summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/xe/xe_guc.c
blob: 240e7a4bbff1a9e31b2c9d9bb12a5fc8fd012ee2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
// SPDX-License-Identifier: MIT
/*
 * Copyright © 2022 Intel Corporation
 */

#include "xe_guc.h"

#include <drm/drm_managed.h>

#include <generated/xe_wa_oob.h>

#include "abi/guc_actions_abi.h"
#include "abi/guc_errors_abi.h"
#include "regs/xe_gt_regs.h"
#include "regs/xe_gtt_defs.h"
#include "regs/xe_guc_regs.h"
#include "xe_bo.h"
#include "xe_device.h"
#include "xe_force_wake.h"
#include "xe_gt.h"
#include "xe_gt_printk.h"
#include "xe_guc_ads.h"
#include "xe_guc_ct.h"
#include "xe_guc_hwconfig.h"
#include "xe_guc_log.h"
#include "xe_guc_pc.h"
#include "xe_guc_relay.h"
#include "xe_guc_submit.h"
#include "xe_memirq.h"
#include "xe_mmio.h"
#include "xe_platform_types.h"
#include "xe_sriov.h"
#include "xe_uc.h"
#include "xe_uc_fw.h"
#include "xe_wa.h"
#include "xe_wopcm.h"

static u32 guc_bo_ggtt_addr(struct xe_guc *guc,
			    struct xe_bo *bo)
{
	struct xe_device *xe = guc_to_xe(guc);
	u32 addr = xe_bo_ggtt_addr(bo);

	/* GuC addresses above GUC_GGTT_TOP don't map through the GTT */
	xe_assert(xe, addr >= xe_wopcm_size(guc_to_xe(guc)));
	xe_assert(xe, addr < GUC_GGTT_TOP);
	xe_assert(xe, bo->size <= GUC_GGTT_TOP - addr);

	return addr;
}

static u32 guc_ctl_debug_flags(struct xe_guc *guc)
{
	u32 level = xe_guc_log_get_level(&guc->log);
	u32 flags = 0;

	if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
		flags |= GUC_LOG_DISABLED;
	else
		flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
			 GUC_LOG_VERBOSITY_SHIFT;

	return flags;
}

static u32 guc_ctl_feature_flags(struct xe_guc *guc)
{
	u32 flags = 0;

	if (!guc_to_xe(guc)->info.skip_guc_pc)
		flags |= GUC_CTL_ENABLE_SLPC;

	return flags;
}

static u32 guc_ctl_log_params_flags(struct xe_guc *guc)
{
	u32 offset = guc_bo_ggtt_addr(guc, guc->log.bo) >> PAGE_SHIFT;
	u32 flags;

	#if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
	#define LOG_UNIT SZ_1M
	#define LOG_FLAG GUC_LOG_LOG_ALLOC_UNITS
	#else
	#define LOG_UNIT SZ_4K
	#define LOG_FLAG 0
	#endif

	#if (((CAPTURE_BUFFER_SIZE) % SZ_1M) == 0)
	#define CAPTURE_UNIT SZ_1M
	#define CAPTURE_FLAG GUC_LOG_CAPTURE_ALLOC_UNITS
	#else
	#define CAPTURE_UNIT SZ_4K
	#define CAPTURE_FLAG 0
	#endif

	BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
	BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, LOG_UNIT));
	BUILD_BUG_ON(!DEBUG_BUFFER_SIZE);
	BUILD_BUG_ON(!IS_ALIGNED(DEBUG_BUFFER_SIZE, LOG_UNIT));
	BUILD_BUG_ON(!CAPTURE_BUFFER_SIZE);
	BUILD_BUG_ON(!IS_ALIGNED(CAPTURE_BUFFER_SIZE, CAPTURE_UNIT));

	BUILD_BUG_ON((CRASH_BUFFER_SIZE / LOG_UNIT - 1) >
			(GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
	BUILD_BUG_ON((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) >
			(GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT));
	BUILD_BUG_ON((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) >
			(GUC_LOG_CAPTURE_MASK >> GUC_LOG_CAPTURE_SHIFT));

	flags = GUC_LOG_VALID |
		GUC_LOG_NOTIFY_ON_HALF_FULL |
		CAPTURE_FLAG |
		LOG_FLAG |
		((CRASH_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
		((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_DEBUG_SHIFT) |
		((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) <<
		 GUC_LOG_CAPTURE_SHIFT) |
		(offset << GUC_LOG_BUF_ADDR_SHIFT);

	#undef LOG_UNIT
	#undef LOG_FLAG
	#undef CAPTURE_UNIT
	#undef CAPTURE_FLAG

	return flags;
}

static u32 guc_ctl_ads_flags(struct xe_guc *guc)
{
	u32 ads = guc_bo_ggtt_addr(guc, guc->ads.bo) >> PAGE_SHIFT;
	u32 flags = ads << GUC_ADS_ADDR_SHIFT;

	return flags;
}

static u32 guc_ctl_wa_flags(struct xe_guc *guc)
{
	struct xe_device *xe = guc_to_xe(guc);
	struct xe_gt *gt = guc_to_gt(guc);
	u32 flags = 0;

	if (XE_WA(gt, 22012773006))
		flags |= GUC_WA_POLLCS;

	if (XE_WA(gt, 14014475959))
		flags |= GUC_WA_HOLD_CCS_SWITCHOUT;

	if (XE_WA(gt, 22011391025))
		flags |= GUC_WA_DUAL_QUEUE;

	/*
	 * Wa_22011802037: FIXME - there's more to be done than simply setting
	 * this flag: make sure each CS is stopped when preparing for GT reset
	 * and wait for pending MI_FW.
	 */
	if (GRAPHICS_VERx100(xe) < 1270)
		flags |= GUC_WA_PRE_PARSER;

	if (XE_WA(gt, 22012727170) || XE_WA(gt, 22012727685))
		flags |= GUC_WA_CONTEXT_ISOLATION;

	if (XE_WA(gt, 18020744125) &&
	    !xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_RENDER))
		flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST;

	if (XE_WA(gt, 1509372804))
		flags |= GUC_WA_RENDER_RST_RC6_EXIT;

	if (XE_WA(gt, 14018913170))
		flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6;

	return flags;
}

static u32 guc_ctl_devid(struct xe_guc *guc)
{
	struct xe_device *xe = guc_to_xe(guc);

	return (((u32)xe->info.devid) << 16) | xe->info.revid;
}

static void guc_print_params(struct xe_guc *guc)
{
	struct xe_gt *gt = guc_to_gt(guc);
	u32 *params = guc->params;
	int i;

	BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
	BUILD_BUG_ON(GUC_CTL_MAX_DWORDS + 2 != SOFT_SCRATCH_COUNT);

	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
		xe_gt_dbg(gt, "GuC param[%2d] = 0x%08x\n", i, params[i]);
}

static void guc_init_params(struct xe_guc *guc)
{
	u32 *params = guc->params;

	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
	params[GUC_CTL_FEATURE] = 0;
	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
	params[GUC_CTL_WA] = 0;
	params[GUC_CTL_DEVID] = guc_ctl_devid(guc);

	guc_print_params(guc);
}

static void guc_init_params_post_hwconfig(struct xe_guc *guc)
{
	u32 *params = guc->params;

	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
	params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
	params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
	params[GUC_CTL_DEVID] = guc_ctl_devid(guc);

	guc_print_params(guc);
}

/*
 * Initialize the GuC parameter block before starting the firmware
 * transfer. These parameters are read by the firmware on startup
 * and cannot be changed thereafter.
 */
static void guc_write_params(struct xe_guc *guc)
{
	struct xe_gt *gt = guc_to_gt(guc);
	int i;

	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);

	xe_mmio_write32(gt, SOFT_SCRATCH(0), 0);

	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
		xe_mmio_write32(gt, SOFT_SCRATCH(1 + i), guc->params[i]);
}

static void guc_fini(struct drm_device *drm, void *arg)
{
	struct xe_guc *guc = arg;
	struct xe_gt *gt = guc_to_gt(guc);

	xe_gt_WARN_ON(gt, xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL));
	xe_uc_fini_hw(&guc_to_gt(guc)->uc);
	xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL);
}

/**
 * xe_guc_comm_init_early - early initialization of GuC communication
 * @guc: the &xe_guc to initialize
 *
 * Must be called prior to first MMIO communication with GuC firmware.
 */
void xe_guc_comm_init_early(struct xe_guc *guc)
{
	struct xe_gt *gt = guc_to_gt(guc);

	if (xe_gt_is_media_type(gt))
		guc->notify_reg = MED_GUC_HOST_INTERRUPT;
	else
		guc->notify_reg = GUC_HOST_INTERRUPT;
}

static int xe_guc_realloc_post_hwconfig(struct xe_guc *guc)
{
	struct xe_tile *tile = gt_to_tile(guc_to_gt(guc));
	struct xe_device *xe = guc_to_xe(guc);
	int ret;

	if (!IS_DGFX(guc_to_xe(guc)))
		return 0;

	ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->fw.bo);
	if (ret)
		return ret;

	ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->log.bo);
	if (ret)
		return ret;

	ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ads.bo);
	if (ret)
		return ret;

	ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ct.bo);
	if (ret)
		return ret;

	return 0;
}

int xe_guc_init(struct xe_guc *guc)
{
	struct xe_device *xe = guc_to_xe(guc);
	struct xe_gt *gt = guc_to_gt(guc);
	int ret;

	guc->fw.type = XE_UC_FW_TYPE_GUC;
	ret = xe_uc_fw_init(&guc->fw);
	if (ret)
		goto out;

	if (!xe_uc_fw_is_enabled(&guc->fw))
		return 0;

	ret = xe_guc_log_init(&guc->log);
	if (ret)
		goto out;

	ret = xe_guc_ads_init(&guc->ads);
	if (ret)
		goto out;

	ret = xe_guc_ct_init(&guc->ct);
	if (ret)
		goto out;

	ret = xe_guc_relay_init(&guc->relay);
	if (ret)
		goto out;

	ret = drmm_add_action_or_reset(&xe->drm, guc_fini, guc);
	if (ret)
		goto out;

	guc_init_params(guc);

	xe_guc_comm_init_early(guc);

	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOADABLE);

	return 0;

out:
	xe_gt_err(gt, "GuC init failed with %pe\n", ERR_PTR(ret));
	return ret;
}

/**
 * xe_guc_init_post_hwconfig - initialize GuC post hwconfig load
 * @guc: The GuC object
 *
 * Return: 0 on success, negative error code on error.
 */
int xe_guc_init_post_hwconfig(struct xe_guc *guc)
{
	int ret;

	ret = xe_guc_realloc_post_hwconfig(guc);
	if (ret)
		return ret;

	guc_init_params_post_hwconfig(guc);

	ret = xe_guc_pc_init(&guc->pc);
	if (ret)
		return ret;

	return xe_guc_ads_init_post_hwconfig(&guc->ads);
}

int xe_guc_post_load_init(struct xe_guc *guc)
{
	xe_guc_ads_populate_post_load(&guc->ads);
	guc->submission_state.enabled = true;

	return 0;
}

int xe_guc_reset(struct xe_guc *guc)
{
	struct xe_gt *gt = guc_to_gt(guc);
	u32 guc_status, gdrst;
	int ret;

	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);

	xe_mmio_write32(gt, GDRST, GRDOM_GUC);

	ret = xe_mmio_wait32(gt, GDRST, GRDOM_GUC, 0, 5000, &gdrst, false);
	if (ret) {
		xe_gt_err(gt, "GuC reset timed out, GDRST=%#x\n", gdrst);
		goto err_out;
	}

	guc_status = xe_mmio_read32(gt, GUC_STATUS);
	if (!(guc_status & GS_MIA_IN_RESET)) {
		xe_gt_err(gt, "GuC status: %#x, MIA core expected to be in reset\n",
			  guc_status);
		ret = -EIO;
		goto err_out;
	}

	return 0;

err_out:

	return ret;
}

static void guc_prepare_xfer(struct xe_guc *guc)
{
	struct xe_gt *gt = guc_to_gt(guc);
	struct xe_device *xe =  guc_to_xe(guc);
	u32 shim_flags = GUC_ENABLE_READ_CACHE_LOGIC |
		GUC_ENABLE_READ_CACHE_FOR_SRAM_DATA |
		GUC_ENABLE_READ_CACHE_FOR_WOPCM_DATA |
		GUC_ENABLE_MIA_CLOCK_GATING;

	if (GRAPHICS_VERx100(xe) < 1250)
		shim_flags |= GUC_DISABLE_SRAM_INIT_TO_ZEROES |
				GUC_ENABLE_MIA_CACHING;

	if (GRAPHICS_VER(xe) >= 20 || xe->info.platform == XE_PVC)
		shim_flags |= REG_FIELD_PREP(GUC_MOCS_INDEX_MASK, gt->mocs.uc_index);

	/* Must program this register before loading the ucode with DMA */
	xe_mmio_write32(gt, GUC_SHIM_CONTROL, shim_flags);

	xe_mmio_write32(gt, GT_PM_CONFIG, GT_DOORBELL_ENABLE);
}

/*
 * Supporting MMIO & in memory RSA
 */
static int guc_xfer_rsa(struct xe_guc *guc)
{
	struct xe_gt *gt = guc_to_gt(guc);
	u32 rsa[UOS_RSA_SCRATCH_COUNT];
	size_t copied;
	int i;

	if (guc->fw.rsa_size > 256) {
		u32 rsa_ggtt_addr = xe_bo_ggtt_addr(guc->fw.bo) +
				    xe_uc_fw_rsa_offset(&guc->fw);
		xe_mmio_write32(gt, UOS_RSA_SCRATCH(0), rsa_ggtt_addr);
		return 0;
	}

	copied = xe_uc_fw_copy_rsa(&guc->fw, rsa, sizeof(rsa));
	if (copied < sizeof(rsa))
		return -ENOMEM;

	for (i = 0; i < UOS_RSA_SCRATCH_COUNT; i++)
		xe_mmio_write32(gt, UOS_RSA_SCRATCH(i), rsa[i]);

	return 0;
}

static int guc_wait_ucode(struct xe_guc *guc)
{
	struct xe_gt *gt = guc_to_gt(guc);
	u32 status;
	int ret;

	/*
	 * Wait for the GuC to start up.
	 * NB: Docs recommend not using the interrupt for completion.
	 * Measurements indicate this should take no more than 20ms
	 * (assuming the GT clock is at maximum frequency). So, a
	 * timeout here indicates that the GuC has failed and is unusable.
	 * (Higher levels of the driver may decide to reset the GuC and
	 * attempt the ucode load again if this happens.)
	 *
	 * FIXME: There is a known (but exceedingly unlikely) race condition
	 * where the asynchronous frequency management code could reduce
	 * the GT clock while a GuC reload is in progress (during a full
	 * GT reset). A fix is in progress but there are complex locking
	 * issues to be resolved. In the meantime bump the timeout to
	 * 200ms. Even at slowest clock, this should be sufficient. And
	 * in the working case, a larger timeout makes no difference.
	 */
	ret = xe_mmio_wait32(gt, GUC_STATUS, GS_UKERNEL_MASK,
			     FIELD_PREP(GS_UKERNEL_MASK, XE_GUC_LOAD_STATUS_READY),
			     200000, &status, false);

	if (ret) {
		xe_gt_info(gt, "GuC load failed: status = 0x%08X\n", status);
		xe_gt_info(gt, "GuC status: Reset = %u, BootROM = %#X, UKernel = %#X, MIA = %#X, Auth = %#X\n",
			   REG_FIELD_GET(GS_MIA_IN_RESET, status),
			   REG_FIELD_GET(GS_BOOTROM_MASK, status),
			   REG_FIELD_GET(GS_UKERNEL_MASK, status),
			   REG_FIELD_GET(GS_MIA_MASK, status),
			   REG_FIELD_GET(GS_AUTH_STATUS_MASK, status));

		if ((status & GS_BOOTROM_MASK) == GS_BOOTROM_RSA_FAILED) {
			xe_gt_info(gt, "GuC firmware signature verification failed\n");
			ret = -ENOEXEC;
		}

		if (REG_FIELD_GET(GS_UKERNEL_MASK, status) ==
		    XE_GUC_LOAD_STATUS_EXCEPTION) {
			xe_gt_info(gt, "GuC firmware exception. EIP: %#x\n",
				   xe_mmio_read32(gt, SOFT_SCRATCH(13)));
			ret = -ENXIO;
		}
	} else {
		xe_gt_dbg(gt, "GuC successfully loaded\n");
	}

	return ret;
}

static int __xe_guc_upload(struct xe_guc *guc)
{
	int ret;

	guc_write_params(guc);
	guc_prepare_xfer(guc);

	/*
	 * Note that GuC needs the CSS header plus uKernel code to be copied
	 * by the DMA engine in one operation, whereas the RSA signature is
	 * loaded separately, either by copying it to the UOS_RSA_SCRATCH
	 * register (if key size <= 256) or through a ggtt-pinned vma (if key
	 * size > 256). The RSA size and therefore the way we provide it to the
	 * HW is fixed for each platform and hard-coded in the bootrom.
	 */
	ret = guc_xfer_rsa(guc);
	if (ret)
		goto out;
	/*
	 * Current uCode expects the code to be loaded at 8k; locations below
	 * this are used for the stack.
	 */
	ret = xe_uc_fw_upload(&guc->fw, 0x2000, UOS_MOVE);
	if (ret)
		goto out;

	/* Wait for authentication */
	ret = guc_wait_ucode(guc);
	if (ret)
		goto out;

	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_RUNNING);
	return 0;

out:
	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOAD_FAIL);
	return 0	/* FIXME: ret, don't want to stop load currently */;
}

/**
 * xe_guc_min_load_for_hwconfig - load minimal GuC and read hwconfig table
 * @guc: The GuC object
 *
 * This function uploads a minimal GuC that does not support submissions but
 * in a state where the hwconfig table can be read. Next, it reads and parses
 * the hwconfig table so it can be used for subsequent steps in the driver load.
 * Lastly, it enables CT communication (XXX: this is needed for PFs/VFs only).
 *
 * Return: 0 on success, negative error code on error.
 */
int xe_guc_min_load_for_hwconfig(struct xe_guc *guc)
{
	int ret;

	xe_guc_ads_populate_minimal(&guc->ads);

	/* Raise GT freq to speed up HuC/GuC load */
	xe_guc_pc_init_early(&guc->pc);

	ret = __xe_guc_upload(guc);
	if (ret)
		return ret;

	ret = xe_guc_hwconfig_init(guc);
	if (ret)
		return ret;

	ret = xe_guc_enable_communication(guc);
	if (ret)
		return ret;

	return 0;
}

int xe_guc_upload(struct xe_guc *guc)
{
	xe_guc_ads_populate(&guc->ads);

	return __xe_guc_upload(guc);
}

static void guc_handle_mmio_msg(struct xe_guc *guc)
{
	struct xe_gt *gt = guc_to_gt(guc);
	u32 msg;

	if (IS_SRIOV_VF(guc_to_xe(guc)))
		return;

	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);

	msg = xe_mmio_read32(gt, SOFT_SCRATCH(15));
	msg &= XE_GUC_RECV_MSG_EXCEPTION |
		XE_GUC_RECV_MSG_CRASH_DUMP_POSTED;
	xe_mmio_write32(gt, SOFT_SCRATCH(15), 0);

	if (msg & XE_GUC_RECV_MSG_CRASH_DUMP_POSTED)
		xe_gt_err(gt, "Received early GuC crash dump notification!\n");

	if (msg & XE_GUC_RECV_MSG_EXCEPTION)
		xe_gt_err(gt, "Received early GuC exception notification!\n");
}

static void guc_enable_irq(struct xe_guc *guc)
{
	struct xe_gt *gt = guc_to_gt(guc);
	u32 events = xe_gt_is_media_type(gt) ?
		REG_FIELD_PREP(ENGINE0_MASK, GUC_INTR_GUC2HOST)  :
		REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);

	/* Primary GuC and media GuC share a single enable bit */
	xe_mmio_write32(gt, GUC_SG_INTR_ENABLE,
			REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST));

	/*
	 * There are separate mask bits for primary and media GuCs, so use
	 * a RMW operation to avoid clobbering the other GuC's setting.
	 */
	xe_mmio_rmw32(gt, GUC_SG_INTR_MASK, events, 0);
}

int xe_guc_enable_communication(struct xe_guc *guc)
{
	struct xe_device *xe = guc_to_xe(guc);
	int err;

	guc_enable_irq(guc);

	if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe)) {
		struct xe_gt *gt = guc_to_gt(guc);
		struct xe_tile *tile = gt_to_tile(gt);

		err = xe_memirq_init_guc(&tile->sriov.vf.memirq, guc);
		if (err)
			return err;
	}

	xe_mmio_rmw32(guc_to_gt(guc), PMINTRMSK,
		      ARAT_EXPIRED_INTRMSK, 0);

	err = xe_guc_ct_enable(&guc->ct);
	if (err)
		return err;

	guc_handle_mmio_msg(guc);

	return 0;
}

int xe_guc_suspend(struct xe_guc *guc)
{
	struct xe_gt *gt = guc_to_gt(guc);
	u32 action[] = {
		XE_GUC_ACTION_CLIENT_SOFT_RESET,
	};
	int ret;

	ret = xe_guc_mmio_send(guc, action, ARRAY_SIZE(action));
	if (ret) {
		xe_gt_err(gt, "GuC suspend failed: %pe\n", ERR_PTR(ret));
		return ret;
	}

	xe_guc_sanitize(guc);
	return 0;
}

void xe_guc_notify(struct xe_guc *guc)
{
	struct xe_gt *gt = guc_to_gt(guc);
	const u32 default_notify_data = 0;

	/*
	 * Both GUC_HOST_INTERRUPT and MED_GUC_HOST_INTERRUPT can pass
	 * additional payload data to the GuC but this capability is not
	 * used by the firmware yet. Use default value in the meantime.
	 */
	xe_mmio_write32(gt, guc->notify_reg, default_notify_data);
}

int xe_guc_auth_huc(struct xe_guc *guc, u32 rsa_addr)
{
	u32 action[] = {
		XE_GUC_ACTION_AUTHENTICATE_HUC,
		rsa_addr
	};

	return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
}

int xe_guc_mmio_send_recv(struct xe_guc *guc, const u32 *request,
			  u32 len, u32 *response_buf)
{
	struct xe_device *xe = guc_to_xe(guc);
	struct xe_gt *gt = guc_to_gt(guc);
	u32 header, reply;
	struct xe_reg reply_reg = xe_gt_is_media_type(gt) ?
		MED_VF_SW_FLAG(0) : VF_SW_FLAG(0);
	const u32 LAST_INDEX = VF_SW_FLAG_COUNT - 1;
	int ret;
	int i;

	BUILD_BUG_ON(VF_SW_FLAG_COUNT != MED_VF_SW_FLAG_COUNT);

	xe_assert(xe, !xe_guc_ct_enabled(&guc->ct));
	xe_assert(xe, len);
	xe_assert(xe, len <= VF_SW_FLAG_COUNT);
	xe_assert(xe, len <= MED_VF_SW_FLAG_COUNT);
	xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) ==
		  GUC_HXG_ORIGIN_HOST);
	xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) ==
		  GUC_HXG_TYPE_REQUEST);

retry:
	/* Not in critical data-path, just do if else for GT type */
	if (xe_gt_is_media_type(gt)) {
		for (i = 0; i < len; ++i)
			xe_mmio_write32(gt, MED_VF_SW_FLAG(i),
					request[i]);
		xe_mmio_read32(gt, MED_VF_SW_FLAG(LAST_INDEX));
	} else {
		for (i = 0; i < len; ++i)
			xe_mmio_write32(gt, VF_SW_FLAG(i),
					request[i]);
		xe_mmio_read32(gt, VF_SW_FLAG(LAST_INDEX));
	}

	xe_guc_notify(guc);

	ret = xe_mmio_wait32(gt, reply_reg, GUC_HXG_MSG_0_ORIGIN,
			     FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_GUC),
			     50000, &reply, false);
	if (ret) {
timeout:
		xe_gt_err(gt, "GuC mmio request %#x: no reply %#x\n",
			  request[0], reply);
		return ret;
	}

	header = xe_mmio_read32(gt, reply_reg);
	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
	    GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
		/*
		 * Once we got a BUSY reply we must wait again for the final
		 * response but this time we can't use ORIGIN mask anymore.
		 * To spot a right change in the reply, we take advantage that
		 * response SUCCESS and FAILURE differ only by the single bit
		 * and all other bits are set and can be used as a new mask.
		 */
		u32 resp_bits = GUC_HXG_TYPE_RESPONSE_SUCCESS & GUC_HXG_TYPE_RESPONSE_FAILURE;
		u32 resp_mask = FIELD_PREP(GUC_HXG_MSG_0_TYPE, resp_bits);

		BUILD_BUG_ON(FIELD_MAX(GUC_HXG_MSG_0_TYPE) != GUC_HXG_TYPE_RESPONSE_SUCCESS);
		BUILD_BUG_ON((GUC_HXG_TYPE_RESPONSE_SUCCESS ^ GUC_HXG_TYPE_RESPONSE_FAILURE) != 1);

		ret = xe_mmio_wait32(gt, reply_reg,  resp_mask, resp_mask,
				     1000000, &header, false);

		if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
			     GUC_HXG_ORIGIN_GUC))
			goto proto;
		if (unlikely(ret)) {
			if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
			    GUC_HXG_TYPE_NO_RESPONSE_BUSY)
				goto proto;
			goto timeout;
		}
	}

	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
	    GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
		u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);

		xe_gt_dbg(gt, "GuC mmio request %#x: retrying, reason %#x\n",
			  request[0], reason);
		goto retry;
	}

	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
	    GUC_HXG_TYPE_RESPONSE_FAILURE) {
		u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
		u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);

		xe_gt_err(gt, "GuC mmio request %#x: failure %#x hint %#x\n",
			  request[0], error, hint);
		return -ENXIO;
	}

	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
	    GUC_HXG_TYPE_RESPONSE_SUCCESS) {
proto:
		xe_gt_err(gt, "GuC mmio request %#x: unexpected reply %#x\n",
			  request[0], header);
		return -EPROTO;
	}

	/* Just copy entire possible message response */
	if (response_buf) {
		response_buf[0] = header;

		for (i = 1; i < VF_SW_FLAG_COUNT; i++) {
			reply_reg.addr += sizeof(u32);
			response_buf[i] = xe_mmio_read32(gt, reply_reg);
		}
	}

	/* Use data from the GuC response as our return value */
	return FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
}

int xe_guc_mmio_send(struct xe_guc *guc, const u32 *request, u32 len)
{
	return xe_guc_mmio_send_recv(guc, request, len, NULL);
}

static int guc_self_cfg(struct xe_guc *guc, u16 key, u16 len, u64 val)
{
	struct xe_device *xe = guc_to_xe(guc);
	u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
			   GUC_ACTION_HOST2GUC_SELF_CFG),
		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32,
			   lower_32_bits(val)),
		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64,
			   upper_32_bits(val)),
	};
	int ret;

	xe_assert(xe, len <= 2);
	xe_assert(xe, len != 1 || !upper_32_bits(val));

	/* Self config must go over MMIO */
	ret = xe_guc_mmio_send(guc, request, ARRAY_SIZE(request));

	if (unlikely(ret < 0))
		return ret;
	if (unlikely(ret > 1))
		return -EPROTO;
	if (unlikely(!ret))
		return -ENOKEY;

	return 0;
}

int xe_guc_self_cfg32(struct xe_guc *guc, u16 key, u32 val)
{
	return guc_self_cfg(guc, key, 1, val);
}

int xe_guc_self_cfg64(struct xe_guc *guc, u16 key, u64 val)
{
	return guc_self_cfg(guc, key, 2, val);
}

void xe_guc_irq_handler(struct xe_guc *guc, const u16 iir)
{
	if (iir & GUC_INTR_GUC2HOST)
		xe_guc_ct_irq_handler(&guc->ct);
}

void xe_guc_sanitize(struct xe_guc *guc)
{
	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOADABLE);
	xe_guc_ct_disable(&guc->ct);
	guc->submission_state.enabled = false;
}

int xe_guc_reset_prepare(struct xe_guc *guc)
{
	return xe_guc_submit_reset_prepare(guc);
}

void xe_guc_reset_wait(struct xe_guc *guc)
{
	xe_guc_submit_reset_wait(guc);
}

void xe_guc_stop_prepare(struct xe_guc *guc)
{
	XE_WARN_ON(xe_guc_pc_stop(&guc->pc));
}

int xe_guc_stop(struct xe_guc *guc)
{
	int ret;

	xe_guc_ct_stop(&guc->ct);

	ret = xe_guc_submit_stop(guc);
	if (ret)
		return ret;

	return 0;
}

int xe_guc_start(struct xe_guc *guc)
{
	int ret;

	ret = xe_guc_pc_start(&guc->pc);
	XE_WARN_ON(ret);

	return xe_guc_submit_start(guc);
}

void xe_guc_print_info(struct xe_guc *guc, struct drm_printer *p)
{
	struct xe_gt *gt = guc_to_gt(guc);
	u32 status;
	int err;
	int i;

	xe_uc_fw_print(&guc->fw, p);

	err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
	if (err)
		return;

	status = xe_mmio_read32(gt, GUC_STATUS);

	drm_printf(p, "\nGuC status 0x%08x:\n", status);
	drm_printf(p, "\tBootrom status = 0x%x\n",
		   REG_FIELD_GET(GS_BOOTROM_MASK, status));
	drm_printf(p, "\tuKernel status = 0x%x\n",
		   REG_FIELD_GET(GS_UKERNEL_MASK, status));
	drm_printf(p, "\tMIA Core status = 0x%x\n",
		   REG_FIELD_GET(GS_MIA_MASK, status));
	drm_printf(p, "\tLog level = %d\n",
		   xe_guc_log_get_level(&guc->log));

	drm_puts(p, "\nScratch registers:\n");
	for (i = 0; i < SOFT_SCRATCH_COUNT; i++) {
		drm_printf(p, "\t%2d: \t0x%x\n",
			   i, xe_mmio_read32(gt, SOFT_SCRATCH(i)));
	}

	xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);

	xe_guc_ct_print(&guc->ct, p, false);
	xe_guc_submit_print(guc, p);
}

/**
 * xe_guc_in_reset() - Detect if GuC MIA is in reset.
 * @guc: The GuC object
 *
 * This function detects runtime resume from d3cold by leveraging
 * GUC_STATUS, GUC doesn't get reset during d3hot,
 * it strictly to be called from RPM resume handler.
 *
 * Return: true if failed to get forcewake or GuC MIA is in Reset,
 * otherwise false.
 */
bool xe_guc_in_reset(struct xe_guc *guc)
{
	struct xe_gt *gt = guc_to_gt(guc);
	u32 status;
	int err;

	err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
	if (err)
		return true;

	status = xe_mmio_read32(gt, GUC_STATUS);
	xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);

	return  status & GS_MIA_IN_RESET;
}