summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/xe/xe_hmm.c
blob: 2c32dc46f7d48285eaa07e4733fdafca2bcfa32d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
// SPDX-License-Identifier: MIT
/*
 * Copyright © 2024 Intel Corporation
 */

#include <linux/scatterlist.h>
#include <linux/mmu_notifier.h>
#include <linux/dma-mapping.h>
#include <linux/memremap.h>
#include <linux/swap.h>
#include <linux/hmm.h>
#include <linux/mm.h>
#include "xe_hmm.h"
#include "xe_vm.h"
#include "xe_bo.h"

static u64 xe_npages_in_range(unsigned long start, unsigned long end)
{
	return (end - start) >> PAGE_SHIFT;
}

/*
 * xe_mark_range_accessed() - mark a range is accessed, so core mm
 * have such information for memory eviction or write back to
 * hard disk
 *
 * @range: the range to mark
 * @write: if write to this range, we mark pages in this range
 * as dirty
 */
static void xe_mark_range_accessed(struct hmm_range *range, bool write)
{
	struct page *page;
	u64 i, npages;

	npages = xe_npages_in_range(range->start, range->end);
	for (i = 0; i < npages; i++) {
		page = hmm_pfn_to_page(range->hmm_pfns[i]);
		if (write)
			set_page_dirty_lock(page);

		mark_page_accessed(page);
	}
}

/*
 * xe_build_sg() - build a scatter gather table for all the physical pages/pfn
 * in a hmm_range. dma-map pages if necessary. dma-address is save in sg table
 * and will be used to program GPU page table later.
 *
 * @xe: the xe device who will access the dma-address in sg table
 * @range: the hmm range that we build the sg table from. range->hmm_pfns[]
 * has the pfn numbers of pages that back up this hmm address range.
 * @st: pointer to the sg table.
 * @write: whether we write to this range. This decides dma map direction
 * for system pages. If write we map it bi-diretional; otherwise
 * DMA_TO_DEVICE
 *
 * All the contiguous pfns will be collapsed into one entry in
 * the scatter gather table. This is for the purpose of efficiently
 * programming GPU page table.
 *
 * The dma_address in the sg table will later be used by GPU to
 * access memory. So if the memory is system memory, we need to
 * do a dma-mapping so it can be accessed by GPU/DMA.
 *
 * FIXME: This function currently only support pages in system
 * memory. If the memory is GPU local memory (of the GPU who
 * is going to access memory), we need gpu dpa (device physical
 * address), and there is no need of dma-mapping. This is TBD.
 *
 * FIXME: dma-mapping for peer gpu device to access remote gpu's
 * memory. Add this when you support p2p
 *
 * This function allocates the storage of the sg table. It is
 * caller's responsibility to free it calling sg_free_table.
 *
 * Returns 0 if successful; -ENOMEM if fails to allocate memory
 */
static int xe_build_sg(struct xe_device *xe, struct hmm_range *range,
		       struct sg_table *st, bool write)
{
	struct device *dev = xe->drm.dev;
	struct page **pages;
	u64 i, npages;
	int ret;

	npages = xe_npages_in_range(range->start, range->end);
	pages = kvmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
	if (!pages)
		return -ENOMEM;

	for (i = 0; i < npages; i++) {
		pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]);
		xe_assert(xe, !is_device_private_page(pages[i]));
	}

	ret = sg_alloc_table_from_pages_segment(st, pages, npages, 0, npages << PAGE_SHIFT,
						xe_sg_segment_size(dev), GFP_KERNEL);
	if (ret)
		goto free_pages;

	ret = dma_map_sgtable(dev, st, write ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE,
			      DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_NO_KERNEL_MAPPING);
	if (ret) {
		sg_free_table(st);
		st = NULL;
	}

free_pages:
	kvfree(pages);
	return ret;
}

/*
 * xe_hmm_userptr_free_sg() - Free the scatter gather table of userptr
 *
 * @uvma: the userptr vma which hold the scatter gather table
 *
 * With function xe_userptr_populate_range, we allocate storage of
 * the userptr sg table. This is a helper function to free this
 * sg table, and dma unmap the address in the table.
 */
void xe_hmm_userptr_free_sg(struct xe_userptr_vma *uvma)
{
	struct xe_userptr *userptr = &uvma->userptr;
	struct xe_vma *vma = &uvma->vma;
	bool write = !xe_vma_read_only(vma);
	struct xe_vm *vm = xe_vma_vm(vma);
	struct xe_device *xe = vm->xe;
	struct device *dev = xe->drm.dev;

	xe_assert(xe, userptr->sg);
	dma_unmap_sgtable(dev, userptr->sg,
			  write ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE, 0);

	sg_free_table(userptr->sg);
	userptr->sg = NULL;
}

/**
 * xe_hmm_userptr_populate_range() - Populate physical pages of a virtual
 * address range
 *
 * @uvma: userptr vma which has information of the range to populate.
 * @is_mm_mmap_locked: True if mmap_read_lock is already acquired by caller.
 *
 * This function populate the physical pages of a virtual
 * address range. The populated physical pages is saved in
 * userptr's sg table. It is similar to get_user_pages but call
 * hmm_range_fault.
 *
 * This function also read mmu notifier sequence # (
 * mmu_interval_read_begin), for the purpose of later
 * comparison (through mmu_interval_read_retry).
 *
 * This must be called with mmap read or write lock held.
 *
 * This function allocates the storage of the userptr sg table.
 * It is caller's responsibility to free it calling sg_free_table.
 *
 * returns: 0 for succuss; negative error no on failure
 */
int xe_hmm_userptr_populate_range(struct xe_userptr_vma *uvma,
				  bool is_mm_mmap_locked)
{
	unsigned long timeout =
		jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
	unsigned long *pfns, flags = HMM_PFN_REQ_FAULT;
	struct xe_userptr *userptr;
	struct xe_vma *vma = &uvma->vma;
	u64 userptr_start = xe_vma_userptr(vma);
	u64 userptr_end = userptr_start + xe_vma_size(vma);
	struct xe_vm *vm = xe_vma_vm(vma);
	struct hmm_range hmm_range;
	bool write = !xe_vma_read_only(vma);
	unsigned long notifier_seq;
	u64 npages;
	int ret;

	userptr = &uvma->userptr;

	if (is_mm_mmap_locked)
		mmap_assert_locked(userptr->notifier.mm);

	if (vma->gpuva.flags & XE_VMA_DESTROYED)
		return 0;

	notifier_seq = mmu_interval_read_begin(&userptr->notifier);
	if (notifier_seq == userptr->notifier_seq)
		return 0;

	if (userptr->sg)
		xe_hmm_userptr_free_sg(uvma);

	npages = xe_npages_in_range(userptr_start, userptr_end);
	pfns = kvmalloc_array(npages, sizeof(*pfns), GFP_KERNEL);
	if (unlikely(!pfns))
		return -ENOMEM;

	if (write)
		flags |= HMM_PFN_REQ_WRITE;

	if (!mmget_not_zero(userptr->notifier.mm)) {
		ret = -EFAULT;
		goto free_pfns;
	}

	hmm_range.default_flags = flags;
	hmm_range.hmm_pfns = pfns;
	hmm_range.notifier = &userptr->notifier;
	hmm_range.start = userptr_start;
	hmm_range.end = userptr_end;
	hmm_range.dev_private_owner = vm->xe;

	while (true) {
		hmm_range.notifier_seq = mmu_interval_read_begin(&userptr->notifier);

		if (!is_mm_mmap_locked)
			mmap_read_lock(userptr->notifier.mm);

		ret = hmm_range_fault(&hmm_range);

		if (!is_mm_mmap_locked)
			mmap_read_unlock(userptr->notifier.mm);

		if (ret == -EBUSY) {
			if (time_after(jiffies, timeout))
				break;

			continue;
		}
		break;
	}

	mmput(userptr->notifier.mm);

	if (ret)
		goto free_pfns;

	ret = xe_build_sg(vm->xe, &hmm_range, &userptr->sgt, write);
	if (ret)
		goto free_pfns;

	xe_mark_range_accessed(&hmm_range, write);
	userptr->sg = &userptr->sgt;
	userptr->notifier_seq = hmm_range.notifier_seq;

free_pfns:
	kvfree(pfns);
	return ret;
}