summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/xe/xe_hw_engine.c
blob: 07ed9fd28f19568eadd7440a515c68c3ac63cde3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
// SPDX-License-Identifier: MIT
/*
 * Copyright © 2021 Intel Corporation
 */

#include "xe_hw_engine.h"

#include <drm/drm_managed.h>

#include "regs/xe_engine_regs.h"
#include "regs/xe_gt_regs.h"
#include "xe_assert.h"
#include "xe_bo.h"
#include "xe_device.h"
#include "xe_execlist.h"
#include "xe_force_wake.h"
#include "xe_gsc.h"
#include "xe_gt.h"
#include "xe_gt_ccs_mode.h"
#include "xe_gt_printk.h"
#include "xe_gt_mcr.h"
#include "xe_gt_topology.h"
#include "xe_hw_fence.h"
#include "xe_irq.h"
#include "xe_lrc.h"
#include "xe_macros.h"
#include "xe_mmio.h"
#include "xe_reg_sr.h"
#include "xe_reg_whitelist.h"
#include "xe_rtp.h"
#include "xe_sched_job.h"
#include "xe_sriov.h"
#include "xe_tuning.h"
#include "xe_uc_fw.h"
#include "xe_wa.h"

#define MAX_MMIO_BASES 3
struct engine_info {
	const char *name;
	unsigned int class : 8;
	unsigned int instance : 8;
	unsigned int irq_offset : 8;
	enum xe_force_wake_domains domain;
	u32 mmio_base;
};

static const struct engine_info engine_infos[] = {
	[XE_HW_ENGINE_RCS0] = {
		.name = "rcs0",
		.class = XE_ENGINE_CLASS_RENDER,
		.instance = 0,
		.irq_offset = ilog2(INTR_RCS0),
		.domain = XE_FW_RENDER,
		.mmio_base = RENDER_RING_BASE,
	},
	[XE_HW_ENGINE_BCS0] = {
		.name = "bcs0",
		.class = XE_ENGINE_CLASS_COPY,
		.instance = 0,
		.irq_offset = ilog2(INTR_BCS(0)),
		.domain = XE_FW_RENDER,
		.mmio_base = BLT_RING_BASE,
	},
	[XE_HW_ENGINE_BCS1] = {
		.name = "bcs1",
		.class = XE_ENGINE_CLASS_COPY,
		.instance = 1,
		.irq_offset = ilog2(INTR_BCS(1)),
		.domain = XE_FW_RENDER,
		.mmio_base = XEHPC_BCS1_RING_BASE,
	},
	[XE_HW_ENGINE_BCS2] = {
		.name = "bcs2",
		.class = XE_ENGINE_CLASS_COPY,
		.instance = 2,
		.irq_offset = ilog2(INTR_BCS(2)),
		.domain = XE_FW_RENDER,
		.mmio_base = XEHPC_BCS2_RING_BASE,
	},
	[XE_HW_ENGINE_BCS3] = {
		.name = "bcs3",
		.class = XE_ENGINE_CLASS_COPY,
		.instance = 3,
		.irq_offset = ilog2(INTR_BCS(3)),
		.domain = XE_FW_RENDER,
		.mmio_base = XEHPC_BCS3_RING_BASE,
	},
	[XE_HW_ENGINE_BCS4] = {
		.name = "bcs4",
		.class = XE_ENGINE_CLASS_COPY,
		.instance = 4,
		.irq_offset = ilog2(INTR_BCS(4)),
		.domain = XE_FW_RENDER,
		.mmio_base = XEHPC_BCS4_RING_BASE,
	},
	[XE_HW_ENGINE_BCS5] = {
		.name = "bcs5",
		.class = XE_ENGINE_CLASS_COPY,
		.instance = 5,
		.irq_offset = ilog2(INTR_BCS(5)),
		.domain = XE_FW_RENDER,
		.mmio_base = XEHPC_BCS5_RING_BASE,
	},
	[XE_HW_ENGINE_BCS6] = {
		.name = "bcs6",
		.class = XE_ENGINE_CLASS_COPY,
		.instance = 6,
		.irq_offset = ilog2(INTR_BCS(6)),
		.domain = XE_FW_RENDER,
		.mmio_base = XEHPC_BCS6_RING_BASE,
	},
	[XE_HW_ENGINE_BCS7] = {
		.name = "bcs7",
		.class = XE_ENGINE_CLASS_COPY,
		.irq_offset = ilog2(INTR_BCS(7)),
		.instance = 7,
		.domain = XE_FW_RENDER,
		.mmio_base = XEHPC_BCS7_RING_BASE,
	},
	[XE_HW_ENGINE_BCS8] = {
		.name = "bcs8",
		.class = XE_ENGINE_CLASS_COPY,
		.instance = 8,
		.irq_offset = ilog2(INTR_BCS8),
		.domain = XE_FW_RENDER,
		.mmio_base = XEHPC_BCS8_RING_BASE,
	},

	[XE_HW_ENGINE_VCS0] = {
		.name = "vcs0",
		.class = XE_ENGINE_CLASS_VIDEO_DECODE,
		.instance = 0,
		.irq_offset = 32 + ilog2(INTR_VCS(0)),
		.domain = XE_FW_MEDIA_VDBOX0,
		.mmio_base = BSD_RING_BASE,
	},
	[XE_HW_ENGINE_VCS1] = {
		.name = "vcs1",
		.class = XE_ENGINE_CLASS_VIDEO_DECODE,
		.instance = 1,
		.irq_offset = 32 + ilog2(INTR_VCS(1)),
		.domain = XE_FW_MEDIA_VDBOX1,
		.mmio_base = BSD2_RING_BASE,
	},
	[XE_HW_ENGINE_VCS2] = {
		.name = "vcs2",
		.class = XE_ENGINE_CLASS_VIDEO_DECODE,
		.instance = 2,
		.irq_offset = 32 + ilog2(INTR_VCS(2)),
		.domain = XE_FW_MEDIA_VDBOX2,
		.mmio_base = BSD3_RING_BASE,
	},
	[XE_HW_ENGINE_VCS3] = {
		.name = "vcs3",
		.class = XE_ENGINE_CLASS_VIDEO_DECODE,
		.instance = 3,
		.irq_offset = 32 + ilog2(INTR_VCS(3)),
		.domain = XE_FW_MEDIA_VDBOX3,
		.mmio_base = BSD4_RING_BASE,
	},
	[XE_HW_ENGINE_VCS4] = {
		.name = "vcs4",
		.class = XE_ENGINE_CLASS_VIDEO_DECODE,
		.instance = 4,
		.irq_offset = 32 + ilog2(INTR_VCS(4)),
		.domain = XE_FW_MEDIA_VDBOX4,
		.mmio_base = XEHP_BSD5_RING_BASE,
	},
	[XE_HW_ENGINE_VCS5] = {
		.name = "vcs5",
		.class = XE_ENGINE_CLASS_VIDEO_DECODE,
		.instance = 5,
		.irq_offset = 32 + ilog2(INTR_VCS(5)),
		.domain = XE_FW_MEDIA_VDBOX5,
		.mmio_base = XEHP_BSD6_RING_BASE,
	},
	[XE_HW_ENGINE_VCS6] = {
		.name = "vcs6",
		.class = XE_ENGINE_CLASS_VIDEO_DECODE,
		.instance = 6,
		.irq_offset = 32 + ilog2(INTR_VCS(6)),
		.domain = XE_FW_MEDIA_VDBOX6,
		.mmio_base = XEHP_BSD7_RING_BASE,
	},
	[XE_HW_ENGINE_VCS7] = {
		.name = "vcs7",
		.class = XE_ENGINE_CLASS_VIDEO_DECODE,
		.instance = 7,
		.irq_offset = 32 + ilog2(INTR_VCS(7)),
		.domain = XE_FW_MEDIA_VDBOX7,
		.mmio_base = XEHP_BSD8_RING_BASE,
	},
	[XE_HW_ENGINE_VECS0] = {
		.name = "vecs0",
		.class = XE_ENGINE_CLASS_VIDEO_ENHANCE,
		.instance = 0,
		.irq_offset = 32 + ilog2(INTR_VECS(0)),
		.domain = XE_FW_MEDIA_VEBOX0,
		.mmio_base = VEBOX_RING_BASE,
	},
	[XE_HW_ENGINE_VECS1] = {
		.name = "vecs1",
		.class = XE_ENGINE_CLASS_VIDEO_ENHANCE,
		.instance = 1,
		.irq_offset = 32 + ilog2(INTR_VECS(1)),
		.domain = XE_FW_MEDIA_VEBOX1,
		.mmio_base = VEBOX2_RING_BASE,
	},
	[XE_HW_ENGINE_VECS2] = {
		.name = "vecs2",
		.class = XE_ENGINE_CLASS_VIDEO_ENHANCE,
		.instance = 2,
		.irq_offset = 32 + ilog2(INTR_VECS(2)),
		.domain = XE_FW_MEDIA_VEBOX2,
		.mmio_base = XEHP_VEBOX3_RING_BASE,
	},
	[XE_HW_ENGINE_VECS3] = {
		.name = "vecs3",
		.class = XE_ENGINE_CLASS_VIDEO_ENHANCE,
		.instance = 3,
		.irq_offset = 32 + ilog2(INTR_VECS(3)),
		.domain = XE_FW_MEDIA_VEBOX3,
		.mmio_base = XEHP_VEBOX4_RING_BASE,
	},
	[XE_HW_ENGINE_CCS0] = {
		.name = "ccs0",
		.class = XE_ENGINE_CLASS_COMPUTE,
		.instance = 0,
		.irq_offset = ilog2(INTR_CCS(0)),
		.domain = XE_FW_RENDER,
		.mmio_base = COMPUTE0_RING_BASE,
	},
	[XE_HW_ENGINE_CCS1] = {
		.name = "ccs1",
		.class = XE_ENGINE_CLASS_COMPUTE,
		.instance = 1,
		.irq_offset = ilog2(INTR_CCS(1)),
		.domain = XE_FW_RENDER,
		.mmio_base = COMPUTE1_RING_BASE,
	},
	[XE_HW_ENGINE_CCS2] = {
		.name = "ccs2",
		.class = XE_ENGINE_CLASS_COMPUTE,
		.instance = 2,
		.irq_offset = ilog2(INTR_CCS(2)),
		.domain = XE_FW_RENDER,
		.mmio_base = COMPUTE2_RING_BASE,
	},
	[XE_HW_ENGINE_CCS3] = {
		.name = "ccs3",
		.class = XE_ENGINE_CLASS_COMPUTE,
		.instance = 3,
		.irq_offset = ilog2(INTR_CCS(3)),
		.domain = XE_FW_RENDER,
		.mmio_base = COMPUTE3_RING_BASE,
	},
	[XE_HW_ENGINE_GSCCS0] = {
		.name = "gsccs0",
		.class = XE_ENGINE_CLASS_OTHER,
		.instance = OTHER_GSC_INSTANCE,
		.domain = XE_FW_GSC,
		.mmio_base = GSCCS_RING_BASE,
	},
};

static void hw_engine_fini(struct drm_device *drm, void *arg)
{
	struct xe_hw_engine *hwe = arg;

	if (hwe->exl_port)
		xe_execlist_port_destroy(hwe->exl_port);
	xe_lrc_put(hwe->kernel_lrc);

	hwe->gt = NULL;
}

static void hw_engine_mmio_write32(struct xe_hw_engine *hwe, struct xe_reg reg,
				   u32 val)
{
	xe_gt_assert(hwe->gt, !(reg.addr & hwe->mmio_base));
	xe_force_wake_assert_held(gt_to_fw(hwe->gt), hwe->domain);

	reg.addr += hwe->mmio_base;

	xe_mmio_write32(hwe->gt, reg, val);
}

static u32 hw_engine_mmio_read32(struct xe_hw_engine *hwe, struct xe_reg reg)
{
	xe_gt_assert(hwe->gt, !(reg.addr & hwe->mmio_base));
	xe_force_wake_assert_held(gt_to_fw(hwe->gt), hwe->domain);

	reg.addr += hwe->mmio_base;

	return xe_mmio_read32(hwe->gt, reg);
}

void xe_hw_engine_enable_ring(struct xe_hw_engine *hwe)
{
	u32 ccs_mask =
		xe_hw_engine_mask_per_class(hwe->gt, XE_ENGINE_CLASS_COMPUTE);

	if (hwe->class == XE_ENGINE_CLASS_COMPUTE && ccs_mask)
		xe_mmio_write32(hwe->gt, RCU_MODE,
				_MASKED_BIT_ENABLE(RCU_MODE_CCS_ENABLE));

	hw_engine_mmio_write32(hwe, RING_HWSTAM(0), ~0x0);
	hw_engine_mmio_write32(hwe, RING_HWS_PGA(0),
			       xe_bo_ggtt_addr(hwe->hwsp));
	hw_engine_mmio_write32(hwe, RING_MODE(0),
			       _MASKED_BIT_ENABLE(GFX_DISABLE_LEGACY_MODE));
	hw_engine_mmio_write32(hwe, RING_MI_MODE(0),
			       _MASKED_BIT_DISABLE(STOP_RING));
	hw_engine_mmio_read32(hwe, RING_MI_MODE(0));
}

static bool xe_hw_engine_match_fixed_cslice_mode(const struct xe_gt *gt,
						 const struct xe_hw_engine *hwe)
{
	return xe_gt_ccs_mode_enabled(gt) &&
	       xe_rtp_match_first_render_or_compute(gt, hwe);
}

static bool xe_rtp_cfeg_wmtp_disabled(const struct xe_gt *gt,
				      const struct xe_hw_engine *hwe)
{
	if (GRAPHICS_VER(gt_to_xe(gt)) < 20)
		return false;

	if (hwe->class != XE_ENGINE_CLASS_COMPUTE &&
	    hwe->class != XE_ENGINE_CLASS_RENDER)
		return false;

	return xe_mmio_read32(hwe->gt, XEHP_FUSE4) & CFEG_WMTP_DISABLE;
}

void
xe_hw_engine_setup_default_lrc_state(struct xe_hw_engine *hwe)
{
	struct xe_gt *gt = hwe->gt;
	const u8 mocs_write_idx = gt->mocs.uc_index;
	const u8 mocs_read_idx = gt->mocs.uc_index;
	u32 blit_cctl_val = REG_FIELD_PREP(BLIT_CCTL_DST_MOCS_MASK, mocs_write_idx) |
			    REG_FIELD_PREP(BLIT_CCTL_SRC_MOCS_MASK, mocs_read_idx);
	struct xe_rtp_process_ctx ctx = XE_RTP_PROCESS_CTX_INITIALIZER(hwe);
	const struct xe_rtp_entry_sr lrc_setup[] = {
		/*
		 * Some blitter commands do not have a field for MOCS, those
		 * commands will use MOCS index pointed by BLIT_CCTL.
		 * BLIT_CCTL registers are needed to be programmed to un-cached.
		 */
		{ XE_RTP_NAME("BLIT_CCTL_default_MOCS"),
		  XE_RTP_RULES(GRAPHICS_VERSION_RANGE(1200, XE_RTP_END_VERSION_UNDEFINED),
			       ENGINE_CLASS(COPY)),
		  XE_RTP_ACTIONS(FIELD_SET(BLIT_CCTL(0),
				 BLIT_CCTL_DST_MOCS_MASK |
				 BLIT_CCTL_SRC_MOCS_MASK,
				 blit_cctl_val,
				 XE_RTP_ACTION_FLAG(ENGINE_BASE)))
		},
		/* Use Fixed slice CCS mode */
		{ XE_RTP_NAME("RCU_MODE_FIXED_SLICE_CCS_MODE"),
		  XE_RTP_RULES(FUNC(xe_hw_engine_match_fixed_cslice_mode)),
		  XE_RTP_ACTIONS(FIELD_SET(RCU_MODE, RCU_MODE_FIXED_SLICE_CCS_MODE,
					   RCU_MODE_FIXED_SLICE_CCS_MODE))
		},
		/* Disable WMTP if HW doesn't support it */
		{ XE_RTP_NAME("DISABLE_WMTP_ON_UNSUPPORTED_HW"),
		  XE_RTP_RULES(FUNC(xe_rtp_cfeg_wmtp_disabled)),
		  XE_RTP_ACTIONS(FIELD_SET(CS_CHICKEN1(0),
					   PREEMPT_GPGPU_LEVEL_MASK,
					   PREEMPT_GPGPU_THREAD_GROUP_LEVEL)),
		  XE_RTP_ENTRY_FLAG(FOREACH_ENGINE)
		},
		{}
	};

	xe_rtp_process_to_sr(&ctx, lrc_setup, &hwe->reg_lrc);
}

static void
hw_engine_setup_default_state(struct xe_hw_engine *hwe)
{
	struct xe_gt *gt = hwe->gt;
	struct xe_device *xe = gt_to_xe(gt);
	/*
	 * RING_CMD_CCTL specifies the default MOCS entry that will be
	 * used by the command streamer when executing commands that
	 * don't have a way to explicitly specify a MOCS setting.
	 * The default should usually reference whichever MOCS entry
	 * corresponds to uncached behavior, although use of a WB cached
	 * entry is recommended by the spec in certain circumstances on
	 * specific platforms.
	 * Bspec: 72161
	 */
	const u8 mocs_write_idx = gt->mocs.uc_index;
	const u8 mocs_read_idx = hwe->class == XE_ENGINE_CLASS_COMPUTE &&
				 (GRAPHICS_VER(xe) >= 20 || xe->info.platform == XE_PVC) ?
				 gt->mocs.wb_index : gt->mocs.uc_index;
	u32 ring_cmd_cctl_val = REG_FIELD_PREP(CMD_CCTL_WRITE_OVERRIDE_MASK, mocs_write_idx) |
				REG_FIELD_PREP(CMD_CCTL_READ_OVERRIDE_MASK, mocs_read_idx);
	struct xe_rtp_process_ctx ctx = XE_RTP_PROCESS_CTX_INITIALIZER(hwe);
	const struct xe_rtp_entry_sr engine_entries[] = {
		{ XE_RTP_NAME("RING_CMD_CCTL_default_MOCS"),
		  XE_RTP_RULES(GRAPHICS_VERSION_RANGE(1200, XE_RTP_END_VERSION_UNDEFINED)),
		  XE_RTP_ACTIONS(FIELD_SET(RING_CMD_CCTL(0),
					   CMD_CCTL_WRITE_OVERRIDE_MASK |
					   CMD_CCTL_READ_OVERRIDE_MASK,
					   ring_cmd_cctl_val,
					   XE_RTP_ACTION_FLAG(ENGINE_BASE)))
		},
		/*
		 * To allow the GSC engine to go idle on MTL we need to enable
		 * idle messaging and set the hysteresis value (we use 0xA=5us
		 * as recommended in spec). On platforms after MTL this is
		 * enabled by default.
		 */
		{ XE_RTP_NAME("MTL GSCCS IDLE MSG enable"),
		  XE_RTP_RULES(MEDIA_VERSION(1300), ENGINE_CLASS(OTHER)),
		  XE_RTP_ACTIONS(CLR(RING_PSMI_CTL(0),
				     IDLE_MSG_DISABLE,
				     XE_RTP_ACTION_FLAG(ENGINE_BASE)),
				 FIELD_SET(RING_PWRCTX_MAXCNT(0),
					   IDLE_WAIT_TIME,
					   0xA,
					   XE_RTP_ACTION_FLAG(ENGINE_BASE)))
		},
		{}
	};

	xe_rtp_process_to_sr(&ctx, engine_entries, &hwe->reg_sr);
}

static void hw_engine_init_early(struct xe_gt *gt, struct xe_hw_engine *hwe,
				 enum xe_hw_engine_id id)
{
	const struct engine_info *info;

	if (WARN_ON(id >= ARRAY_SIZE(engine_infos) || !engine_infos[id].name))
		return;

	if (!(gt->info.engine_mask & BIT(id)))
		return;

	info = &engine_infos[id];

	xe_gt_assert(gt, !hwe->gt);

	hwe->gt = gt;
	hwe->class = info->class;
	hwe->instance = info->instance;
	hwe->mmio_base = info->mmio_base;
	hwe->irq_offset = info->irq_offset;
	hwe->domain = info->domain;
	hwe->name = info->name;
	hwe->fence_irq = &gt->fence_irq[info->class];
	hwe->engine_id = id;

	hwe->eclass = &gt->eclass[hwe->class];
	if (!hwe->eclass->sched_props.job_timeout_ms) {
		hwe->eclass->sched_props.job_timeout_ms = 5 * 1000;
		hwe->eclass->sched_props.job_timeout_min = XE_HW_ENGINE_JOB_TIMEOUT_MIN;
		hwe->eclass->sched_props.job_timeout_max = XE_HW_ENGINE_JOB_TIMEOUT_MAX;
		hwe->eclass->sched_props.timeslice_us = 1 * 1000;
		hwe->eclass->sched_props.timeslice_min = XE_HW_ENGINE_TIMESLICE_MIN;
		hwe->eclass->sched_props.timeslice_max = XE_HW_ENGINE_TIMESLICE_MAX;
		hwe->eclass->sched_props.preempt_timeout_us = XE_HW_ENGINE_PREEMPT_TIMEOUT;
		hwe->eclass->sched_props.preempt_timeout_min = XE_HW_ENGINE_PREEMPT_TIMEOUT_MIN;
		hwe->eclass->sched_props.preempt_timeout_max = XE_HW_ENGINE_PREEMPT_TIMEOUT_MAX;

		/*
		 * The GSC engine can accept submissions while the GSC shim is
		 * being reset, during which time the submission is stalled. In
		 * the worst case, the shim reset can take up to the maximum GSC
		 * command execution time (250ms), so the request start can be
		 * delayed by that much; the request itself can take that long
		 * without being preemptible, which means worst case it can
		 * theoretically take up to 500ms for a preemption to go through
		 * on the GSC engine. Adding to that an extra 100ms as a safety
		 * margin, we get a minimum recommended timeout of 600ms.
		 * The preempt_timeout value can't be tuned for OTHER_CLASS
		 * because the class is reserved for kernel usage, so we just
		 * need to make sure that the starting value is above that
		 * threshold; since our default value (640ms) is greater than
		 * 600ms, the only way we can go below is via a kconfig setting.
		 * If that happens, log it in dmesg and update the value.
		 */
		if (hwe->class == XE_ENGINE_CLASS_OTHER) {
			const u32 min_preempt_timeout = 600 * 1000;
			if (hwe->eclass->sched_props.preempt_timeout_us < min_preempt_timeout) {
				hwe->eclass->sched_props.preempt_timeout_us = min_preempt_timeout;
				xe_gt_notice(gt, "Increasing preempt_timeout for GSC to 600ms\n");
			}
		}

		/* Record default props */
		hwe->eclass->defaults = hwe->eclass->sched_props;
	}

	xe_reg_sr_init(&hwe->reg_sr, hwe->name, gt_to_xe(gt));
	xe_tuning_process_engine(hwe);
	xe_wa_process_engine(hwe);
	hw_engine_setup_default_state(hwe);

	xe_reg_sr_init(&hwe->reg_whitelist, hwe->name, gt_to_xe(gt));
	xe_reg_whitelist_process_engine(hwe);
}

static int hw_engine_init(struct xe_gt *gt, struct xe_hw_engine *hwe,
			  enum xe_hw_engine_id id)
{
	struct xe_device *xe = gt_to_xe(gt);
	struct xe_tile *tile = gt_to_tile(gt);
	int err;

	xe_gt_assert(gt, id < ARRAY_SIZE(engine_infos) && engine_infos[id].name);
	xe_gt_assert(gt, gt->info.engine_mask & BIT(id));

	xe_reg_sr_apply_mmio(&hwe->reg_sr, gt);
	xe_reg_sr_apply_whitelist(hwe);

	hwe->hwsp = xe_managed_bo_create_pin_map(xe, tile, SZ_4K,
						 XE_BO_FLAG_VRAM_IF_DGFX(tile) |
						 XE_BO_FLAG_GGTT |
						 XE_BO_FLAG_GGTT_INVALIDATE);
	if (IS_ERR(hwe->hwsp)) {
		err = PTR_ERR(hwe->hwsp);
		goto err_name;
	}

	hwe->kernel_lrc = xe_lrc_create(hwe, NULL, SZ_16K);
	if (IS_ERR(hwe->kernel_lrc)) {
		err = PTR_ERR(hwe->kernel_lrc);
		goto err_hwsp;
	}

	if (!xe_device_uc_enabled(xe)) {
		hwe->exl_port = xe_execlist_port_create(xe, hwe);
		if (IS_ERR(hwe->exl_port)) {
			err = PTR_ERR(hwe->exl_port);
			goto err_kernel_lrc;
		}
	}

	if (xe_device_uc_enabled(xe)) {
		/* GSCCS has a special interrupt for reset */
		if (hwe->class == XE_ENGINE_CLASS_OTHER)
			hwe->irq_handler = xe_gsc_hwe_irq_handler;

		if (!IS_SRIOV_VF(xe))
			xe_hw_engine_enable_ring(hwe);
	}

	/* We reserve the highest BCS instance for USM */
	if (xe->info.has_usm && hwe->class == XE_ENGINE_CLASS_COPY)
		gt->usm.reserved_bcs_instance = hwe->instance;

	return drmm_add_action_or_reset(&xe->drm, hw_engine_fini, hwe);

err_kernel_lrc:
	xe_lrc_put(hwe->kernel_lrc);
err_hwsp:
	xe_bo_unpin_map_no_vm(hwe->hwsp);
err_name:
	hwe->name = NULL;

	return err;
}

static void hw_engine_setup_logical_mapping(struct xe_gt *gt)
{
	int class;

	/* FIXME: Doing a simple logical mapping that works for most hardware */
	for (class = 0; class < XE_ENGINE_CLASS_MAX; ++class) {
		struct xe_hw_engine *hwe;
		enum xe_hw_engine_id id;
		int logical_instance = 0;

		for_each_hw_engine(hwe, gt, id)
			if (hwe->class == class)
				hwe->logical_instance = logical_instance++;
	}
}

static void read_media_fuses(struct xe_gt *gt)
{
	struct xe_device *xe = gt_to_xe(gt);
	u32 media_fuse;
	u16 vdbox_mask;
	u16 vebox_mask;
	int i, j;

	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);

	media_fuse = xe_mmio_read32(gt, GT_VEBOX_VDBOX_DISABLE);

	/*
	 * Pre-Xe_HP platforms had register bits representing absent engines,
	 * whereas Xe_HP and beyond have bits representing present engines.
	 * Invert the polarity on old platforms so that we can use common
	 * handling below.
	 */
	if (GRAPHICS_VERx100(xe) < 1250)
		media_fuse = ~media_fuse;

	vdbox_mask = REG_FIELD_GET(GT_VDBOX_DISABLE_MASK, media_fuse);
	vebox_mask = REG_FIELD_GET(GT_VEBOX_DISABLE_MASK, media_fuse);

	for (i = XE_HW_ENGINE_VCS0, j = 0; i <= XE_HW_ENGINE_VCS7; ++i, ++j) {
		if (!(gt->info.engine_mask & BIT(i)))
			continue;

		if (!(BIT(j) & vdbox_mask)) {
			gt->info.engine_mask &= ~BIT(i);
			drm_info(&xe->drm, "vcs%u fused off\n", j);
		}
	}

	for (i = XE_HW_ENGINE_VECS0, j = 0; i <= XE_HW_ENGINE_VECS3; ++i, ++j) {
		if (!(gt->info.engine_mask & BIT(i)))
			continue;

		if (!(BIT(j) & vebox_mask)) {
			gt->info.engine_mask &= ~BIT(i);
			drm_info(&xe->drm, "vecs%u fused off\n", j);
		}
	}
}

static void read_copy_fuses(struct xe_gt *gt)
{
	struct xe_device *xe = gt_to_xe(gt);
	u32 bcs_mask;

	if (GRAPHICS_VERx100(xe) < 1260 || GRAPHICS_VERx100(xe) >= 1270)
		return;

	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);

	bcs_mask = xe_mmio_read32(gt, MIRROR_FUSE3);
	bcs_mask = REG_FIELD_GET(MEML3_EN_MASK, bcs_mask);

	/* BCS0 is always present; only BCS1-BCS8 may be fused off */
	for (int i = XE_HW_ENGINE_BCS1, j = 0; i <= XE_HW_ENGINE_BCS8; ++i, ++j) {
		if (!(gt->info.engine_mask & BIT(i)))
			continue;

		if (!(BIT(j / 2) & bcs_mask)) {
			gt->info.engine_mask &= ~BIT(i);
			drm_info(&xe->drm, "bcs%u fused off\n", j);
		}
	}
}

static void read_compute_fuses_from_dss(struct xe_gt *gt)
{
	struct xe_device *xe = gt_to_xe(gt);

	/*
	 * CCS fusing based on DSS masks only applies to platforms that can
	 * have more than one CCS.
	 */
	if (hweight64(gt->info.engine_mask &
		      GENMASK_ULL(XE_HW_ENGINE_CCS3, XE_HW_ENGINE_CCS0)) <= 1)
		return;

	/*
	 * CCS availability on Xe_HP is inferred from the presence of DSS in
	 * each quadrant.
	 */
	for (int i = XE_HW_ENGINE_CCS0, j = 0; i <= XE_HW_ENGINE_CCS3; ++i, ++j) {
		if (!(gt->info.engine_mask & BIT(i)))
			continue;

		if (!xe_gt_topology_has_dss_in_quadrant(gt, j)) {
			gt->info.engine_mask &= ~BIT(i);
			drm_info(&xe->drm, "ccs%u fused off\n", j);
		}
	}
}

static void read_compute_fuses_from_reg(struct xe_gt *gt)
{
	struct xe_device *xe = gt_to_xe(gt);
	u32 ccs_mask;

	ccs_mask = xe_mmio_read32(gt, XEHP_FUSE4);
	ccs_mask = REG_FIELD_GET(CCS_EN_MASK, ccs_mask);

	for (int i = XE_HW_ENGINE_CCS0, j = 0; i <= XE_HW_ENGINE_CCS3; ++i, ++j) {
		if (!(gt->info.engine_mask & BIT(i)))
			continue;

		if ((ccs_mask & BIT(j)) == 0) {
			gt->info.engine_mask &= ~BIT(i);
			drm_info(&xe->drm, "ccs%u fused off\n", j);
		}
	}
}

static void read_compute_fuses(struct xe_gt *gt)
{
	if (GRAPHICS_VER(gt_to_xe(gt)) >= 20)
		read_compute_fuses_from_reg(gt);
	else
		read_compute_fuses_from_dss(gt);
}

static void check_gsc_availability(struct xe_gt *gt)
{
	struct xe_device *xe = gt_to_xe(gt);

	if (!(gt->info.engine_mask & BIT(XE_HW_ENGINE_GSCCS0)))
		return;

	/*
	 * The GSCCS is only used to communicate with the GSC FW, so if we don't
	 * have the FW there is nothing we need the engine for and can therefore
	 * skip its initialization.
	 */
	if (!xe_uc_fw_is_available(&gt->uc.gsc.fw)) {
		gt->info.engine_mask &= ~BIT(XE_HW_ENGINE_GSCCS0);

		/* interrupts where previously enabled, so turn them off */
		xe_mmio_write32(gt, GUNIT_GSC_INTR_ENABLE, 0);
		xe_mmio_write32(gt, GUNIT_GSC_INTR_MASK, ~0);

		drm_info(&xe->drm, "gsccs disabled due to lack of FW\n");
	}
}

int xe_hw_engines_init_early(struct xe_gt *gt)
{
	int i;

	read_media_fuses(gt);
	read_copy_fuses(gt);
	read_compute_fuses(gt);
	check_gsc_availability(gt);

	BUILD_BUG_ON(XE_HW_ENGINE_PREEMPT_TIMEOUT < XE_HW_ENGINE_PREEMPT_TIMEOUT_MIN);
	BUILD_BUG_ON(XE_HW_ENGINE_PREEMPT_TIMEOUT > XE_HW_ENGINE_PREEMPT_TIMEOUT_MAX);

	for (i = 0; i < ARRAY_SIZE(gt->hw_engines); i++)
		hw_engine_init_early(gt, &gt->hw_engines[i], i);

	return 0;
}

int xe_hw_engines_init(struct xe_gt *gt)
{
	int err;
	struct xe_hw_engine *hwe;
	enum xe_hw_engine_id id;

	for_each_hw_engine(hwe, gt, id) {
		err = hw_engine_init(gt, hwe, id);
		if (err)
			return err;
	}

	hw_engine_setup_logical_mapping(gt);

	return 0;
}

void xe_hw_engine_handle_irq(struct xe_hw_engine *hwe, u16 intr_vec)
{
	wake_up_all(&gt_to_xe(hwe->gt)->ufence_wq);

	if (hwe->irq_handler)
		hwe->irq_handler(hwe, intr_vec);

	if (intr_vec & GT_RENDER_USER_INTERRUPT)
		xe_hw_fence_irq_run(hwe->fence_irq);
}

static bool
is_slice_common_per_gslice(struct xe_device *xe)
{
	return GRAPHICS_VERx100(xe) >= 1255;
}

static void
xe_hw_engine_snapshot_instdone_capture(struct xe_hw_engine *hwe,
				       struct xe_hw_engine_snapshot *snapshot)
{
	struct xe_gt *gt = hwe->gt;
	struct xe_device *xe = gt_to_xe(gt);
	unsigned int dss;
	u16 group, instance;

	snapshot->reg.instdone.ring = hw_engine_mmio_read32(hwe, RING_INSTDONE(0));

	if (snapshot->hwe->class != XE_ENGINE_CLASS_RENDER)
		return;

	if (is_slice_common_per_gslice(xe) == false) {
		snapshot->reg.instdone.slice_common[0] =
			xe_mmio_read32(gt, SC_INSTDONE);
		snapshot->reg.instdone.slice_common_extra[0] =
			xe_mmio_read32(gt, SC_INSTDONE_EXTRA);
		snapshot->reg.instdone.slice_common_extra2[0] =
			xe_mmio_read32(gt, SC_INSTDONE_EXTRA2);
	} else {
		for_each_geometry_dss(dss, gt, group, instance) {
			snapshot->reg.instdone.slice_common[dss] =
				xe_gt_mcr_unicast_read(gt, XEHPG_SC_INSTDONE, group, instance);
			snapshot->reg.instdone.slice_common_extra[dss] =
				xe_gt_mcr_unicast_read(gt, XEHPG_SC_INSTDONE_EXTRA, group, instance);
			snapshot->reg.instdone.slice_common_extra2[dss] =
				xe_gt_mcr_unicast_read(gt, XEHPG_SC_INSTDONE_EXTRA2, group, instance);
		}
	}

	for_each_geometry_dss(dss, gt, group, instance) {
		snapshot->reg.instdone.sampler[dss] =
			xe_gt_mcr_unicast_read(gt, SAMPLER_INSTDONE, group, instance);
		snapshot->reg.instdone.row[dss] =
			xe_gt_mcr_unicast_read(gt, ROW_INSTDONE, group, instance);

		if (GRAPHICS_VERx100(xe) >= 1255)
			snapshot->reg.instdone.geom_svg[dss] =
				xe_gt_mcr_unicast_read(gt, XEHPG_INSTDONE_GEOM_SVGUNIT,
						       group, instance);
	}
}

/**
 * xe_hw_engine_snapshot_capture - Take a quick snapshot of the HW Engine.
 * @hwe: Xe HW Engine.
 *
 * This can be printed out in a later stage like during dev_coredump
 * analysis.
 *
 * Returns: a Xe HW Engine snapshot object that must be freed by the
 * caller, using `xe_hw_engine_snapshot_free`.
 */
struct xe_hw_engine_snapshot *
xe_hw_engine_snapshot_capture(struct xe_hw_engine *hwe)
{
	struct xe_hw_engine_snapshot *snapshot;
	size_t len;
	u64 val;

	if (!xe_hw_engine_is_valid(hwe))
		return NULL;

	snapshot = kzalloc(sizeof(*snapshot), GFP_ATOMIC);

	if (!snapshot)
		return NULL;

	/* Because XE_MAX_DSS_FUSE_BITS is defined in xe_gt_types.h and it
	 * includes xe_hw_engine_types.h the length of this 3 registers can't be
	 * set in struct xe_hw_engine_snapshot, so here doing additional
	 * allocations.
	 */
	len = (XE_MAX_DSS_FUSE_BITS * sizeof(u32));
	snapshot->reg.instdone.slice_common = kzalloc(len, GFP_ATOMIC);
	snapshot->reg.instdone.slice_common_extra = kzalloc(len, GFP_ATOMIC);
	snapshot->reg.instdone.slice_common_extra2 = kzalloc(len, GFP_ATOMIC);
	snapshot->reg.instdone.sampler = kzalloc(len, GFP_ATOMIC);
	snapshot->reg.instdone.row = kzalloc(len, GFP_ATOMIC);
	snapshot->reg.instdone.geom_svg = kzalloc(len, GFP_ATOMIC);
	if (!snapshot->reg.instdone.slice_common ||
	    !snapshot->reg.instdone.slice_common_extra ||
	    !snapshot->reg.instdone.slice_common_extra2 ||
	    !snapshot->reg.instdone.sampler ||
	    !snapshot->reg.instdone.row ||
	    !snapshot->reg.instdone.geom_svg) {
		xe_hw_engine_snapshot_free(snapshot);
		return NULL;
	}

	snapshot->name = kstrdup(hwe->name, GFP_ATOMIC);
	snapshot->hwe = hwe;
	snapshot->logical_instance = hwe->logical_instance;
	snapshot->forcewake.domain = hwe->domain;
	snapshot->forcewake.ref = xe_force_wake_ref(gt_to_fw(hwe->gt),
						    hwe->domain);
	snapshot->mmio_base = hwe->mmio_base;

	/* no more VF accessible data below this point */
	if (IS_SRIOV_VF(gt_to_xe(hwe->gt)))
		return snapshot;

	snapshot->reg.ring_execlist_status =
		hw_engine_mmio_read32(hwe, RING_EXECLIST_STATUS_LO(0));
	val = hw_engine_mmio_read32(hwe, RING_EXECLIST_STATUS_HI(0));
	snapshot->reg.ring_execlist_status |= val << 32;

	snapshot->reg.ring_execlist_sq_contents =
		hw_engine_mmio_read32(hwe, RING_EXECLIST_SQ_CONTENTS_LO(0));
	val = hw_engine_mmio_read32(hwe, RING_EXECLIST_SQ_CONTENTS_HI(0));
	snapshot->reg.ring_execlist_sq_contents |= val << 32;

	snapshot->reg.ring_acthd = hw_engine_mmio_read32(hwe, RING_ACTHD(0));
	val = hw_engine_mmio_read32(hwe, RING_ACTHD_UDW(0));
	snapshot->reg.ring_acthd |= val << 32;

	snapshot->reg.ring_bbaddr = hw_engine_mmio_read32(hwe, RING_BBADDR(0));
	val = hw_engine_mmio_read32(hwe, RING_BBADDR_UDW(0));
	snapshot->reg.ring_bbaddr |= val << 32;

	snapshot->reg.ring_dma_fadd =
		hw_engine_mmio_read32(hwe, RING_DMA_FADD(0));
	val = hw_engine_mmio_read32(hwe, RING_DMA_FADD_UDW(0));
	snapshot->reg.ring_dma_fadd |= val << 32;

	snapshot->reg.ring_hwstam = hw_engine_mmio_read32(hwe, RING_HWSTAM(0));
	snapshot->reg.ring_hws_pga = hw_engine_mmio_read32(hwe, RING_HWS_PGA(0));
	snapshot->reg.ring_start = hw_engine_mmio_read32(hwe, RING_START(0));
	if (GRAPHICS_VERx100(hwe->gt->tile->xe) >= 2000) {
		val = hw_engine_mmio_read32(hwe, RING_START_UDW(0));
		snapshot->reg.ring_start |= val << 32;
	}
	if (xe_gt_has_indirect_ring_state(hwe->gt)) {
		snapshot->reg.indirect_ring_state =
			hw_engine_mmio_read32(hwe, INDIRECT_RING_STATE(0));
	}

	snapshot->reg.ring_head =
		hw_engine_mmio_read32(hwe, RING_HEAD(0)) & HEAD_ADDR;
	snapshot->reg.ring_tail =
		hw_engine_mmio_read32(hwe, RING_TAIL(0)) & TAIL_ADDR;
	snapshot->reg.ring_ctl = hw_engine_mmio_read32(hwe, RING_CTL(0));
	snapshot->reg.ring_mi_mode =
		hw_engine_mmio_read32(hwe, RING_MI_MODE(0));
	snapshot->reg.ring_mode = hw_engine_mmio_read32(hwe, RING_MODE(0));
	snapshot->reg.ring_imr = hw_engine_mmio_read32(hwe, RING_IMR(0));
	snapshot->reg.ring_esr = hw_engine_mmio_read32(hwe, RING_ESR(0));
	snapshot->reg.ring_emr = hw_engine_mmio_read32(hwe, RING_EMR(0));
	snapshot->reg.ring_eir = hw_engine_mmio_read32(hwe, RING_EIR(0));
	snapshot->reg.ipehr = hw_engine_mmio_read32(hwe, RING_IPEHR(0));
	xe_hw_engine_snapshot_instdone_capture(hwe, snapshot);

	if (snapshot->hwe->class == XE_ENGINE_CLASS_COMPUTE)
		snapshot->reg.rcu_mode = xe_mmio_read32(hwe->gt, RCU_MODE);

	return snapshot;
}

static void
xe_hw_engine_snapshot_instdone_print(struct xe_hw_engine_snapshot *snapshot, struct drm_printer *p)
{
	struct xe_gt *gt = snapshot->hwe->gt;
	struct xe_device *xe = gt_to_xe(gt);
	u16 group, instance;
	unsigned int dss;

	drm_printf(p, "\tRING_INSTDONE: 0x%08x\n", snapshot->reg.instdone.ring);

	if (snapshot->hwe->class != XE_ENGINE_CLASS_RENDER)
		return;

	if (is_slice_common_per_gslice(xe) == false) {
		drm_printf(p, "\tSC_INSTDONE[0]: 0x%08x\n",
			   snapshot->reg.instdone.slice_common[0]);
		drm_printf(p, "\tSC_INSTDONE_EXTRA[0]: 0x%08x\n",
			   snapshot->reg.instdone.slice_common_extra[0]);
		drm_printf(p, "\tSC_INSTDONE_EXTRA2[0]: 0x%08x\n",
			   snapshot->reg.instdone.slice_common_extra2[0]);
	} else {
		for_each_geometry_dss(dss, gt, group, instance) {
			drm_printf(p, "\tSC_INSTDONE[%u]: 0x%08x\n", dss,
				   snapshot->reg.instdone.slice_common[dss]);
			drm_printf(p, "\tSC_INSTDONE_EXTRA[%u]: 0x%08x\n", dss,
				   snapshot->reg.instdone.slice_common_extra[dss]);
			drm_printf(p, "\tSC_INSTDONE_EXTRA2[%u]: 0x%08x\n", dss,
				   snapshot->reg.instdone.slice_common_extra2[dss]);
		}
	}

	for_each_geometry_dss(dss, gt, group, instance) {
		drm_printf(p, "\tSAMPLER_INSTDONE[%u]: 0x%08x\n", dss,
			   snapshot->reg.instdone.sampler[dss]);
		drm_printf(p, "\tROW_INSTDONE[%u]: 0x%08x\n", dss,
			   snapshot->reg.instdone.row[dss]);

		if (GRAPHICS_VERx100(xe) >= 1255)
			drm_printf(p, "\tINSTDONE_GEOM_SVGUNIT[%u]: 0x%08x\n",
				   dss, snapshot->reg.instdone.geom_svg[dss]);
	}
}

/**
 * xe_hw_engine_snapshot_print - Print out a given Xe HW Engine snapshot.
 * @snapshot: Xe HW Engine snapshot object.
 * @p: drm_printer where it will be printed out.
 *
 * This function prints out a given Xe HW Engine snapshot object.
 */
void xe_hw_engine_snapshot_print(struct xe_hw_engine_snapshot *snapshot,
				 struct drm_printer *p)
{
	if (!snapshot)
		return;

	drm_printf(p, "%s (physical), logical instance=%d\n",
		   snapshot->name ? snapshot->name : "",
		   snapshot->logical_instance);
	drm_printf(p, "\tForcewake: domain 0x%x, ref %d\n",
		   snapshot->forcewake.domain, snapshot->forcewake.ref);
	drm_printf(p, "\tHWSTAM: 0x%08x\n", snapshot->reg.ring_hwstam);
	drm_printf(p, "\tRING_HWS_PGA: 0x%08x\n", snapshot->reg.ring_hws_pga);
	drm_printf(p, "\tRING_EXECLIST_STATUS: 0x%016llx\n",
		   snapshot->reg.ring_execlist_status);
	drm_printf(p, "\tRING_EXECLIST_SQ_CONTENTS: 0x%016llx\n",
		   snapshot->reg.ring_execlist_sq_contents);
	drm_printf(p, "\tRING_START: 0x%016llx\n", snapshot->reg.ring_start);
	drm_printf(p, "\tRING_HEAD: 0x%08x\n", snapshot->reg.ring_head);
	drm_printf(p, "\tRING_TAIL: 0x%08x\n", snapshot->reg.ring_tail);
	drm_printf(p, "\tRING_CTL: 0x%08x\n", snapshot->reg.ring_ctl);
	drm_printf(p, "\tRING_MI_MODE: 0x%08x\n", snapshot->reg.ring_mi_mode);
	drm_printf(p, "\tRING_MODE: 0x%08x\n",
		   snapshot->reg.ring_mode);
	drm_printf(p, "\tRING_IMR: 0x%08x\n", snapshot->reg.ring_imr);
	drm_printf(p, "\tRING_ESR: 0x%08x\n", snapshot->reg.ring_esr);
	drm_printf(p, "\tRING_EMR: 0x%08x\n", snapshot->reg.ring_emr);
	drm_printf(p, "\tRING_EIR: 0x%08x\n", snapshot->reg.ring_eir);
	drm_printf(p, "\tACTHD: 0x%016llx\n", snapshot->reg.ring_acthd);
	drm_printf(p, "\tBBADDR: 0x%016llx\n", snapshot->reg.ring_bbaddr);
	drm_printf(p, "\tDMA_FADDR: 0x%016llx\n", snapshot->reg.ring_dma_fadd);
	drm_printf(p, "\tINDIRECT_RING_STATE: 0x%08x\n",
		   snapshot->reg.indirect_ring_state);
	drm_printf(p, "\tIPEHR: 0x%08x\n", snapshot->reg.ipehr);
	xe_hw_engine_snapshot_instdone_print(snapshot, p);

	if (snapshot->hwe->class == XE_ENGINE_CLASS_COMPUTE)
		drm_printf(p, "\tRCU_MODE: 0x%08x\n",
			   snapshot->reg.rcu_mode);
	drm_puts(p, "\n");
}

/**
 * xe_hw_engine_snapshot_free - Free all allocated objects for a given snapshot.
 * @snapshot: Xe HW Engine snapshot object.
 *
 * This function free all the memory that needed to be allocated at capture
 * time.
 */
void xe_hw_engine_snapshot_free(struct xe_hw_engine_snapshot *snapshot)
{
	if (!snapshot)
		return;

	kfree(snapshot->reg.instdone.slice_common);
	kfree(snapshot->reg.instdone.slice_common_extra);
	kfree(snapshot->reg.instdone.slice_common_extra2);
	kfree(snapshot->reg.instdone.sampler);
	kfree(snapshot->reg.instdone.row);
	kfree(snapshot->reg.instdone.geom_svg);
	kfree(snapshot->name);
	kfree(snapshot);
}

/**
 * xe_hw_engine_print - Xe HW Engine Print.
 * @hwe: Hardware Engine.
 * @p: drm_printer.
 *
 * This function quickly capture a snapshot and immediately print it out.
 */
void xe_hw_engine_print(struct xe_hw_engine *hwe, struct drm_printer *p)
{
	struct xe_hw_engine_snapshot *snapshot;

	snapshot = xe_hw_engine_snapshot_capture(hwe);
	xe_hw_engine_snapshot_print(snapshot, p);
	xe_hw_engine_snapshot_free(snapshot);
}

u32 xe_hw_engine_mask_per_class(struct xe_gt *gt,
				enum xe_engine_class engine_class)
{
	u32 mask = 0;
	enum xe_hw_engine_id id;

	for (id = 0; id < XE_NUM_HW_ENGINES; ++id) {
		if (engine_infos[id].class == engine_class &&
		    gt->info.engine_mask & BIT(id))
			mask |= BIT(engine_infos[id].instance);
	}
	return mask;
}

bool xe_hw_engine_is_reserved(struct xe_hw_engine *hwe)
{
	struct xe_gt *gt = hwe->gt;
	struct xe_device *xe = gt_to_xe(gt);

	if (hwe->class == XE_ENGINE_CLASS_OTHER)
		return true;

	/* Check for engines disabled by ccs_mode setting */
	if (xe_gt_ccs_mode_enabled(gt) &&
	    hwe->class == XE_ENGINE_CLASS_COMPUTE &&
	    hwe->logical_instance >= gt->ccs_mode)
		return true;

	return xe->info.has_usm && hwe->class == XE_ENGINE_CLASS_COPY &&
		hwe->instance == gt->usm.reserved_bcs_instance;
}

const char *xe_hw_engine_class_to_str(enum xe_engine_class class)
{
	switch (class) {
	case XE_ENGINE_CLASS_RENDER:
		return "rcs";
	case XE_ENGINE_CLASS_VIDEO_DECODE:
		return "vcs";
	case XE_ENGINE_CLASS_VIDEO_ENHANCE:
		return "vecs";
	case XE_ENGINE_CLASS_COPY:
		return "bcs";
	case XE_ENGINE_CLASS_OTHER:
		return "other";
	case XE_ENGINE_CLASS_COMPUTE:
		return "ccs";
	case XE_ENGINE_CLASS_MAX:
		break;
	}

	return NULL;
}

u64 xe_hw_engine_read_timestamp(struct xe_hw_engine *hwe)
{
	return xe_mmio_read64_2x32(hwe->gt, RING_TIMESTAMP(hwe->mmio_base));
}

enum xe_force_wake_domains xe_hw_engine_to_fw_domain(struct xe_hw_engine *hwe)
{
	return engine_infos[hwe->engine_id].domain;
}