summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/xe/xe_sync.c
blob: aab92bee1d7cf2ff52ec07befe0dcc220325a649 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
// SPDX-License-Identifier: MIT
/*
 * Copyright © 2021 Intel Corporation
 */

#include "xe_sync.h"

#include <linux/dma-fence-array.h>
#include <linux/kthread.h>
#include <linux/sched/mm.h>
#include <linux/uaccess.h>

#include <drm/drm_print.h>
#include <drm/drm_syncobj.h>
#include <drm/xe_drm.h>

#include "xe_device_types.h"
#include "xe_exec_queue.h"
#include "xe_macros.h"
#include "xe_sched_job_types.h"

struct user_fence {
	struct xe_device *xe;
	struct kref refcount;
	struct dma_fence_cb cb;
	struct work_struct worker;
	struct mm_struct *mm;
	u64 __user *addr;
	u64 value;
};

static void user_fence_destroy(struct kref *kref)
{
	struct user_fence *ufence = container_of(kref, struct user_fence,
						 refcount);

	mmdrop(ufence->mm);
	kfree(ufence);
}

static void user_fence_get(struct user_fence *ufence)
{
	kref_get(&ufence->refcount);
}

static void user_fence_put(struct user_fence *ufence)
{
	kref_put(&ufence->refcount, user_fence_destroy);
}

static struct user_fence *user_fence_create(struct xe_device *xe, u64 addr,
					    u64 value)
{
	struct user_fence *ufence;

	ufence = kmalloc(sizeof(*ufence), GFP_KERNEL);
	if (!ufence)
		return NULL;

	ufence->xe = xe;
	kref_init(&ufence->refcount);
	ufence->addr = u64_to_user_ptr(addr);
	ufence->value = value;
	ufence->mm = current->mm;
	mmgrab(ufence->mm);

	return ufence;
}

static void user_fence_worker(struct work_struct *w)
{
	struct user_fence *ufence = container_of(w, struct user_fence, worker);

	if (mmget_not_zero(ufence->mm)) {
		kthread_use_mm(ufence->mm);
		if (copy_to_user(ufence->addr, &ufence->value, sizeof(ufence->value)))
			XE_WARN_ON("Copy to user failed");
		kthread_unuse_mm(ufence->mm);
		mmput(ufence->mm);
	}

	wake_up_all(&ufence->xe->ufence_wq);
	user_fence_put(ufence);
}

static void kick_ufence(struct user_fence *ufence, struct dma_fence *fence)
{
	INIT_WORK(&ufence->worker, user_fence_worker);
	queue_work(ufence->xe->ordered_wq, &ufence->worker);
	dma_fence_put(fence);
}

static void user_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
{
	struct user_fence *ufence = container_of(cb, struct user_fence, cb);

	kick_ufence(ufence, fence);
}

int xe_sync_entry_parse(struct xe_device *xe, struct xe_file *xef,
			struct xe_sync_entry *sync,
			struct drm_xe_sync __user *sync_user,
			unsigned int flags)
{
	struct drm_xe_sync sync_in;
	int err;
	bool exec = flags & SYNC_PARSE_FLAG_EXEC;
	bool in_lr_mode = flags & SYNC_PARSE_FLAG_LR_MODE;
	bool disallow_user_fence = flags & SYNC_PARSE_FLAG_DISALLOW_USER_FENCE;
	bool signal;

	if (copy_from_user(&sync_in, sync_user, sizeof(*sync_user)))
		return -EFAULT;

	if (XE_IOCTL_DBG(xe, sync_in.flags & ~DRM_XE_SYNC_FLAG_SIGNAL) ||
	    XE_IOCTL_DBG(xe, sync_in.reserved[0] || sync_in.reserved[1]))
		return -EINVAL;

	signal = sync_in.flags & DRM_XE_SYNC_FLAG_SIGNAL;
	switch (sync_in.type) {
	case DRM_XE_SYNC_TYPE_SYNCOBJ:
		if (XE_IOCTL_DBG(xe, in_lr_mode && signal))
			return -EOPNOTSUPP;

		if (XE_IOCTL_DBG(xe, upper_32_bits(sync_in.addr)))
			return -EINVAL;

		sync->syncobj = drm_syncobj_find(xef->drm, sync_in.handle);
		if (XE_IOCTL_DBG(xe, !sync->syncobj))
			return -ENOENT;

		if (!signal) {
			sync->fence = drm_syncobj_fence_get(sync->syncobj);
			if (XE_IOCTL_DBG(xe, !sync->fence))
				return -EINVAL;
		}
		break;

	case DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ:
		if (XE_IOCTL_DBG(xe, in_lr_mode && signal))
			return -EOPNOTSUPP;

		if (XE_IOCTL_DBG(xe, upper_32_bits(sync_in.addr)))
			return -EINVAL;

		if (XE_IOCTL_DBG(xe, sync_in.timeline_value == 0))
			return -EINVAL;

		sync->syncobj = drm_syncobj_find(xef->drm, sync_in.handle);
		if (XE_IOCTL_DBG(xe, !sync->syncobj))
			return -ENOENT;

		if (signal) {
			sync->chain_fence = dma_fence_chain_alloc();
			if (!sync->chain_fence)
				return -ENOMEM;
		} else {
			sync->fence = drm_syncobj_fence_get(sync->syncobj);
			if (XE_IOCTL_DBG(xe, !sync->fence))
				return -EINVAL;

			err = dma_fence_chain_find_seqno(&sync->fence,
							 sync_in.timeline_value);
			if (err)
				return err;
		}
		break;

	case DRM_XE_SYNC_TYPE_USER_FENCE:
		if (XE_IOCTL_DBG(xe, disallow_user_fence))
			return -EOPNOTSUPP;

		if (XE_IOCTL_DBG(xe, !signal))
			return -EOPNOTSUPP;

		if (XE_IOCTL_DBG(xe, sync_in.addr & 0x7))
			return -EINVAL;

		if (exec) {
			sync->addr = sync_in.addr;
		} else {
			sync->ufence = user_fence_create(xe, sync_in.addr,
							 sync_in.timeline_value);
			if (XE_IOCTL_DBG(xe, !sync->ufence))
				return -ENOMEM;
		}

		break;

	default:
		return -EINVAL;
	}

	sync->type = sync_in.type;
	sync->flags = sync_in.flags;
	sync->timeline_value = sync_in.timeline_value;

	return 0;
}

int xe_sync_entry_wait(struct xe_sync_entry *sync)
{
	if (sync->fence)
		dma_fence_wait(sync->fence, true);

	return 0;
}

int xe_sync_entry_add_deps(struct xe_sync_entry *sync, struct xe_sched_job *job)
{
	int err;

	if (sync->fence) {
		err = drm_sched_job_add_dependency(&job->drm,
						   dma_fence_get(sync->fence));
		if (err) {
			dma_fence_put(sync->fence);
			return err;
		}
	}

	return 0;
}

void xe_sync_entry_signal(struct xe_sync_entry *sync, struct xe_sched_job *job,
			  struct dma_fence *fence)
{
	if (!(sync->flags & DRM_XE_SYNC_FLAG_SIGNAL))
		return;

	if (sync->chain_fence) {
		drm_syncobj_add_point(sync->syncobj, sync->chain_fence,
				      fence, sync->timeline_value);
		/*
		 * The chain's ownership is transferred to the
		 * timeline.
		 */
		sync->chain_fence = NULL;
	} else if (sync->syncobj) {
		drm_syncobj_replace_fence(sync->syncobj, fence);
	} else if (sync->ufence) {
		int err;

		dma_fence_get(fence);
		user_fence_get(sync->ufence);
		err = dma_fence_add_callback(fence, &sync->ufence->cb,
					     user_fence_cb);
		if (err == -ENOENT) {
			kick_ufence(sync->ufence, fence);
		} else if (err) {
			XE_WARN_ON("failed to add user fence");
			user_fence_put(sync->ufence);
			dma_fence_put(fence);
		}
	} else if (sync->type == DRM_XE_SYNC_TYPE_USER_FENCE) {
		job->user_fence.used = true;
		job->user_fence.addr = sync->addr;
		job->user_fence.value = sync->timeline_value;
	}
}

void xe_sync_entry_cleanup(struct xe_sync_entry *sync)
{
	if (sync->syncobj)
		drm_syncobj_put(sync->syncobj);
	if (sync->fence)
		dma_fence_put(sync->fence);
	if (sync->chain_fence)
		dma_fence_put(&sync->chain_fence->base);
	if (sync->ufence)
		user_fence_put(sync->ufence);
}

/**
 * xe_sync_in_fence_get() - Get a fence from syncs, exec queue, and VM
 * @sync: input syncs
 * @num_sync: number of syncs
 * @q: exec queue
 * @vm: VM
 *
 * Get a fence from syncs, exec queue, and VM. If syncs contain in-fences create
 * and return a composite fence of all in-fences + last fence. If no in-fences
 * return last fence on  input exec queue. Caller must drop reference to
 * returned fence.
 *
 * Return: fence on success, ERR_PTR(-ENOMEM) on failure
 */
struct dma_fence *
xe_sync_in_fence_get(struct xe_sync_entry *sync, int num_sync,
		     struct xe_exec_queue *q, struct xe_vm *vm)
{
	struct dma_fence **fences = NULL;
	struct dma_fence_array *cf = NULL;
	struct dma_fence *fence;
	int i, num_in_fence = 0, current_fence = 0;

	lockdep_assert_held(&vm->lock);

	/* Count in-fences */
	for (i = 0; i < num_sync; ++i) {
		if (sync[i].fence) {
			++num_in_fence;
			fence = sync[i].fence;
		}
	}

	/* Easy case... */
	if (!num_in_fence) {
		fence = xe_exec_queue_last_fence_get(q, vm);
		return fence;
	}

	/* Create composite fence */
	fences = kmalloc_array(num_in_fence + 1, sizeof(*fences), GFP_KERNEL);
	if (!fences)
		return ERR_PTR(-ENOMEM);
	for (i = 0; i < num_sync; ++i) {
		if (sync[i].fence) {
			dma_fence_get(sync[i].fence);
			fences[current_fence++] = sync[i].fence;
		}
	}
	fences[current_fence++] = xe_exec_queue_last_fence_get(q, vm);
	cf = dma_fence_array_create(num_in_fence, fences,
				    vm->composite_fence_ctx,
				    vm->composite_fence_seqno++,
				    false);
	if (!cf) {
		--vm->composite_fence_seqno;
		goto err_out;
	}

	return &cf->base;

err_out:
	while (current_fence)
		dma_fence_put(fences[--current_fence]);
	kfree(fences);
	kfree(cf);

	return ERR_PTR(-ENOMEM);
}