1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright 2023 Red Hat
*/
#include "delta-index.h"
#include <linux/bitops.h>
#include <linux/bits.h>
#include <linux/compiler.h>
#include <linux/limits.h>
#include <linux/log2.h>
#include "cpu.h"
#include "errors.h"
#include "logger.h"
#include "memory-alloc.h"
#include "numeric.h"
#include "permassert.h"
#include "string-utils.h"
#include "time-utils.h"
#include "config.h"
#include "indexer.h"
/*
* The entries in a delta index could be stored in a single delta list, but to reduce search times
* and update costs it uses multiple delta lists. These lists are stored in a single chunk of
* memory managed by the delta_zone structure. The delta_zone can move the data around within its
* memory, so the location of each delta list is recorded as a bit offset into the memory. Because
* the volume index can contain over a million delta lists, we want to be efficient with the size
* of the delta list header information. This information is encoded into 16 bytes per list. The
* volume index delta list memory can easily exceed 4 gigabits, so a 64 bit value is needed to
* address the memory. The volume index delta lists average around 6 kilobits, so 16 bits are
* sufficient to store the size of a delta list.
*
* Each delta list is stored as a bit stream. Within the delta list encoding, bits and bytes are
* numbered in little endian order. Within a byte, bit 0 is the least significant bit (0x1), and
* bit 7 is the most significant bit (0x80). Within a bit stream, bit 7 is the most significant bit
* of byte 0, and bit 8 is the least significant bit of byte 1. Within a byte array, a byte's
* number corresponds to its index in the array.
*
* A standard delta list entry is stored as a fixed length payload (the value) followed by a
* variable length key (the delta). A collision entry is used when two block names have the same
* delta list address. A collision entry always follows a standard entry for the hash with which it
* collides, and is encoded with DELTA == 0 with an additional 256 bits field at the end,
* containing the full block name. An entry with a delta of 0 at the beginning of a delta list
* indicates a normal entry.
*
* The delta in each entry is encoded with a variable-length Huffman code to minimize the memory
* used by small deltas. The Huffman code is specified by three parameters, which can be computed
* from the desired mean delta when the index is full. (See compute_coding_constants() for
* details.)
*
* The bit field utilities used to read and write delta entries assume that it is possible to read
* some bytes beyond the end of the bit field, so a delta_zone memory allocation is guarded by two
* invalid delta lists to prevent reading outside the delta_zone memory. The valid delta lists are
* numbered 1 to N, and the guard lists are numbered 0 and N+1. The function to decode the bit
* stream include a step that skips over bits set to 0 until the first 1 bit is found. A corrupted
* delta list could cause this step to run off the end of the delta_zone memory, so as extra
* protection against this happening, the tail guard list is set to all ones.
*
* The delta_index supports two different forms. The mutable form is created by
* uds_initialize_delta_index(), and is used for the volume index and for open chapter indexes. The
* immutable form is created by uds_initialize_delta_index_page(), and is used for closed (and
* cached) chapter index pages. The immutable form does not allocate delta list headers or
* temporary offsets, and thus is somewhat more memory efficient.
*/
/*
* This is the largest field size supported by get_field() and set_field(). Any field that is
* larger is not guaranteed to fit in a single byte-aligned u32.
*/
#define MAX_FIELD_BITS ((sizeof(u32) - 1) * BITS_PER_BYTE + 1)
/*
* This is the largest field size supported by get_big_field() and set_big_field(). Any field that
* is larger is not guaranteed to fit in a single byte-aligned u64.
*/
#define MAX_BIG_FIELD_BITS ((sizeof(u64) - 1) * BITS_PER_BYTE + 1)
/*
* This is the number of guard bytes needed at the end of the memory byte array when using the bit
* utilities. These utilities call get_big_field() and set_big_field(), which can access up to 7
* bytes beyond the end of the desired field. The definition is written to make it clear how this
* value is derived.
*/
#define POST_FIELD_GUARD_BYTES (sizeof(u64) - 1)
/* The number of guard bits that are needed in the tail guard list */
#define GUARD_BITS (POST_FIELD_GUARD_BYTES * BITS_PER_BYTE)
/*
* The maximum size of a single delta list in bytes. We count guard bytes in this value because a
* buffer of this size can be used with move_bits().
*/
#define DELTA_LIST_MAX_BYTE_COUNT \
((U16_MAX + BITS_PER_BYTE) / BITS_PER_BYTE + POST_FIELD_GUARD_BYTES)
/* The number of extra bytes and bits needed to store a collision entry */
#define COLLISION_BYTES UDS_RECORD_NAME_SIZE
#define COLLISION_BITS (COLLISION_BYTES * BITS_PER_BYTE)
/*
* Immutable delta lists are packed into pages containing a header that encodes the delta list
* information into 19 bits per list (64KB bit offset).
*/
#define IMMUTABLE_HEADER_SIZE 19
/*
* Constants and structures for the saved delta index. "DI" is for delta_index, and -##### is a
* number to increment when the format of the data changes.
*/
#define MAGIC_SIZE 8
static const char DELTA_INDEX_MAGIC[] = "DI-00002";
struct delta_index_header {
char magic[MAGIC_SIZE];
u32 zone_number;
u32 zone_count;
u32 first_list;
u32 list_count;
u64 record_count;
u64 collision_count;
};
/*
* Header data used for immutable delta index pages. This data is followed by the delta list offset
* table.
*/
struct delta_page_header {
/* Externally-defined nonce */
u64 nonce;
/* The virtual chapter number */
u64 virtual_chapter_number;
/* Index of the first delta list on the page */
u16 first_list;
/* Number of delta lists on the page */
u16 list_count;
} __packed;
static inline u64 get_delta_list_byte_start(const struct delta_list *delta_list)
{
return delta_list->start / BITS_PER_BYTE;
}
static inline u16 get_delta_list_byte_size(const struct delta_list *delta_list)
{
unsigned int bit_offset = delta_list->start % BITS_PER_BYTE;
return BITS_TO_BYTES(bit_offset + delta_list->size);
}
static void rebalance_delta_zone(const struct delta_zone *delta_zone, u32 first,
u32 last)
{
struct delta_list *delta_list;
u64 new_start;
if (first == last) {
/* Only one list is moving, and we know there is space. */
delta_list = &delta_zone->delta_lists[first];
new_start = delta_zone->new_offsets[first];
if (delta_list->start != new_start) {
u64 source;
u64 destination;
source = get_delta_list_byte_start(delta_list);
delta_list->start = new_start;
destination = get_delta_list_byte_start(delta_list);
memmove(delta_zone->memory + destination,
delta_zone->memory + source,
get_delta_list_byte_size(delta_list));
}
} else {
/*
* There is more than one list. Divide the problem in half, and use recursive calls
* to process each half. Note that after this computation, first <= middle, and
* middle < last.
*/
u32 middle = (first + last) / 2;
delta_list = &delta_zone->delta_lists[middle];
new_start = delta_zone->new_offsets[middle];
/*
* The direction that our middle list is moving determines which half of the
* problem must be processed first.
*/
if (new_start > delta_list->start) {
rebalance_delta_zone(delta_zone, middle + 1, last);
rebalance_delta_zone(delta_zone, first, middle);
} else {
rebalance_delta_zone(delta_zone, first, middle);
rebalance_delta_zone(delta_zone, middle + 1, last);
}
}
}
static inline size_t get_zone_memory_size(unsigned int zone_count, size_t memory_size)
{
/* Round up so that each zone is a multiple of 64K in size. */
size_t ALLOC_BOUNDARY = 64 * 1024;
return (memory_size / zone_count + ALLOC_BOUNDARY - 1) & -ALLOC_BOUNDARY;
}
void uds_reset_delta_index(const struct delta_index *delta_index)
{
unsigned int z;
/*
* Initialize all delta lists to be empty. We keep 2 extra delta list descriptors, one
* before the first real entry and one after so that we don't need to bounds check the
* array access when calculating preceding and following gap sizes.
*/
for (z = 0; z < delta_index->zone_count; z++) {
u64 list_bits;
u64 spacing;
u64 offset;
unsigned int i;
struct delta_zone *zone = &delta_index->delta_zones[z];
struct delta_list *delta_lists = zone->delta_lists;
/* Zeroing the delta list headers initializes the head guard list correctly. */
memset(delta_lists, 0,
(zone->list_count + 2) * sizeof(struct delta_list));
/* Set all the bits in the end guard list. */
list_bits = (u64) zone->size * BITS_PER_BYTE - GUARD_BITS;
delta_lists[zone->list_count + 1].start = list_bits;
delta_lists[zone->list_count + 1].size = GUARD_BITS;
memset(zone->memory + (list_bits / BITS_PER_BYTE), ~0,
POST_FIELD_GUARD_BYTES);
/* Evenly space out the real delta lists by setting regular offsets. */
spacing = list_bits / zone->list_count;
offset = spacing / 2;
for (i = 1; i <= zone->list_count; i++) {
delta_lists[i].start = offset;
offset += spacing;
}
/* Update the statistics. */
zone->discard_count += zone->record_count;
zone->record_count = 0;
zone->collision_count = 0;
}
}
/* Compute the Huffman coding parameters for the given mean delta. The Huffman code is specified by
* three parameters:
*
* MINBITS The number of bits in the smallest code
* BASE The number of values coded using a code of length MINBITS
* INCR The number of values coded by using one additional bit
*
* These parameters are related by this equation:
*
* BASE + INCR == 1 << MINBITS
*
* The math for the Huffman code of an exponential distribution says that
*
* INCR = log(2) * MEAN_DELTA
*
* Then use the smallest MINBITS value so that
*
* (1 << MINBITS) > INCR
*
* And then
*
* BASE = (1 << MINBITS) - INCR
*
* Now the index can generate a code such that
* - The first BASE values code using MINBITS bits.
* - The next INCR values code using MINBITS+1 bits.
* - The next INCR values code using MINBITS+2 bits.
* - (and so on).
*/
static void compute_coding_constants(u32 mean_delta, u16 *min_bits, u32 *min_keys, u32 *incr_keys)
{
/*
* We want to compute the rounded value of log(2) * mean_delta. Since we cannot always use
* floating point, use a really good integer approximation.
*/
*incr_keys = (836158UL * mean_delta + 603160UL) / 1206321UL;
*min_bits = bits_per(*incr_keys + 1);
*min_keys = (1 << *min_bits) - *incr_keys;
}
void uds_uninitialize_delta_index(struct delta_index *delta_index)
{
unsigned int z;
if (delta_index->delta_zones == NULL)
return;
for (z = 0; z < delta_index->zone_count; z++) {
vdo_free(vdo_forget(delta_index->delta_zones[z].new_offsets));
vdo_free(vdo_forget(delta_index->delta_zones[z].delta_lists));
vdo_free(vdo_forget(delta_index->delta_zones[z].memory));
}
vdo_free(delta_index->delta_zones);
memset(delta_index, 0, sizeof(struct delta_index));
}
static int initialize_delta_zone(struct delta_zone *delta_zone, size_t size,
u32 first_list, u32 list_count, u32 mean_delta,
u32 payload_bits, u8 tag)
{
int result;
result = vdo_allocate(size, u8, "delta list", &delta_zone->memory);
if (result != VDO_SUCCESS)
return result;
result = vdo_allocate(list_count + 2, u64, "delta list temp",
&delta_zone->new_offsets);
if (result != VDO_SUCCESS)
return result;
/* Allocate the delta lists. */
result = vdo_allocate(list_count + 2, struct delta_list, "delta lists",
&delta_zone->delta_lists);
if (result != VDO_SUCCESS)
return result;
compute_coding_constants(mean_delta, &delta_zone->min_bits,
&delta_zone->min_keys, &delta_zone->incr_keys);
delta_zone->value_bits = payload_bits;
delta_zone->buffered_writer = NULL;
delta_zone->size = size;
delta_zone->rebalance_time = 0;
delta_zone->rebalance_count = 0;
delta_zone->record_count = 0;
delta_zone->collision_count = 0;
delta_zone->discard_count = 0;
delta_zone->overflow_count = 0;
delta_zone->first_list = first_list;
delta_zone->list_count = list_count;
delta_zone->tag = tag;
return UDS_SUCCESS;
}
int uds_initialize_delta_index(struct delta_index *delta_index, unsigned int zone_count,
u32 list_count, u32 mean_delta, u32 payload_bits,
size_t memory_size, u8 tag)
{
int result;
unsigned int z;
size_t zone_memory;
result = vdo_allocate(zone_count, struct delta_zone, "Delta Index Zones",
&delta_index->delta_zones);
if (result != VDO_SUCCESS)
return result;
delta_index->zone_count = zone_count;
delta_index->list_count = list_count;
delta_index->lists_per_zone = DIV_ROUND_UP(list_count, zone_count);
delta_index->memory_size = 0;
delta_index->mutable = true;
delta_index->tag = tag;
for (z = 0; z < zone_count; z++) {
u32 lists_in_zone = delta_index->lists_per_zone;
u32 first_list_in_zone = z * lists_in_zone;
if (z == zone_count - 1) {
/*
* The last zone gets fewer lists if zone_count doesn't evenly divide
* list_count. We'll have an underflow if the assertion below doesn't hold.
*/
if (delta_index->list_count <= first_list_in_zone) {
uds_uninitialize_delta_index(delta_index);
return uds_log_error_strerror(UDS_INVALID_ARGUMENT,
"%u delta lists not enough for %u zones",
list_count, zone_count);
}
lists_in_zone = delta_index->list_count - first_list_in_zone;
}
zone_memory = get_zone_memory_size(zone_count, memory_size);
result = initialize_delta_zone(&delta_index->delta_zones[z], zone_memory,
first_list_in_zone, lists_in_zone,
mean_delta, payload_bits, tag);
if (result != UDS_SUCCESS) {
uds_uninitialize_delta_index(delta_index);
return result;
}
delta_index->memory_size +=
(sizeof(struct delta_zone) + zone_memory +
(lists_in_zone + 2) * (sizeof(struct delta_list) + sizeof(u64)));
}
uds_reset_delta_index(delta_index);
return UDS_SUCCESS;
}
/* Read a bit field from an arbitrary bit boundary. */
static inline u32 get_field(const u8 *memory, u64 offset, u8 size)
{
const void *addr = memory + offset / BITS_PER_BYTE;
return (get_unaligned_le32(addr) >> (offset % BITS_PER_BYTE)) & ((1 << size) - 1);
}
/* Write a bit field to an arbitrary bit boundary. */
static inline void set_field(u32 value, u8 *memory, u64 offset, u8 size)
{
void *addr = memory + offset / BITS_PER_BYTE;
int shift = offset % BITS_PER_BYTE;
u32 data = get_unaligned_le32(addr);
data &= ~(((1 << size) - 1) << shift);
data |= value << shift;
put_unaligned_le32(data, addr);
}
/* Get the bit offset to the immutable delta list header. */
static inline u32 get_immutable_header_offset(u32 list_number)
{
return sizeof(struct delta_page_header) * BITS_PER_BYTE +
list_number * IMMUTABLE_HEADER_SIZE;
}
/* Get the bit offset to the start of the immutable delta list bit stream. */
static inline u32 get_immutable_start(const u8 *memory, u32 list_number)
{
return get_field(memory, get_immutable_header_offset(list_number),
IMMUTABLE_HEADER_SIZE);
}
/* Set the bit offset to the start of the immutable delta list bit stream. */
static inline void set_immutable_start(u8 *memory, u32 list_number, u32 start)
{
set_field(start, memory, get_immutable_header_offset(list_number),
IMMUTABLE_HEADER_SIZE);
}
static bool verify_delta_index_page(u64 nonce, u16 list_count, u64 expected_nonce,
u8 *memory, size_t memory_size)
{
unsigned int i;
/*
* Verify the nonce. A mismatch can happen here during rebuild if we haven't written the
* entire volume at least once.
*/
if (nonce != expected_nonce)
return false;
/* Verify that the number of delta lists can fit in the page. */
if (list_count > ((memory_size - sizeof(struct delta_page_header)) *
BITS_PER_BYTE / IMMUTABLE_HEADER_SIZE))
return false;
/*
* Verify that the first delta list is immediately after the last delta
* list header.
*/
if (get_immutable_start(memory, 0) != get_immutable_header_offset(list_count + 1))
return false;
/* Verify that the lists are in the correct order. */
for (i = 0; i < list_count; i++) {
if (get_immutable_start(memory, i) > get_immutable_start(memory, i + 1))
return false;
}
/*
* Verify that the last list ends on the page, and that there is room
* for the post-field guard bits.
*/
if (get_immutable_start(memory, list_count) >
(memory_size - POST_FIELD_GUARD_BYTES) * BITS_PER_BYTE)
return false;
/* Verify that the guard bytes are correctly set to all ones. */
for (i = 0; i < POST_FIELD_GUARD_BYTES; i++) {
if (memory[memory_size - POST_FIELD_GUARD_BYTES + i] != (u8) ~0)
return false;
}
/* All verifications passed. */
return true;
}
/* Initialize a delta index page to refer to a supplied page. */
int uds_initialize_delta_index_page(struct delta_index_page *delta_index_page,
u64 expected_nonce, u32 mean_delta, u32 payload_bits,
u8 *memory, size_t memory_size)
{
u64 nonce;
u64 vcn;
u64 first_list;
u64 list_count;
struct delta_page_header *header = (struct delta_page_header *) memory;
struct delta_zone *delta_zone = &delta_index_page->delta_zone;
const u8 *nonce_addr = (const u8 *) &header->nonce;
const u8 *vcn_addr = (const u8 *) &header->virtual_chapter_number;
const u8 *first_list_addr = (const u8 *) &header->first_list;
const u8 *list_count_addr = (const u8 *) &header->list_count;
/* First assume that the header is little endian. */
nonce = get_unaligned_le64(nonce_addr);
vcn = get_unaligned_le64(vcn_addr);
first_list = get_unaligned_le16(first_list_addr);
list_count = get_unaligned_le16(list_count_addr);
if (!verify_delta_index_page(nonce, list_count, expected_nonce, memory,
memory_size)) {
/* If that fails, try big endian. */
nonce = get_unaligned_be64(nonce_addr);
vcn = get_unaligned_be64(vcn_addr);
first_list = get_unaligned_be16(first_list_addr);
list_count = get_unaligned_be16(list_count_addr);
if (!verify_delta_index_page(nonce, list_count, expected_nonce, memory,
memory_size)) {
/*
* Both attempts failed. Do not log this as an error, because it can happen
* during a rebuild if we haven't written the entire volume at least once.
*/
return UDS_CORRUPT_DATA;
}
}
delta_index_page->delta_index.delta_zones = delta_zone;
delta_index_page->delta_index.zone_count = 1;
delta_index_page->delta_index.list_count = list_count;
delta_index_page->delta_index.lists_per_zone = list_count;
delta_index_page->delta_index.mutable = false;
delta_index_page->delta_index.tag = 'p';
delta_index_page->virtual_chapter_number = vcn;
delta_index_page->lowest_list_number = first_list;
delta_index_page->highest_list_number = first_list + list_count - 1;
compute_coding_constants(mean_delta, &delta_zone->min_bits,
&delta_zone->min_keys, &delta_zone->incr_keys);
delta_zone->value_bits = payload_bits;
delta_zone->memory = memory;
delta_zone->delta_lists = NULL;
delta_zone->new_offsets = NULL;
delta_zone->buffered_writer = NULL;
delta_zone->size = memory_size;
delta_zone->rebalance_time = 0;
delta_zone->rebalance_count = 0;
delta_zone->record_count = 0;
delta_zone->collision_count = 0;
delta_zone->discard_count = 0;
delta_zone->overflow_count = 0;
delta_zone->first_list = 0;
delta_zone->list_count = list_count;
delta_zone->tag = 'p';
return UDS_SUCCESS;
}
/* Read a large bit field from an arbitrary bit boundary. */
static inline u64 get_big_field(const u8 *memory, u64 offset, u8 size)
{
const void *addr = memory + offset / BITS_PER_BYTE;
return (get_unaligned_le64(addr) >> (offset % BITS_PER_BYTE)) & ((1UL << size) - 1);
}
/* Write a large bit field to an arbitrary bit boundary. */
static inline void set_big_field(u64 value, u8 *memory, u64 offset, u8 size)
{
void *addr = memory + offset / BITS_PER_BYTE;
u8 shift = offset % BITS_PER_BYTE;
u64 data = get_unaligned_le64(addr);
data &= ~(((1UL << size) - 1) << shift);
data |= value << shift;
put_unaligned_le64(data, addr);
}
/* Set a sequence of bits to all zeros. */
static inline void set_zero(u8 *memory, u64 offset, u32 size)
{
if (size > 0) {
u8 *addr = memory + offset / BITS_PER_BYTE;
u8 shift = offset % BITS_PER_BYTE;
u32 count = size + shift > BITS_PER_BYTE ? (u32) BITS_PER_BYTE - shift : size;
*addr++ &= ~(((1 << count) - 1) << shift);
for (size -= count; size > BITS_PER_BYTE; size -= BITS_PER_BYTE)
*addr++ = 0;
if (size > 0)
*addr &= 0xFF << size;
}
}
/*
* Move several bits from a higher to a lower address, moving the lower addressed bits first. The
* size and memory offsets are measured in bits.
*/
static void move_bits_down(const u8 *from, u64 from_offset, u8 *to, u64 to_offset, u32 size)
{
const u8 *source;
u8 *destination;
u8 offset;
u8 count;
u64 field;
/* Start by moving one field that ends on a to int boundary. */
count = (MAX_BIG_FIELD_BITS - ((to_offset + MAX_BIG_FIELD_BITS) % BITS_PER_TYPE(u32)));
field = get_big_field(from, from_offset, count);
set_big_field(field, to, to_offset, count);
from_offset += count;
to_offset += count;
size -= count;
/* Now do the main loop to copy 32 bit chunks that are int-aligned at the destination. */
offset = from_offset % BITS_PER_TYPE(u32);
source = from + (from_offset - offset) / BITS_PER_BYTE;
destination = to + to_offset / BITS_PER_BYTE;
while (size > MAX_BIG_FIELD_BITS) {
put_unaligned_le32(get_unaligned_le64(source) >> offset, destination);
source += sizeof(u32);
destination += sizeof(u32);
from_offset += BITS_PER_TYPE(u32);
to_offset += BITS_PER_TYPE(u32);
size -= BITS_PER_TYPE(u32);
}
/* Finish up by moving any remaining bits. */
if (size > 0) {
field = get_big_field(from, from_offset, size);
set_big_field(field, to, to_offset, size);
}
}
/*
* Move several bits from a lower to a higher address, moving the higher addressed bits first. The
* size and memory offsets are measured in bits.
*/
static void move_bits_up(const u8 *from, u64 from_offset, u8 *to, u64 to_offset, u32 size)
{
const u8 *source;
u8 *destination;
u8 offset;
u8 count;
u64 field;
/* Start by moving one field that begins on a destination int boundary. */
count = (to_offset + size) % BITS_PER_TYPE(u32);
if (count > 0) {
size -= count;
field = get_big_field(from, from_offset + size, count);
set_big_field(field, to, to_offset + size, count);
}
/* Now do the main loop to copy 32 bit chunks that are int-aligned at the destination. */
offset = (from_offset + size) % BITS_PER_TYPE(u32);
source = from + (from_offset + size - offset) / BITS_PER_BYTE;
destination = to + (to_offset + size) / BITS_PER_BYTE;
while (size > MAX_BIG_FIELD_BITS) {
source -= sizeof(u32);
destination -= sizeof(u32);
size -= BITS_PER_TYPE(u32);
put_unaligned_le32(get_unaligned_le64(source) >> offset, destination);
}
/* Finish up by moving any remaining bits. */
if (size > 0) {
field = get_big_field(from, from_offset, size);
set_big_field(field, to, to_offset, size);
}
}
/*
* Move bits from one field to another. When the fields overlap, behave as if we first move all the
* bits from the source to a temporary value, and then move all the bits from the temporary value
* to the destination. The size and memory offsets are measured in bits.
*/
static void move_bits(const u8 *from, u64 from_offset, u8 *to, u64 to_offset, u32 size)
{
u64 field;
/* A small move doesn't require special handling. */
if (size <= MAX_BIG_FIELD_BITS) {
if (size > 0) {
field = get_big_field(from, from_offset, size);
set_big_field(field, to, to_offset, size);
}
return;
}
if (from_offset > to_offset)
move_bits_down(from, from_offset, to, to_offset, size);
else
move_bits_up(from, from_offset, to, to_offset, size);
}
/*
* Pack delta lists from a mutable delta index into an immutable delta index page. A range of delta
* lists (starting with a specified list index) is copied from the mutable delta index into a
* memory page used in the immutable index. The number of lists copied onto the page is returned in
* list_count.
*/
int uds_pack_delta_index_page(const struct delta_index *delta_index, u64 header_nonce,
u8 *memory, size_t memory_size, u64 virtual_chapter_number,
u32 first_list, u32 *list_count)
{
const struct delta_zone *delta_zone;
struct delta_list *delta_lists;
u32 max_lists;
u32 n_lists = 0;
u32 offset;
u32 i;
int free_bits;
int bits;
struct delta_page_header *header;
delta_zone = &delta_index->delta_zones[0];
delta_lists = &delta_zone->delta_lists[first_list + 1];
max_lists = delta_index->list_count - first_list;
/*
* Compute how many lists will fit on the page. Subtract the size of the fixed header, one
* delta list offset, and the guard bytes from the page size to determine how much space is
* available for delta lists.
*/
free_bits = memory_size * BITS_PER_BYTE;
free_bits -= get_immutable_header_offset(1);
free_bits -= GUARD_BITS;
if (free_bits < IMMUTABLE_HEADER_SIZE) {
/* This page is too small to store any delta lists. */
return uds_log_error_strerror(UDS_OVERFLOW,
"Chapter Index Page of %zu bytes is too small",
memory_size);
}
while (n_lists < max_lists) {
/* Each list requires a delta list offset and the list data. */
bits = IMMUTABLE_HEADER_SIZE + delta_lists[n_lists].size;
if (bits > free_bits)
break;
n_lists++;
free_bits -= bits;
}
*list_count = n_lists;
header = (struct delta_page_header *) memory;
put_unaligned_le64(header_nonce, (u8 *) &header->nonce);
put_unaligned_le64(virtual_chapter_number,
(u8 *) &header->virtual_chapter_number);
put_unaligned_le16(first_list, (u8 *) &header->first_list);
put_unaligned_le16(n_lists, (u8 *) &header->list_count);
/* Construct the delta list offset table. */
offset = get_immutable_header_offset(n_lists + 1);
set_immutable_start(memory, 0, offset);
for (i = 0; i < n_lists; i++) {
offset += delta_lists[i].size;
set_immutable_start(memory, i + 1, offset);
}
/* Copy the delta list data onto the memory page. */
for (i = 0; i < n_lists; i++) {
move_bits(delta_zone->memory, delta_lists[i].start, memory,
get_immutable_start(memory, i), delta_lists[i].size);
}
/* Set all the bits in the guard bytes. */
memset(memory + memory_size - POST_FIELD_GUARD_BYTES, ~0,
POST_FIELD_GUARD_BYTES);
return UDS_SUCCESS;
}
/* Compute the new offsets of the delta lists. */
static void compute_new_list_offsets(struct delta_zone *delta_zone, u32 growing_index,
size_t growing_size, size_t used_space)
{
size_t spacing;
u32 i;
struct delta_list *delta_lists = delta_zone->delta_lists;
u32 tail_guard_index = delta_zone->list_count + 1;
spacing = (delta_zone->size - used_space) / delta_zone->list_count;
delta_zone->new_offsets[0] = 0;
for (i = 0; i <= delta_zone->list_count; i++) {
delta_zone->new_offsets[i + 1] =
(delta_zone->new_offsets[i] +
get_delta_list_byte_size(&delta_lists[i]) + spacing);
delta_zone->new_offsets[i] *= BITS_PER_BYTE;
delta_zone->new_offsets[i] += delta_lists[i].start % BITS_PER_BYTE;
if (i == 0)
delta_zone->new_offsets[i + 1] -= spacing / 2;
if (i + 1 == growing_index)
delta_zone->new_offsets[i + 1] += growing_size;
}
delta_zone->new_offsets[tail_guard_index] =
(delta_zone->size * BITS_PER_BYTE - delta_lists[tail_guard_index].size);
}
static void rebalance_lists(struct delta_zone *delta_zone)
{
struct delta_list *delta_lists;
u32 i;
size_t used_space = 0;
/* Extend and balance memory to receive the delta lists */
delta_lists = delta_zone->delta_lists;
for (i = 0; i <= delta_zone->list_count + 1; i++)
used_space += get_delta_list_byte_size(&delta_lists[i]);
compute_new_list_offsets(delta_zone, 0, 0, used_space);
for (i = 1; i <= delta_zone->list_count + 1; i++)
delta_lists[i].start = delta_zone->new_offsets[i];
}
/* Start restoring a delta index from multiple input streams. */
int uds_start_restoring_delta_index(struct delta_index *delta_index,
struct buffered_reader **buffered_readers,
unsigned int reader_count)
{
int result;
unsigned int zone_count = reader_count;
u64 record_count = 0;
u64 collision_count = 0;
u32 first_list[MAX_ZONES];
u32 list_count[MAX_ZONES];
unsigned int z;
u32 list_next = 0;
const struct delta_zone *delta_zone;
/* Read and validate each header. */
for (z = 0; z < zone_count; z++) {
struct delta_index_header header;
u8 buffer[sizeof(struct delta_index_header)];
size_t offset = 0;
result = uds_read_from_buffered_reader(buffered_readers[z], buffer,
sizeof(buffer));
if (result != UDS_SUCCESS) {
return uds_log_warning_strerror(result,
"failed to read delta index header");
}
memcpy(&header.magic, buffer, MAGIC_SIZE);
offset += MAGIC_SIZE;
decode_u32_le(buffer, &offset, &header.zone_number);
decode_u32_le(buffer, &offset, &header.zone_count);
decode_u32_le(buffer, &offset, &header.first_list);
decode_u32_le(buffer, &offset, &header.list_count);
decode_u64_le(buffer, &offset, &header.record_count);
decode_u64_le(buffer, &offset, &header.collision_count);
result = ASSERT(offset == sizeof(struct delta_index_header),
"%zu bytes decoded of %zu expected", offset,
sizeof(struct delta_index_header));
if (result != UDS_SUCCESS) {
return uds_log_warning_strerror(result,
"failed to read delta index header");
}
if (memcmp(header.magic, DELTA_INDEX_MAGIC, MAGIC_SIZE) != 0) {
return uds_log_warning_strerror(UDS_CORRUPT_DATA,
"delta index file has bad magic number");
}
if (zone_count != header.zone_count) {
return uds_log_warning_strerror(UDS_CORRUPT_DATA,
"delta index files contain mismatched zone counts (%u,%u)",
zone_count, header.zone_count);
}
if (header.zone_number != z) {
return uds_log_warning_strerror(UDS_CORRUPT_DATA,
"delta index zone %u found in slot %u",
header.zone_number, z);
}
first_list[z] = header.first_list;
list_count[z] = header.list_count;
record_count += header.record_count;
collision_count += header.collision_count;
if (first_list[z] != list_next) {
return uds_log_warning_strerror(UDS_CORRUPT_DATA,
"delta index file for zone %u starts with list %u instead of list %u",
z, first_list[z], list_next);
}
list_next += list_count[z];
}
if (list_next != delta_index->list_count) {
return uds_log_warning_strerror(UDS_CORRUPT_DATA,
"delta index files contain %u delta lists instead of %u delta lists",
list_next, delta_index->list_count);
}
if (collision_count > record_count) {
return uds_log_warning_strerror(UDS_CORRUPT_DATA,
"delta index files contain %llu collisions and %llu records",
(unsigned long long) collision_count,
(unsigned long long) record_count);
}
uds_reset_delta_index(delta_index);
delta_index->delta_zones[0].record_count = record_count;
delta_index->delta_zones[0].collision_count = collision_count;
/* Read the delta lists and distribute them to the proper zones. */
for (z = 0; z < zone_count; z++) {
u32 i;
delta_index->load_lists[z] = 0;
for (i = 0; i < list_count[z]; i++) {
u16 delta_list_size;
u32 list_number;
unsigned int zone_number;
u8 size_data[sizeof(u16)];
result = uds_read_from_buffered_reader(buffered_readers[z],
size_data,
sizeof(size_data));
if (result != UDS_SUCCESS) {
return uds_log_warning_strerror(result,
"failed to read delta index size");
}
delta_list_size = get_unaligned_le16(size_data);
if (delta_list_size > 0)
delta_index->load_lists[z] += 1;
list_number = first_list[z] + i;
zone_number = list_number / delta_index->lists_per_zone;
delta_zone = &delta_index->delta_zones[zone_number];
list_number -= delta_zone->first_list;
delta_zone->delta_lists[list_number + 1].size = delta_list_size;
}
}
/* Prepare each zone to start receiving the delta list data. */
for (z = 0; z < delta_index->zone_count; z++)
rebalance_lists(&delta_index->delta_zones[z]);
return UDS_SUCCESS;
}
static int restore_delta_list_to_zone(struct delta_zone *delta_zone,
const struct delta_list_save_info *save_info,
const u8 *data)
{
struct delta_list *delta_list;
u16 bit_count;
u16 byte_count;
u32 list_number = save_info->index - delta_zone->first_list;
if (list_number >= delta_zone->list_count) {
return uds_log_warning_strerror(UDS_CORRUPT_DATA,
"invalid delta list number %u not in range [%u,%u)",
save_info->index, delta_zone->first_list,
delta_zone->first_list + delta_zone->list_count);
}
delta_list = &delta_zone->delta_lists[list_number + 1];
if (delta_list->size == 0) {
return uds_log_warning_strerror(UDS_CORRUPT_DATA,
"unexpected delta list number %u",
save_info->index);
}
bit_count = delta_list->size + save_info->bit_offset;
byte_count = BITS_TO_BYTES(bit_count);
if (save_info->byte_count != byte_count) {
return uds_log_warning_strerror(UDS_CORRUPT_DATA,
"unexpected delta list size %u != %u",
save_info->byte_count, byte_count);
}
move_bits(data, save_info->bit_offset, delta_zone->memory, delta_list->start,
delta_list->size);
return UDS_SUCCESS;
}
static int restore_delta_list_data(struct delta_index *delta_index, unsigned int load_zone,
struct buffered_reader *buffered_reader, u8 *data)
{
int result;
struct delta_list_save_info save_info;
u8 buffer[sizeof(struct delta_list_save_info)];
unsigned int new_zone;
result = uds_read_from_buffered_reader(buffered_reader, buffer, sizeof(buffer));
if (result != UDS_SUCCESS) {
return uds_log_warning_strerror(result,
"failed to read delta list data");
}
save_info = (struct delta_list_save_info) {
.tag = buffer[0],
.bit_offset = buffer[1],
.byte_count = get_unaligned_le16(&buffer[2]),
.index = get_unaligned_le32(&buffer[4]),
};
if ((save_info.bit_offset >= BITS_PER_BYTE) ||
(save_info.byte_count > DELTA_LIST_MAX_BYTE_COUNT)) {
return uds_log_warning_strerror(UDS_CORRUPT_DATA,
"corrupt delta list data");
}
/* Make sure the data is intended for this delta index. */
if (save_info.tag != delta_index->tag)
return UDS_CORRUPT_DATA;
if (save_info.index >= delta_index->list_count) {
return uds_log_warning_strerror(UDS_CORRUPT_DATA,
"invalid delta list number %u of %u",
save_info.index,
delta_index->list_count);
}
result = uds_read_from_buffered_reader(buffered_reader, data,
save_info.byte_count);
if (result != UDS_SUCCESS) {
return uds_log_warning_strerror(result,
"failed to read delta list data");
}
delta_index->load_lists[load_zone] -= 1;
new_zone = save_info.index / delta_index->lists_per_zone;
return restore_delta_list_to_zone(&delta_index->delta_zones[new_zone],
&save_info, data);
}
/* Restore delta lists from saved data. */
int uds_finish_restoring_delta_index(struct delta_index *delta_index,
struct buffered_reader **buffered_readers,
unsigned int reader_count)
{
int result;
int saved_result = UDS_SUCCESS;
unsigned int z;
u8 *data;
result = vdo_allocate(DELTA_LIST_MAX_BYTE_COUNT, u8, __func__, &data);
if (result != VDO_SUCCESS)
return result;
for (z = 0; z < reader_count; z++) {
while (delta_index->load_lists[z] > 0) {
result = restore_delta_list_data(delta_index, z,
buffered_readers[z], data);
if (result != UDS_SUCCESS) {
saved_result = result;
break;
}
}
}
vdo_free(data);
return saved_result;
}
int uds_check_guard_delta_lists(struct buffered_reader **buffered_readers,
unsigned int reader_count)
{
int result;
unsigned int z;
u8 buffer[sizeof(struct delta_list_save_info)];
for (z = 0; z < reader_count; z++) {
result = uds_read_from_buffered_reader(buffered_readers[z], buffer,
sizeof(buffer));
if (result != UDS_SUCCESS)
return result;
if (buffer[0] != 'z')
return UDS_CORRUPT_DATA;
}
return UDS_SUCCESS;
}
static int flush_delta_list(struct delta_zone *zone, u32 flush_index)
{
struct delta_list *delta_list;
u8 buffer[sizeof(struct delta_list_save_info)];
int result;
delta_list = &zone->delta_lists[flush_index + 1];
buffer[0] = zone->tag;
buffer[1] = delta_list->start % BITS_PER_BYTE;
put_unaligned_le16(get_delta_list_byte_size(delta_list), &buffer[2]);
put_unaligned_le32(zone->first_list + flush_index, &buffer[4]);
result = uds_write_to_buffered_writer(zone->buffered_writer, buffer,
sizeof(buffer));
if (result != UDS_SUCCESS) {
uds_log_warning_strerror(result, "failed to write delta list memory");
return result;
}
result = uds_write_to_buffered_writer(zone->buffered_writer,
zone->memory + get_delta_list_byte_start(delta_list),
get_delta_list_byte_size(delta_list));
if (result != UDS_SUCCESS)
uds_log_warning_strerror(result, "failed to write delta list memory");
return result;
}
/* Start saving a delta index zone to a buffered output stream. */
int uds_start_saving_delta_index(const struct delta_index *delta_index,
unsigned int zone_number,
struct buffered_writer *buffered_writer)
{
int result;
u32 i;
struct delta_zone *delta_zone;
u8 buffer[sizeof(struct delta_index_header)];
size_t offset = 0;
delta_zone = &delta_index->delta_zones[zone_number];
memcpy(buffer, DELTA_INDEX_MAGIC, MAGIC_SIZE);
offset += MAGIC_SIZE;
encode_u32_le(buffer, &offset, zone_number);
encode_u32_le(buffer, &offset, delta_index->zone_count);
encode_u32_le(buffer, &offset, delta_zone->first_list);
encode_u32_le(buffer, &offset, delta_zone->list_count);
encode_u64_le(buffer, &offset, delta_zone->record_count);
encode_u64_le(buffer, &offset, delta_zone->collision_count);
result = ASSERT(offset == sizeof(struct delta_index_header),
"%zu bytes encoded of %zu expected", offset,
sizeof(struct delta_index_header));
if (result != UDS_SUCCESS)
return result;
result = uds_write_to_buffered_writer(buffered_writer, buffer, offset);
if (result != UDS_SUCCESS)
return uds_log_warning_strerror(result,
"failed to write delta index header");
for (i = 0; i < delta_zone->list_count; i++) {
u8 data[sizeof(u16)];
struct delta_list *delta_list;
delta_list = &delta_zone->delta_lists[i + 1];
put_unaligned_le16(delta_list->size, data);
result = uds_write_to_buffered_writer(buffered_writer, data,
sizeof(data));
if (result != UDS_SUCCESS)
return uds_log_warning_strerror(result,
"failed to write delta list size");
}
delta_zone->buffered_writer = buffered_writer;
return UDS_SUCCESS;
}
int uds_finish_saving_delta_index(const struct delta_index *delta_index,
unsigned int zone_number)
{
int result;
int first_error = UDS_SUCCESS;
u32 i;
struct delta_zone *delta_zone;
struct delta_list *delta_list;
delta_zone = &delta_index->delta_zones[zone_number];
for (i = 0; i < delta_zone->list_count; i++) {
delta_list = &delta_zone->delta_lists[i + 1];
if (delta_list->size > 0) {
result = flush_delta_list(delta_zone, i);
if ((result != UDS_SUCCESS) && (first_error == UDS_SUCCESS))
first_error = result;
}
}
delta_zone->buffered_writer = NULL;
return first_error;
}
int uds_write_guard_delta_list(struct buffered_writer *buffered_writer)
{
int result;
u8 buffer[sizeof(struct delta_list_save_info)];
memset(buffer, 0, sizeof(struct delta_list_save_info));
buffer[0] = 'z';
result = uds_write_to_buffered_writer(buffered_writer, buffer, sizeof(buffer));
if (result != UDS_SUCCESS)
uds_log_warning_strerror(result, "failed to write guard delta list");
return UDS_SUCCESS;
}
size_t uds_compute_delta_index_save_bytes(u32 list_count, size_t memory_size)
{
/* One zone will use at least as much memory as other zone counts. */
return (sizeof(struct delta_index_header) +
list_count * (sizeof(struct delta_list_save_info) + 1) +
get_zone_memory_size(1, memory_size));
}
static int assert_not_at_end(const struct delta_index_entry *delta_entry)
{
int result = ASSERT(!delta_entry->at_end,
"operation is invalid because the list entry is at the end of the delta list");
if (result != UDS_SUCCESS)
result = UDS_BAD_STATE;
return result;
}
/*
* Prepare to search for an entry in the specified delta list.
*
* This is always the first function to be called when dealing with delta index entries. It is
* always followed by calls to uds_next_delta_index_entry() to iterate through a delta list. The
* fields of the delta_index_entry argument will be set up for iteration, but will not contain an
* entry from the list.
*/
int uds_start_delta_index_search(const struct delta_index *delta_index, u32 list_number,
u32 key, struct delta_index_entry *delta_entry)
{
int result;
unsigned int zone_number;
struct delta_zone *delta_zone;
struct delta_list *delta_list;
result = ASSERT((list_number < delta_index->list_count),
"Delta list number (%u) is out of range (%u)", list_number,
delta_index->list_count);
if (result != UDS_SUCCESS)
return UDS_CORRUPT_DATA;
zone_number = list_number / delta_index->lists_per_zone;
delta_zone = &delta_index->delta_zones[zone_number];
list_number -= delta_zone->first_list;
result = ASSERT((list_number < delta_zone->list_count),
"Delta list number (%u) is out of range (%u) for zone (%u)",
list_number, delta_zone->list_count, zone_number);
if (result != UDS_SUCCESS)
return UDS_CORRUPT_DATA;
if (delta_index->mutable) {
delta_list = &delta_zone->delta_lists[list_number + 1];
} else {
u32 end_offset;
/*
* Translate the immutable delta list header into a temporary
* full delta list header.
*/
delta_list = &delta_entry->temp_delta_list;
delta_list->start = get_immutable_start(delta_zone->memory, list_number);
end_offset = get_immutable_start(delta_zone->memory, list_number + 1);
delta_list->size = end_offset - delta_list->start;
delta_list->save_key = 0;
delta_list->save_offset = 0;
}
if (key > delta_list->save_key) {
delta_entry->key = delta_list->save_key;
delta_entry->offset = delta_list->save_offset;
} else {
delta_entry->key = 0;
delta_entry->offset = 0;
if (key == 0) {
/*
* This usually means we're about to walk the entire delta list, so get all
* of it into the CPU cache.
*/
uds_prefetch_range(&delta_zone->memory[delta_list->start / BITS_PER_BYTE],
delta_list->size / BITS_PER_BYTE, false);
}
}
delta_entry->at_end = false;
delta_entry->delta_zone = delta_zone;
delta_entry->delta_list = delta_list;
delta_entry->entry_bits = 0;
delta_entry->is_collision = false;
delta_entry->list_number = list_number;
delta_entry->list_overflow = false;
delta_entry->value_bits = delta_zone->value_bits;
return UDS_SUCCESS;
}
static inline u64 get_delta_entry_offset(const struct delta_index_entry *delta_entry)
{
return delta_entry->delta_list->start + delta_entry->offset;
}
/*
* Decode a delta index entry delta value. The delta_index_entry basically describes the previous
* list entry, and has had its offset field changed to point to the subsequent entry. We decode the
* bit stream and update the delta_list_entry to describe the entry.
*/
static inline void decode_delta(struct delta_index_entry *delta_entry)
{
int key_bits;
u32 delta;
const struct delta_zone *delta_zone = delta_entry->delta_zone;
const u8 *memory = delta_zone->memory;
u64 delta_offset = get_delta_entry_offset(delta_entry) + delta_entry->value_bits;
const u8 *addr = memory + delta_offset / BITS_PER_BYTE;
int offset = delta_offset % BITS_PER_BYTE;
u32 data = get_unaligned_le32(addr) >> offset;
addr += sizeof(u32);
key_bits = delta_zone->min_bits;
delta = data & ((1 << key_bits) - 1);
if (delta >= delta_zone->min_keys) {
data >>= key_bits;
if (data == 0) {
key_bits = sizeof(u32) * BITS_PER_BYTE - offset;
while ((data = get_unaligned_le32(addr)) == 0) {
addr += sizeof(u32);
key_bits += sizeof(u32) * BITS_PER_BYTE;
}
}
key_bits += ffs(data);
delta += ((key_bits - delta_zone->min_bits - 1) * delta_zone->incr_keys);
}
delta_entry->delta = delta;
delta_entry->key += delta;
/* Check for a collision, a delta of zero after the start. */
if (unlikely((delta == 0) && (delta_entry->offset > 0))) {
delta_entry->is_collision = true;
delta_entry->entry_bits = delta_entry->value_bits + key_bits + COLLISION_BITS;
} else {
delta_entry->is_collision = false;
delta_entry->entry_bits = delta_entry->value_bits + key_bits;
}
}
noinline int uds_next_delta_index_entry(struct delta_index_entry *delta_entry)
{
int result;
const struct delta_list *delta_list;
u32 next_offset;
u16 size;
result = assert_not_at_end(delta_entry);
if (result != UDS_SUCCESS)
return result;
delta_list = delta_entry->delta_list;
delta_entry->offset += delta_entry->entry_bits;
size = delta_list->size;
if (unlikely(delta_entry->offset >= size)) {
delta_entry->at_end = true;
delta_entry->delta = 0;
delta_entry->is_collision = false;
result = ASSERT((delta_entry->offset == size),
"next offset past end of delta list");
if (result != UDS_SUCCESS)
result = UDS_CORRUPT_DATA;
return result;
}
decode_delta(delta_entry);
next_offset = delta_entry->offset + delta_entry->entry_bits;
if (next_offset > size) {
/*
* This is not an assertion because uds_validate_chapter_index_page() wants to
* handle this error.
*/
uds_log_warning("Decoded past the end of the delta list");
return UDS_CORRUPT_DATA;
}
return UDS_SUCCESS;
}
int uds_remember_delta_index_offset(const struct delta_index_entry *delta_entry)
{
int result;
struct delta_list *delta_list = delta_entry->delta_list;
result = ASSERT(!delta_entry->is_collision, "entry is not a collision");
if (result != UDS_SUCCESS)
return result;
delta_list->save_key = delta_entry->key - delta_entry->delta;
delta_list->save_offset = delta_entry->offset;
return UDS_SUCCESS;
}
static void set_delta(struct delta_index_entry *delta_entry, u32 delta)
{
const struct delta_zone *delta_zone = delta_entry->delta_zone;
u32 key_bits = (delta_zone->min_bits +
((delta_zone->incr_keys - delta_zone->min_keys + delta) /
delta_zone->incr_keys));
delta_entry->delta = delta;
delta_entry->entry_bits = delta_entry->value_bits + key_bits;
}
static void get_collision_name(const struct delta_index_entry *entry, u8 *name)
{
u64 offset = get_delta_entry_offset(entry) + entry->entry_bits - COLLISION_BITS;
const u8 *addr = entry->delta_zone->memory + offset / BITS_PER_BYTE;
int size = COLLISION_BYTES;
int shift = offset % BITS_PER_BYTE;
while (--size >= 0)
*name++ = get_unaligned_le16(addr++) >> shift;
}
static void set_collision_name(const struct delta_index_entry *entry, const u8 *name)
{
u64 offset = get_delta_entry_offset(entry) + entry->entry_bits - COLLISION_BITS;
u8 *addr = entry->delta_zone->memory + offset / BITS_PER_BYTE;
int size = COLLISION_BYTES;
int shift = offset % BITS_PER_BYTE;
u16 mask = ~((u16) 0xFF << shift);
u16 data;
while (--size >= 0) {
data = (get_unaligned_le16(addr) & mask) | (*name++ << shift);
put_unaligned_le16(data, addr++);
}
}
int uds_get_delta_index_entry(const struct delta_index *delta_index, u32 list_number,
u32 key, const u8 *name,
struct delta_index_entry *delta_entry)
{
int result;
result = uds_start_delta_index_search(delta_index, list_number, key,
delta_entry);
if (result != UDS_SUCCESS)
return result;
do {
result = uds_next_delta_index_entry(delta_entry);
if (result != UDS_SUCCESS)
return result;
} while (!delta_entry->at_end && (key > delta_entry->key));
result = uds_remember_delta_index_offset(delta_entry);
if (result != UDS_SUCCESS)
return result;
if (!delta_entry->at_end && (key == delta_entry->key)) {
struct delta_index_entry collision_entry = *delta_entry;
for (;;) {
u8 full_name[COLLISION_BYTES];
result = uds_next_delta_index_entry(&collision_entry);
if (result != UDS_SUCCESS)
return result;
if (collision_entry.at_end || !collision_entry.is_collision)
break;
get_collision_name(&collision_entry, full_name);
if (memcmp(full_name, name, COLLISION_BYTES) == 0) {
*delta_entry = collision_entry;
break;
}
}
}
return UDS_SUCCESS;
}
int uds_get_delta_entry_collision(const struct delta_index_entry *delta_entry, u8 *name)
{
int result;
result = assert_not_at_end(delta_entry);
if (result != UDS_SUCCESS)
return result;
result = ASSERT(delta_entry->is_collision,
"Cannot get full block name from a non-collision delta index entry");
if (result != UDS_SUCCESS)
return UDS_BAD_STATE;
get_collision_name(delta_entry, name);
return UDS_SUCCESS;
}
u32 uds_get_delta_entry_value(const struct delta_index_entry *delta_entry)
{
return get_field(delta_entry->delta_zone->memory,
get_delta_entry_offset(delta_entry), delta_entry->value_bits);
}
static int assert_mutable_entry(const struct delta_index_entry *delta_entry)
{
int result = ASSERT((delta_entry->delta_list != &delta_entry->temp_delta_list),
"delta index is mutable");
if (result != UDS_SUCCESS)
result = UDS_BAD_STATE;
return result;
}
int uds_set_delta_entry_value(const struct delta_index_entry *delta_entry, u32 value)
{
int result;
u32 value_mask = (1 << delta_entry->value_bits) - 1;
result = assert_mutable_entry(delta_entry);
if (result != UDS_SUCCESS)
return result;
result = assert_not_at_end(delta_entry);
if (result != UDS_SUCCESS)
return result;
result = ASSERT((value & value_mask) == value,
"Value (%u) being set in a delta index is too large (must fit in %u bits)",
value, delta_entry->value_bits);
if (result != UDS_SUCCESS)
return UDS_INVALID_ARGUMENT;
set_field(value, delta_entry->delta_zone->memory,
get_delta_entry_offset(delta_entry), delta_entry->value_bits);
return UDS_SUCCESS;
}
/*
* Extend the memory used by the delta lists by adding growing_size bytes before the list indicated
* by growing_index, then rebalancing the lists in the new chunk.
*/
static int extend_delta_zone(struct delta_zone *delta_zone, u32 growing_index,
size_t growing_size)
{
ktime_t start_time;
ktime_t end_time;
struct delta_list *delta_lists;
u32 i;
size_t used_space;
/* Calculate the amount of space that is or will be in use. */
start_time = current_time_ns(CLOCK_MONOTONIC);
delta_lists = delta_zone->delta_lists;
used_space = growing_size;
for (i = 0; i <= delta_zone->list_count + 1; i++)
used_space += get_delta_list_byte_size(&delta_lists[i]);
if (delta_zone->size < used_space)
return UDS_OVERFLOW;
/* Compute the new offsets of the delta lists. */
compute_new_list_offsets(delta_zone, growing_index, growing_size, used_space);
/*
* When we rebalance the delta list, we will include the end guard list in the rebalancing.
* It contains the end guard data, which must be copied.
*/
rebalance_delta_zone(delta_zone, 1, delta_zone->list_count + 1);
end_time = current_time_ns(CLOCK_MONOTONIC);
delta_zone->rebalance_count++;
delta_zone->rebalance_time += ktime_sub(end_time, start_time);
return UDS_SUCCESS;
}
static int insert_bits(struct delta_index_entry *delta_entry, u16 size)
{
u64 free_before;
u64 free_after;
u64 source;
u64 destination;
u32 count;
bool before_flag;
u8 *memory;
struct delta_zone *delta_zone = delta_entry->delta_zone;
struct delta_list *delta_list = delta_entry->delta_list;
/* Compute bits in use before and after the inserted bits. */
u32 total_size = delta_list->size;
u32 before_size = delta_entry->offset;
u32 after_size = total_size - delta_entry->offset;
if (total_size + size > U16_MAX) {
delta_entry->list_overflow = true;
delta_zone->overflow_count++;
return UDS_OVERFLOW;
}
/* Compute bits available before and after the delta list. */
free_before = (delta_list[0].start - (delta_list[-1].start + delta_list[-1].size));
free_after = (delta_list[1].start - (delta_list[0].start + delta_list[0].size));
if ((size <= free_before) && (size <= free_after)) {
/*
* We have enough space to use either before or after the list. Select the smaller
* amount of data. If it is exactly the same, try to take from the larger amount of
* free space.
*/
if (before_size < after_size)
before_flag = true;
else if (after_size < before_size)
before_flag = false;
else
before_flag = free_before > free_after;
} else if (size <= free_before) {
/* There is space before but not after. */
before_flag = true;
} else if (size <= free_after) {
/* There is space after but not before. */
before_flag = false;
} else {
/*
* Neither of the surrounding spaces is large enough for this request. Extend
* and/or rebalance the delta list memory choosing to move the least amount of
* data.
*/
int result;
u32 growing_index = delta_entry->list_number + 1;
before_flag = before_size < after_size;
if (!before_flag)
growing_index++;
result = extend_delta_zone(delta_zone, growing_index,
BITS_TO_BYTES(size));
if (result != UDS_SUCCESS)
return result;
}
delta_list->size += size;
if (before_flag) {
source = delta_list->start;
destination = source - size;
delta_list->start -= size;
count = before_size;
} else {
source = delta_list->start + delta_entry->offset;
destination = source + size;
count = after_size;
}
memory = delta_zone->memory;
move_bits(memory, source, memory, destination, count);
return UDS_SUCCESS;
}
static void encode_delta(const struct delta_index_entry *delta_entry)
{
u32 temp;
u32 t1;
u32 t2;
u64 offset;
const struct delta_zone *delta_zone = delta_entry->delta_zone;
u8 *memory = delta_zone->memory;
offset = get_delta_entry_offset(delta_entry) + delta_entry->value_bits;
if (delta_entry->delta < delta_zone->min_keys) {
set_field(delta_entry->delta, memory, offset, delta_zone->min_bits);
return;
}
temp = delta_entry->delta - delta_zone->min_keys;
t1 = (temp % delta_zone->incr_keys) + delta_zone->min_keys;
t2 = temp / delta_zone->incr_keys;
set_field(t1, memory, offset, delta_zone->min_bits);
set_zero(memory, offset + delta_zone->min_bits, t2);
set_field(1, memory, offset + delta_zone->min_bits + t2, 1);
}
static void encode_entry(const struct delta_index_entry *delta_entry, u32 value,
const u8 *name)
{
u8 *memory = delta_entry->delta_zone->memory;
u64 offset = get_delta_entry_offset(delta_entry);
set_field(value, memory, offset, delta_entry->value_bits);
encode_delta(delta_entry);
if (name != NULL)
set_collision_name(delta_entry, name);
}
/*
* Create a new entry in the delta index. If the entry is a collision, the full 256 bit name must
* be provided.
*/
int uds_put_delta_index_entry(struct delta_index_entry *delta_entry, u32 key, u32 value,
const u8 *name)
{
int result;
struct delta_zone *delta_zone;
result = assert_mutable_entry(delta_entry);
if (result != UDS_SUCCESS)
return result;
if (delta_entry->is_collision) {
/*
* The caller wants us to insert a collision entry onto a collision entry. This
* happens when we find a collision and attempt to add the name again to the index.
* This is normally a fatal error unless we are replaying a closed chapter while we
* are rebuilding a volume index.
*/
return UDS_DUPLICATE_NAME;
}
if (delta_entry->offset < delta_entry->delta_list->save_offset) {
/*
* The saved entry offset is after the new entry and will no longer be valid, so
* replace it with the insertion point.
*/
result = uds_remember_delta_index_offset(delta_entry);
if (result != UDS_SUCCESS)
return result;
}
if (name != NULL) {
/* Insert a collision entry which is placed after this entry. */
result = assert_not_at_end(delta_entry);
if (result != UDS_SUCCESS)
return result;
result = ASSERT((key == delta_entry->key),
"incorrect key for collision entry");
if (result != UDS_SUCCESS)
return result;
delta_entry->offset += delta_entry->entry_bits;
set_delta(delta_entry, 0);
delta_entry->is_collision = true;
delta_entry->entry_bits += COLLISION_BITS;
result = insert_bits(delta_entry, delta_entry->entry_bits);
} else if (delta_entry->at_end) {
/* Insert a new entry at the end of the delta list. */
result = ASSERT((key >= delta_entry->key), "key past end of list");
if (result != UDS_SUCCESS)
return result;
set_delta(delta_entry, key - delta_entry->key);
delta_entry->key = key;
delta_entry->at_end = false;
result = insert_bits(delta_entry, delta_entry->entry_bits);
} else {
u16 old_entry_size;
u16 additional_size;
struct delta_index_entry next_entry;
u32 next_value;
/*
* Insert a new entry which requires the delta in the following entry to be
* updated.
*/
result = ASSERT((key < delta_entry->key),
"key precedes following entry");
if (result != UDS_SUCCESS)
return result;
result = ASSERT((key >= delta_entry->key - delta_entry->delta),
"key effects following entry's delta");
if (result != UDS_SUCCESS)
return result;
old_entry_size = delta_entry->entry_bits;
next_entry = *delta_entry;
next_value = uds_get_delta_entry_value(&next_entry);
set_delta(delta_entry, key - (delta_entry->key - delta_entry->delta));
delta_entry->key = key;
set_delta(&next_entry, next_entry.key - key);
next_entry.offset += delta_entry->entry_bits;
/* The two new entries are always bigger than the single entry being replaced. */
additional_size = (delta_entry->entry_bits +
next_entry.entry_bits - old_entry_size);
result = insert_bits(delta_entry, additional_size);
if (result != UDS_SUCCESS)
return result;
encode_entry(&next_entry, next_value, NULL);
}
if (result != UDS_SUCCESS)
return result;
encode_entry(delta_entry, value, name);
delta_zone = delta_entry->delta_zone;
delta_zone->record_count++;
delta_zone->collision_count += delta_entry->is_collision ? 1 : 0;
return UDS_SUCCESS;
}
static void delete_bits(const struct delta_index_entry *delta_entry, int size)
{
u64 source;
u64 destination;
u32 count;
bool before_flag;
struct delta_list *delta_list = delta_entry->delta_list;
u8 *memory = delta_entry->delta_zone->memory;
/* Compute bits retained before and after the deleted bits. */
u32 total_size = delta_list->size;
u32 before_size = delta_entry->offset;
u32 after_size = total_size - delta_entry->offset - size;
/*
* Determine whether to add to the available space either before or after the delta list.
* We prefer to move the least amount of data. If it is exactly the same, try to add to the
* smaller amount of free space.
*/
if (before_size < after_size) {
before_flag = true;
} else if (after_size < before_size) {
before_flag = false;
} else {
u64 free_before =
(delta_list[0].start - (delta_list[-1].start + delta_list[-1].size));
u64 free_after =
(delta_list[1].start - (delta_list[0].start + delta_list[0].size));
before_flag = (free_before < free_after);
}
delta_list->size -= size;
if (before_flag) {
source = delta_list->start;
destination = source + size;
delta_list->start += size;
count = before_size;
} else {
destination = delta_list->start + delta_entry->offset;
source = destination + size;
count = after_size;
}
move_bits(memory, source, memory, destination, count);
}
int uds_remove_delta_index_entry(struct delta_index_entry *delta_entry)
{
int result;
struct delta_index_entry next_entry;
struct delta_zone *delta_zone;
struct delta_list *delta_list;
result = assert_mutable_entry(delta_entry);
if (result != UDS_SUCCESS)
return result;
next_entry = *delta_entry;
result = uds_next_delta_index_entry(&next_entry);
if (result != UDS_SUCCESS)
return result;
delta_zone = delta_entry->delta_zone;
if (delta_entry->is_collision) {
/* This is a collision entry, so just remove it. */
delete_bits(delta_entry, delta_entry->entry_bits);
next_entry.offset = delta_entry->offset;
delta_zone->collision_count -= 1;
} else if (next_entry.at_end) {
/* This entry is at the end of the list, so just remove it. */
delete_bits(delta_entry, delta_entry->entry_bits);
next_entry.key -= delta_entry->delta;
next_entry.offset = delta_entry->offset;
} else {
/* The delta in the next entry needs to be updated. */
u32 next_value = uds_get_delta_entry_value(&next_entry);
u16 old_size = delta_entry->entry_bits + next_entry.entry_bits;
if (next_entry.is_collision) {
next_entry.is_collision = false;
delta_zone->collision_count -= 1;
}
set_delta(&next_entry, delta_entry->delta + next_entry.delta);
next_entry.offset = delta_entry->offset;
/* The one new entry is always smaller than the two entries being replaced. */
delete_bits(delta_entry, old_size - next_entry.entry_bits);
encode_entry(&next_entry, next_value, NULL);
}
delta_zone->record_count--;
delta_zone->discard_count++;
*delta_entry = next_entry;
delta_list = delta_entry->delta_list;
if (delta_entry->offset < delta_list->save_offset) {
/* The saved entry offset is no longer valid. */
delta_list->save_key = 0;
delta_list->save_offset = 0;
}
return UDS_SUCCESS;
}
void uds_get_delta_index_stats(const struct delta_index *delta_index,
struct delta_index_stats *stats)
{
unsigned int z;
const struct delta_zone *delta_zone;
memset(stats, 0, sizeof(struct delta_index_stats));
for (z = 0; z < delta_index->zone_count; z++) {
delta_zone = &delta_index->delta_zones[z];
stats->rebalance_time += delta_zone->rebalance_time;
stats->rebalance_count += delta_zone->rebalance_count;
stats->record_count += delta_zone->record_count;
stats->collision_count += delta_zone->collision_count;
stats->discard_count += delta_zone->discard_count;
stats->overflow_count += delta_zone->overflow_count;
stats->list_count += delta_zone->list_count;
}
}
size_t uds_compute_delta_index_size(u32 entry_count, u32 mean_delta, u32 payload_bits)
{
u16 min_bits;
u32 incr_keys;
u32 min_keys;
compute_coding_constants(mean_delta, &min_bits, &min_keys, &incr_keys);
/* On average, each delta is encoded into about min_bits + 1.5 bits. */
return entry_count * (payload_bits + min_bits + 1) + entry_count / 2;
}
u32 uds_get_delta_index_page_count(u32 entry_count, u32 list_count, u32 mean_delta,
u32 payload_bits, size_t bytes_per_page)
{
unsigned int bits_per_delta_list;
unsigned int bits_per_page;
size_t bits_per_index;
/* Compute the expected number of bits needed for all the entries. */
bits_per_index = uds_compute_delta_index_size(entry_count, mean_delta,
payload_bits);
bits_per_delta_list = bits_per_index / list_count;
/* Add in the immutable delta list headers. */
bits_per_index += list_count * IMMUTABLE_HEADER_SIZE;
/* Compute the number of usable bits on an immutable index page. */
bits_per_page = ((bytes_per_page - sizeof(struct delta_page_header)) * BITS_PER_BYTE);
/*
* Reduce the bits per page by one immutable delta list header and one delta list to
* account for internal fragmentation.
*/
bits_per_page -= IMMUTABLE_HEADER_SIZE + bits_per_delta_list;
/* Now compute the number of pages needed. */
return DIV_ROUND_UP(bits_per_index, bits_per_page);
}
void uds_log_delta_index_entry(struct delta_index_entry *delta_entry)
{
uds_log_ratelimit(uds_log_info,
"List 0x%X Key 0x%X Offset 0x%X%s%s List_size 0x%X%s",
delta_entry->list_number, delta_entry->key,
delta_entry->offset, delta_entry->at_end ? " end" : "",
delta_entry->is_collision ? " collision" : "",
delta_entry->delta_list->size,
delta_entry->list_overflow ? " overflow" : "");
delta_entry->list_overflow = false;
}
|