSUM_NONE;
	skb_checksum_none_assert(skb);

	/* check if Rx checksum is enabled */
	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
		return;

	/* check if HW has decoded the packet and checksum */
	if (!(rx_status & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S)))
		return;

	if (!(decoded.known && decoded.outer_ip))
		return;

	ipv4 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV4);
	ipv6 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV6);

	if (ipv4 && (rx_error & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |
				 BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S))))
		goto checksum_fail;
	else if (ipv6 && (rx_status &
		 (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S))))
		goto checksum_fail;

	/* check for L4 errors and handle packets that were not able to be
	 * checksummed due to arrival speed
	 */
	if (rx_error & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S))
		goto checksum_fail;

	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
	switch (decoded.inner_prot) {
	case ICE_RX_PTYPE_INNER_PROT_TCP:
	case ICE_RX_PTYPE_INNER_PROT_UDP:
	case ICE_RX_PTYPE_INNER_PROT_SCTP:
		skb->ip_summed = CHECKSUM_UNNECESSARY;
	default:
		break;
	}
	return;

checksum_fail:
	vsi->back->hw_csum_rx_error++;
}

/**
 * ice_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: Rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 * @ptype: the packet type decoded by hardware
 *
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, protocol, and
 * other fields within the skb.
 */
static void ice_process_skb_fields(struct ice_ring *rx_ring,
				   union ice_32b_rx_flex_desc *rx_desc,
				   struct sk_buff *skb, u8 ptype)
{
	ice_rx_hash(rx_ring, rx_desc, skb, ptype);

	/* modifies the skb - consumes the enet header */
	skb->protocol = eth_type_trans(skb, rx_ring->netdev);

	ice_rx_csum(rx_ring->vsi, skb, rx_desc, ptype);
}

/**
 * ice_receive_skb - Send a completed packet up the stack
 * @rx_ring: Rx ring in play
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
 *
 * This function sends the completed packet (via. skb) up the stack using
 * gro receive functions (with/without vlan tag)
 */
static void ice_receive_skb(struct ice_ring *rx_ring, struct sk_buff *skb,
			    u16 vlan_tag)
{
	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
	    (vlan_tag & VLAN_VID_MASK)) {
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
	}
	napi_gro_receive(&rx_ring->q_vector->napi, skb);
}

/**
 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
 * @rx_ring: Rx descriptor ring to transact packets on
 * @budget: Total limit on number of packets to process
 *
 * This function provides a "bounce buffer" approach to Rx interrupt
 * processing. The advantage to this is that on systems that have
 * expensive overhead for IOMMU access this provides a means of avoiding
 * it by maintaining the mapping of the page to the system.
 *
 * Returns amount of work completed
 */
static int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
{
	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
	bool failure = false;

	/* start the loop to process RX packets bounded by 'budget' */
	while (likely(total_rx_pkts < (unsigned int)budget)) {
		union ice_32b_rx_flex_desc *rx_desc;
		struct sk_buff *skb;
		u16 stat_err_bits;
		u16 vlan_tag = 0;
		u8 rx_ptype;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= ICE_RX_BUF_WRITE) {
			failure = failure ||
				  ice_alloc_rx_bufs(rx_ring, cleaned_count);
			cleaned_count = 0;
		}

		/* get the RX desc from RX ring based on 'next_to_clean' */
		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);

		/* status_error_len will always be zero for unused descriptors
		 * because it's cleared in cleanup, and overlaps with hdr_addr
		 * which is always zero because packet split isn't used, if the
		 * hardware wrote DD then it will be non-zero
		 */
		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
		if (!ice_test_staterr(rx_desc, stat_err_bits))
			break;

		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * DD bit is set.
		 */
		dma_rmb();

		/* allocate (if needed) and populate skb */
		skb = ice_fetch_rx_buf(rx_ring, rx_desc);
		if (!skb)
			break;

		cleaned_count++;

		/* skip if it is NOP desc */
		if (ice_is_non_eop(rx_ring, rx_desc, skb))
			continue;

		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
		if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
			dev_kfree_skb_any(skb);
			continue;
		}

		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
			ICE_RX_FLEX_DESC_PTYPE_M;

		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
		if (ice_test_staterr(rx_desc, stat_err_bits))
			vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);

		/* correct empty headers and pad skb if needed (to make valid
		 * ethernet frame
		 */
		if (ice_cleanup_headers(skb)) {
			skb = NULL;
			continue;
		}

		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;

		/* populate checksum, VLAN, and protocol */
		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);

		/* send completed skb up the stack */
		ice_receive_skb(rx_ring, skb, vlan_tag);

		/* update budget accounting */
		total_rx_pkts++;
	}

	/* update queue and vector specific stats */
	u64_stats_update_begin(&rx_ring->syncp);
	rx_ring->stats.pkts += total_rx_pkts;
	rx_ring->stats.bytes += total_rx_bytes;
	u64_stats_update_end(&rx_ring->syncp);
	rx_ring->q_vector->rx.total_pkts += total_rx_pkts;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

	/* guarantee a trip back through this routine if there was a failure */
	return failure ? budget : (int)total_rx_pkts;
}

/**
 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
 * @itr_idx: interrupt throttling index
 * @reg_itr: interrupt throttling value adjusted based on ITR granularity
 */
static u32 ice_buildreg_itr(int itr_idx, u16 reg_itr)
{
	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
		(reg_itr << GLINT_DYN_CTL_INTERVAL_S);
}

/**
 * ice_update_ena_itr - Update ITR and re-enable MSIX interrupt
 * @vsi: the VSI associated with the q_vector
 * @q_vector: q_vector for which ITR is being updated and interrupt enabled
 */
static void
ice_update_ena_itr(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
{
	struct ice_hw *hw = &vsi->back->hw;
	struct ice_ring_container *rc;
	u32 itr_val;

	/* This block of logic allows us to get away with only updating
	 * one ITR value with each interrupt. The idea is to perform a
	 * pseudo-lazy update with the following criteria.
	 *
	 * 1. Rx is given higher priority than Tx if both are in same state
	 * 2. If we must reduce an ITR that is given highest priority.
	 * 3. We then give priority to increasing ITR based on amount.
	 */
	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
		rc = &q_vector->rx;
		/* Rx ITR needs to be reduced, this is highest priority */
		itr_val = ice_buildreg_itr(rc->itr_idx, rc->target_itr);
		rc->current_itr = rc->target_itr;
	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
		rc = &q_vector->tx;
		/* Tx ITR needs to be reduced, this is second priority
		 * Tx ITR needs to be increased more than Rx, fourth priority
		 */
		itr_val = ice_buildreg_itr(rc->itr_idx, rc->target_itr);
		rc->current_itr = rc->target_itr;
	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
		rc = &q_vector->rx;
		/* Rx ITR needs to be increased, third priority */
		itr_val = ice_buildreg_itr(rc->itr_idx, rc->target_itr);
		rc->current_itr = rc->target_itr;
	} else {
		/* Still have to re-enable the interrupts */
		itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
	}

	if (!test_bit(__ICE_DOWN, vsi->state)) {
		int vector = vsi->hw_base_vector + q_vector->v_idx;

		wr32(hw, GLINT_DYN_CTL(vector), itr_val);
	}
}

/**
 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 */
int ice_napi_poll(struct napi_struct *napi, int budget)
{
	struct ice_q_vector *q_vector =
				container_of(napi, struct ice_q_vector, napi);
	struct ice_vsi *vsi = q_vector->vsi;
	struct ice_pf *pf = vsi->back;
	bool clean_complete = true;
	int budget_per_ring = 0;
	struct ice_ring *ring;
	int work_done = 0;

	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
	ice_for_each_ring(ring, q_vector->tx)
		if (!ice_clean_tx_irq(vsi, ring, budget))
			clean_complete = false;

	/* Handle case where we are called by netpoll with a budget of 0 */
	if (budget <= 0)
		return budget;

	/* We attempt to distribute budget to each Rx queue fairly, but don't
	 * allow the budget to go below 1 because that would exit polling early.
	 */
	if (q_vector->num_ring_rx)
		budget_per_ring = max(budget / q_vector->num_ring_rx, 1);

	ice_for_each_ring(ring, q_vector->rx) {
		int cleaned;

		cleaned = ice_clean_rx_irq(ring, budget_per_ring);
		work_done += cleaned;
		/* if we clean as many as budgeted, we must not be done */
		if (cleaned >= budget_per_ring)
			clean_complete = false;
	}

	/* If work not completed, return budget and polling will return */
	if (!clean_complete)
		return budget;

	/* Exit the polling mode, but don't re-enable interrupts if stack might
	 * poll us due to busy-polling
	 */
	if (likely(napi_complete_done(napi, work_done)))
		if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
			ice_update_ena_itr(vsi, q_vector);

	return min_t(int, work_done, budget - 1);
}

/* helper function for building cmd/type/offset */
static __le64
build_ctob(u64 td_cmd, u64 td_offset, unsigned int size, u64 td_tag)
{
	return cpu_to_le64(ICE_TX_DESC_DTYPE_DATA |
			   (td_cmd    << ICE_TXD_QW1_CMD_S) |
			   (td_offset << ICE_TXD_QW1_OFFSET_S) |
			   ((u64)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
			   (td_tag    << ICE_TXD_QW1_L2TAG1_S));
}

/**
 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
 * @tx_ring: the ring to be checked
 * @size: the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 */
static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_subqueue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
	++tx_ring->tx_stats.restart_q;
	return 0;
}

/**
 * ice_maybe_stop_tx - 1st level check for Tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns 0 if stop is not needed
 */
static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
{
	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
		return 0;

	return __ice_maybe_stop_tx(tx_ring, size);
}

/**
 * ice_tx_map - Build the Tx descriptor
 * @tx_ring: ring to send buffer on
 * @first: first buffer info buffer to use
 * @off: pointer to struct that holds offload parameters
 *
 * This function loops over the skb data pointed to by *first
 * and gets a physical address for each memory location and programs
 * it and the length into the transmit descriptor.
 */
static void
ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
	   struct ice_tx_offload_params *off)
{
	u64 td_offset, td_tag, td_cmd;
	u16 i = tx_ring->next_to_use;
	struct skb_frag_struct *frag;
	unsigned int data_len, size;
	struct ice_tx_desc *tx_desc;
	struct ice_tx_buf *tx_buf;
	struct sk_buff *skb;
	dma_addr_t dma;

	td_tag = off->td_l2tag1;
	td_cmd = off->td_cmd;
	td_offset = off->td_offset;
	skb = first->skb;

	data_len = skb->data_len;
	size = skb_headlen(skb);

	tx_desc = ICE_TX_DESC(tx_ring, i);

	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
		td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
			  ICE_TX_FLAGS_VLAN_S;
	}

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

	tx_buf = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;

		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_buf, len, size);
		dma_unmap_addr_set(tx_buf, dma, dma);

		/* align size to end of page */
		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
		tx_desc->buf_addr = cpu_to_le64(dma);

		/* account for data chunks larger than the hardware
		 * can handle
		 */
		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset, max_data, td_tag);

			tx_desc++;
			i++;

			if (i == tx_ring->count) {
				tx_desc = ICE_TX_DESC(tx_ring, 0);
				i = 0;
			}

			dma += max_data;
			size -= max_data;

			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
			tx_desc->buf_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;

		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);

		tx_desc++;
		i++;

		if (i == tx_ring->count) {
			tx_desc = ICE_TX_DESC(tx_ring, 0);
			i = 0;
		}

		size = skb_frag_size(frag);
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);

		tx_buf = &tx_ring->tx_buf[i];
	}

	/* record bytecount for BQL */
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);

	/* record SW timestamp if HW timestamp is not available */
	skb_tx_timestamp(first->skb);

	i++;
	if (i == tx_ring->count)
		i = 0;

	/* write last descriptor with RS and EOP bits */
	td_cmd |= (u64)(ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS);
	tx_desc->cmd_type_offset_bsz =
			build_ctob(td_cmd, td_offset, size, td_tag);

	/* Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.
	 *
	 * We also use this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;

	tx_ring->next_to_use = i;

	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);

	/* notify HW of packet */
	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
		writel(i, tx_ring->tail);

		/* we need this if more than one processor can write to our tail
		 * at a time, it synchronizes IO on IA64/Altix systems
		 */
		mmiowb();
	}

	return;

dma_error:
	/* clear dma mappings for failed tx_buf map */
	for (;;) {
		tx_buf = &tx_ring->tx_buf[i];
		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
		if (tx_buf == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
}

/**
 * ice_tx_csum - Enable Tx checksum offloads
 * @first: pointer to the first descriptor
 * @off: pointer to struct that holds offload parameters
 *
 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
 */
static
int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
{
	u32 l4_len = 0, l3_len = 0, l2_len = 0;
	struct sk_buff *skb = first->skb;
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		unsigned char *hdr;
	} l4;
	__be16 frag_off, protocol;
	unsigned char *exthdr;
	u32 offset, cmd = 0;
	u8 l4_proto = 0;

	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);

	/* compute outer L2 header size */
	l2_len = ip.hdr - skb->data;
	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;

	if (skb->encapsulation)
		return -1;

	/* Enable IP checksum offloads */
	protocol = vlan_get_protocol(skb);
	if (protocol == htons(ETH_P_IP)) {
		l4_proto = ip.v4->protocol;
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
		if (first->tx_flags & ICE_TX_FLAGS_TSO)
			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
		else
			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;

	} else if (protocol == htons(ETH_P_IPV6)) {
		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
		exthdr = ip.hdr + sizeof(*ip.v6);
		l4_proto = ip.v6->nexthdr;
		if (l4.hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
					 &frag_off);
	} else {
		return -1;
	}

	/* compute inner L3 header size */
	l3_len = l4.hdr - ip.hdr;
	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;

	/* Enable L4 checksum offloads */
	switch (l4_proto) {
	case IPPROTO_TCP:
		/* enable checksum offloads */
		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
		l4_len = l4.tcp->doff;
		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
		l4_len = (sizeof(struct udphdr) >> 2);
		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
		break;
	case IPPROTO_SCTP:
		/* enable SCTP checksum offload */
		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
		l4_len = sizeof(struct sctphdr) >> 2;
		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
		break;

	default:
		if (first->tx_flags & ICE_TX_FLAGS_TSO)
			return -1;
		skb_checksum_help(skb);
		return 0;
	}

	off->td_cmd |= cmd;
	off->td_offset |= offset;
	return 1;
}

/**
 * ice_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
 * @tx_ring: ring to send buffer on
 * @first: pointer to struct ice_tx_buf
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise returns 0 to indicate the flags has been set properly.
 */
static int
ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
{
	struct sk_buff *skb = first->skb;
	__be16 protocol = skb->protocol;

	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* when HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling. In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		goto out;
	}

	/* if we have a HW VLAN tag being added, default to the HW one */
	if (skb_vlan_tag_present(skb)) {
		first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
		first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
	} else if (protocol == htons(ETH_P_8021Q)) {
		struct vlan_hdr *vhdr, _vhdr;

		/* for SW VLAN, check the next protocol and store the tag */
		vhdr = (struct vlan_hdr *)skb_header_pointer(skb, ETH_HLEN,
							     sizeof(_vhdr),
							     &_vhdr);
		if (!vhdr)
			return -EINVAL;

		first->tx_flags |= ntohs(vhdr->h_vlan_TCI) <<
				   ICE_TX_FLAGS_VLAN_S;
		first->tx_flags |= ICE_TX_FLAGS_SW_VLAN;
	}

out:
	return 0;
}

/**
 * ice_tso - computes mss and TSO length to prepare for TSO
 * @first: pointer to struct ice_tx_buf
 * @off: pointer to struct that holds offload parameters
 *
 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
 */
static
int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
{
	struct sk_buff *skb = first->skb;
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		unsigned char *hdr;
	} l4;
	u64 cd_mss, cd_tso_len;
	u32 paylen, l4_start;
	int err;

	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

	if (!skb_is_gso(skb))
		return 0;

	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;

	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);

	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		ip.v4->tot_len = 0;
		ip.v4->check = 0;
	} else {
		ip.v6->payload_len = 0;
	}

	/* determine offset of transport header */
	l4_start = l4.hdr - skb->data;

	/* remove payload length from checksum */
	paylen = skb->len - l4_start;
	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));

	/* compute length of segmentation header */
	off->header_len = (l4.tcp->doff * 4) + l4_start;

	/* update gso_segs and bytecount */
	first->gso_segs = skb_shinfo(skb)->gso_segs;
	first->bytecount += (first->gso_segs - 1) * off->header_len;

	cd_tso_len = skb->len - off->header_len;
	cd_mss = skb_shinfo(skb)->gso_size;

	/* record cdesc_qw1 with TSO parameters */
	off->cd_qw1 |= ICE_TX_DESC_DTYPE_CTX |
			 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
			 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
			 (cd_mss << ICE_TXD_CTX_QW1_MSS_S);
	first->tx_flags |= ICE_TX_FLAGS_TSO;
	return 1;
}

/**
 * ice_txd_use_count  - estimate the number of descriptors needed for Tx
 * @size: transmit request size in bytes
 *
 * Due to hardware alignment restrictions (4K alignment), we need to
 * assume that we can have no more than 12K of data per descriptor, even
 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
 * Thus, we need to divide by 12K. But division is slow! Instead,
 * we decompose the operation into shifts and one relatively cheap
 * multiply operation.
 *
 * To divide by 12K, we first divide by 4K, then divide by 3:
 *     To divide by 4K, shift right by 12 bits
 *     To divide by 3, multiply by 85, then divide by 256
 *     (Divide by 256 is done by shifting right by 8 bits)
 * Finally, we add one to round up. Because 256 isn't an exact multiple of
 * 3, we'll underestimate near each multiple of 12K. This is actually more
 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
 * segment. For our purposes this is accurate out to 1M which is orders of
 * magnitude greater than our largest possible GSO size.
 *
 * This would then be implemented as:
 *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
 *
 * Since multiplication and division are commutative, we can reorder
 * operations into:
 *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
 */
static unsigned int ice_txd_use_count(unsigned int size)
{
	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
}

/**
 * ice_xmit_desc_count - calculate number of Tx descriptors needed
 * @skb: send buffer
 *
 * Returns number of data descriptors needed for this skb.
 */
static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
{
	const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
	unsigned int count = 0, size = skb_headlen(skb);

	for (;;) {
		count += ice_txd_use_count(size);

		if (!nr_frags--)
			break;

		size = skb_frag_size(frag++);
	}

	return count;
}

/**
 * __ice_chk_linearize - Check if there are more than 8 buffers per packet
 * @skb: send buffer
 *
 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
 * and so we need to figure out the cases where we need to linearize the skb.
 *
 * For TSO we need to count the TSO header and segment payload separately.
 * As such we need to check cases where we have 7 fragments or more as we
 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
 * the segment payload in the first descriptor, and another 7 for the
 * fragments.
 */
static bool __ice_chk_linearize(struct sk_buff *skb)
{
	const struct skb_frag_struct *frag, *stale;
	int nr_frags, sum;

	/* no need to check if number of frags is less than 7 */
	nr_frags = skb_shinfo(skb)->nr_frags;
	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
		return false;

	/* We need to walk through the list and validate that each group
	 * of 6 fragments totals at least gso_size.
	 */
	nr_frags -= ICE_MAX_BUF_TXD - 2;
	frag = &skb_shinfo(skb)->frags[0];

	/* Initialize size to the negative value of gso_size minus 1. We
	 * use this as the worst case scenerio in which the frag ahead
	 * of us only provides one byte which is why we are limited to 6
	 * descriptors for a single transmit as the header and previous
	 * fragment are already consuming 2 descriptors.
	 */
	sum = 1 - skb_shinfo(skb)->gso_size;

	/* Add size of frags 0 through 4 to create our initial sum */
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);

	/* Walk through fragments adding latest fragment, testing it, and
	 * then removing stale fragments from the sum.
	 */
	stale = &skb_shinfo(skb)->frags[0];
	for (;;) {
		sum += skb_frag_size(frag++);

		/* if sum is negative we failed to make sufficient progress */
		if (sum < 0)
			return true;

		if (!nr_frags--)
			break;

		sum -= skb_frag_size(stale++);
	}

	return false;
}

/**
 * ice_chk_linearize - Check if there are more than 8 fragments per packet
 * @skb:      send buffer
 * @count:    number of buffers used
 *
 * Note: Our HW can't scatter-gather more than 8 fragments to build
 * a packet on the wire and so we need to figure out the cases where we
 * need to linearize the skb.
 */
static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
{
	/* Both TSO and single send will work if count is less than 8 */
	if (likely(count < ICE_MAX_BUF_TXD))
		return false;

	if (skb_is_gso(skb))
		return __ice_chk_linearize(skb);

	/* we can support up to 8 data buffers for a single send */
	return count != ICE_MAX_BUF_TXD;
}

/**
 * ice_xmit_frame_ring - Sends buffer on Tx ring
 * @skb: send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 */
static netdev_tx_t
ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
{
	struct ice_tx_offload_params offload = { 0 };
	struct ice_tx_buf *first;
	unsigned int count;
	int tso, csum;

	count = ice_xmit_desc_count(skb);
	if (ice_chk_linearize(skb, count)) {
		if (__skb_linearize(skb))
			goto out_drop;
		count = ice_txd_use_count(skb->len);
		tx_ring->tx_stats.tx_linearize++;
	}

	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
	 *       + 4 desc gap to avoid the cache line where head is,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
			      ICE_DESCS_FOR_CTX_DESC)) {
		tx_ring->tx_stats.tx_busy++;
		return NETDEV_TX_BUSY;
	}

	offload.tx_ring = tx_ring;

	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_buf[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
	first->gso_segs = 1;
	first->tx_flags = 0;

	/* prepare the VLAN tagging flags for Tx */
	if (ice_tx_prepare_vlan_flags(tx_ring, first))
		goto out_drop;

	/* set up TSO offload */
	tso = ice_tso(first, &offload);
	if (tso < 0)
		goto out_drop;

	/* always set up Tx checksum offload */
	csum = ice_tx_csum(first, &offload);
	if (csum < 0)
		goto out_drop;

	if (tso || offload.cd_tunnel_params) {
		struct ice_tx_ctx_desc *cdesc;
		int i = tx_ring->next_to_use;

		/* grab the next descriptor */
		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
		i++;
		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

		/* setup context descriptor */
		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
		cdesc->rsvd = cpu_to_le16(0);
		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
	}

	ice_tx_map(tx_ring, first, &offload);
	return NETDEV_TX_OK;

out_drop:
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;
}

/**
 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
 * @skb: send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 */
netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;
	struct ice_ring *tx_ring;

	tx_ring = vsi->tx_rings[skb->queue_mapping];

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
		return NETDEV_TX_OK;

	return ice_xmit_frame_ring(skb, tx_ring);
}