1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
|
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
*/
#include <drm/drm_managed.h>
#include "dpu_hwio.h"
#include "dpu_hw_catalog.h"
#include "dpu_hw_top.h"
#include "dpu_kms.h"
#define FLD_SPLIT_DISPLAY_CMD BIT(1)
#define FLD_SMART_PANEL_FREE_RUN BIT(2)
#define FLD_INTF_1_SW_TRG_MUX BIT(4)
#define FLD_INTF_2_SW_TRG_MUX BIT(8)
#define FLD_TE_LINE_INTER_WATERLEVEL_MASK 0xFFFF
#define TRAFFIC_SHAPER_EN BIT(31)
#define TRAFFIC_SHAPER_RD_CLIENT(num) (0x030 + (num * 4))
#define TRAFFIC_SHAPER_WR_CLIENT(num) (0x060 + (num * 4))
#define TRAFFIC_SHAPER_FIXPOINT_FACTOR 4
#define MDP_TICK_COUNT 16
#define XO_CLK_RATE 19200
#define MS_TICKS_IN_SEC 1000
#define CALCULATE_WD_LOAD_VALUE(fps) \
((uint32_t)((MS_TICKS_IN_SEC * XO_CLK_RATE)/(MDP_TICK_COUNT * fps)))
static void dpu_hw_setup_split_pipe(struct dpu_hw_mdp *mdp,
struct split_pipe_cfg *cfg)
{
struct dpu_hw_blk_reg_map *c;
u32 upper_pipe = 0;
u32 lower_pipe = 0;
if (!mdp || !cfg)
return;
c = &mdp->hw;
if (cfg->en) {
if (cfg->mode == INTF_MODE_CMD) {
lower_pipe = FLD_SPLIT_DISPLAY_CMD;
/* interface controlling sw trigger */
if (cfg->intf == INTF_2)
lower_pipe |= FLD_INTF_1_SW_TRG_MUX;
else
lower_pipe |= FLD_INTF_2_SW_TRG_MUX;
upper_pipe = lower_pipe;
} else {
if (cfg->intf == INTF_2) {
lower_pipe = FLD_INTF_1_SW_TRG_MUX;
upper_pipe = FLD_INTF_2_SW_TRG_MUX;
} else {
lower_pipe = FLD_INTF_2_SW_TRG_MUX;
upper_pipe = FLD_INTF_1_SW_TRG_MUX;
}
}
}
DPU_REG_WRITE(c, SSPP_SPARE, cfg->split_flush_en ? 0x1 : 0x0);
DPU_REG_WRITE(c, SPLIT_DISPLAY_LOWER_PIPE_CTRL, lower_pipe);
DPU_REG_WRITE(c, SPLIT_DISPLAY_UPPER_PIPE_CTRL, upper_pipe);
DPU_REG_WRITE(c, SPLIT_DISPLAY_EN, cfg->en & 0x1);
}
static bool dpu_hw_setup_clk_force_ctrl(struct dpu_hw_mdp *mdp,
enum dpu_clk_ctrl_type clk_ctrl, bool enable)
{
if (!mdp)
return false;
if (clk_ctrl <= DPU_CLK_CTRL_NONE || clk_ctrl >= DPU_CLK_CTRL_MAX)
return false;
return dpu_hw_clk_force_ctrl(&mdp->hw, &mdp->caps->clk_ctrls[clk_ctrl], enable);
}
static void dpu_hw_get_danger_status(struct dpu_hw_mdp *mdp,
struct dpu_danger_safe_status *status)
{
struct dpu_hw_blk_reg_map *c;
u32 value;
if (!mdp || !status)
return;
c = &mdp->hw;
value = DPU_REG_READ(c, DANGER_STATUS);
status->mdp = (value >> 0) & 0x3;
status->sspp[SSPP_VIG0] = (value >> 4) & 0x3;
status->sspp[SSPP_VIG1] = (value >> 6) & 0x3;
status->sspp[SSPP_VIG2] = (value >> 8) & 0x3;
status->sspp[SSPP_VIG3] = (value >> 10) & 0x3;
status->sspp[SSPP_RGB0] = (value >> 12) & 0x3;
status->sspp[SSPP_RGB1] = (value >> 14) & 0x3;
status->sspp[SSPP_RGB2] = (value >> 16) & 0x3;
status->sspp[SSPP_RGB3] = (value >> 18) & 0x3;
status->sspp[SSPP_DMA0] = (value >> 20) & 0x3;
status->sspp[SSPP_DMA1] = (value >> 22) & 0x3;
status->sspp[SSPP_DMA2] = (value >> 28) & 0x3;
status->sspp[SSPP_DMA3] = (value >> 30) & 0x3;
status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x3;
status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x3;
}
static void dpu_hw_setup_wd_timer(struct dpu_hw_mdp *mdp,
struct dpu_vsync_source_cfg *cfg)
{
struct dpu_hw_blk_reg_map *c;
u32 reg, wd_load_value, wd_ctl, wd_ctl2;
if (!mdp || !cfg)
return;
c = &mdp->hw;
if (cfg->vsync_source >= DPU_VSYNC_SOURCE_WD_TIMER_4 &&
cfg->vsync_source <= DPU_VSYNC_SOURCE_WD_TIMER_0) {
switch (cfg->vsync_source) {
case DPU_VSYNC_SOURCE_WD_TIMER_4:
wd_load_value = MDP_WD_TIMER_4_LOAD_VALUE;
wd_ctl = MDP_WD_TIMER_4_CTL;
wd_ctl2 = MDP_WD_TIMER_4_CTL2;
break;
case DPU_VSYNC_SOURCE_WD_TIMER_3:
wd_load_value = MDP_WD_TIMER_3_LOAD_VALUE;
wd_ctl = MDP_WD_TIMER_3_CTL;
wd_ctl2 = MDP_WD_TIMER_3_CTL2;
break;
case DPU_VSYNC_SOURCE_WD_TIMER_2:
wd_load_value = MDP_WD_TIMER_2_LOAD_VALUE;
wd_ctl = MDP_WD_TIMER_2_CTL;
wd_ctl2 = MDP_WD_TIMER_2_CTL2;
break;
case DPU_VSYNC_SOURCE_WD_TIMER_1:
wd_load_value = MDP_WD_TIMER_1_LOAD_VALUE;
wd_ctl = MDP_WD_TIMER_1_CTL;
wd_ctl2 = MDP_WD_TIMER_1_CTL2;
break;
case DPU_VSYNC_SOURCE_WD_TIMER_0:
default:
wd_load_value = MDP_WD_TIMER_0_LOAD_VALUE;
wd_ctl = MDP_WD_TIMER_0_CTL;
wd_ctl2 = MDP_WD_TIMER_0_CTL2;
break;
}
DPU_REG_WRITE(c, wd_load_value,
CALCULATE_WD_LOAD_VALUE(cfg->frame_rate));
DPU_REG_WRITE(c, wd_ctl, BIT(0)); /* clear timer */
reg = DPU_REG_READ(c, wd_ctl2);
reg |= BIT(8); /* enable heartbeat timer */
reg |= BIT(0); /* enable WD timer */
DPU_REG_WRITE(c, wd_ctl2, reg);
/* make sure that timers are enabled/disabled for vsync state */
wmb();
}
}
static void dpu_hw_setup_vsync_sel(struct dpu_hw_mdp *mdp,
struct dpu_vsync_source_cfg *cfg)
{
struct dpu_hw_blk_reg_map *c;
u32 reg, i;
static const u32 pp_offset[PINGPONG_MAX] = {0xC, 0x8, 0x4, 0x13, 0x18};
if (!mdp || !cfg || (cfg->pp_count > ARRAY_SIZE(cfg->ppnumber)))
return;
c = &mdp->hw;
reg = DPU_REG_READ(c, MDP_VSYNC_SEL);
for (i = 0; i < cfg->pp_count; i++) {
int pp_idx = cfg->ppnumber[i] - PINGPONG_0;
if (pp_idx >= ARRAY_SIZE(pp_offset))
continue;
reg &= ~(0xf << pp_offset[pp_idx]);
reg |= (cfg->vsync_source & 0xf) << pp_offset[pp_idx];
}
DPU_REG_WRITE(c, MDP_VSYNC_SEL, reg);
dpu_hw_setup_wd_timer(mdp, cfg);
}
static void dpu_hw_get_safe_status(struct dpu_hw_mdp *mdp,
struct dpu_danger_safe_status *status)
{
struct dpu_hw_blk_reg_map *c;
u32 value;
if (!mdp || !status)
return;
c = &mdp->hw;
value = DPU_REG_READ(c, SAFE_STATUS);
status->mdp = (value >> 0) & 0x1;
status->sspp[SSPP_VIG0] = (value >> 4) & 0x1;
status->sspp[SSPP_VIG1] = (value >> 6) & 0x1;
status->sspp[SSPP_VIG2] = (value >> 8) & 0x1;
status->sspp[SSPP_VIG3] = (value >> 10) & 0x1;
status->sspp[SSPP_RGB0] = (value >> 12) & 0x1;
status->sspp[SSPP_RGB1] = (value >> 14) & 0x1;
status->sspp[SSPP_RGB2] = (value >> 16) & 0x1;
status->sspp[SSPP_RGB3] = (value >> 18) & 0x1;
status->sspp[SSPP_DMA0] = (value >> 20) & 0x1;
status->sspp[SSPP_DMA1] = (value >> 22) & 0x1;
status->sspp[SSPP_DMA2] = (value >> 28) & 0x1;
status->sspp[SSPP_DMA3] = (value >> 30) & 0x1;
status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x1;
status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x1;
}
static void dpu_hw_intf_audio_select(struct dpu_hw_mdp *mdp)
{
struct dpu_hw_blk_reg_map *c;
if (!mdp)
return;
c = &mdp->hw;
DPU_REG_WRITE(c, HDMI_DP_CORE_SELECT, 0x1);
}
static void _setup_mdp_ops(struct dpu_hw_mdp_ops *ops,
unsigned long cap)
{
ops->setup_split_pipe = dpu_hw_setup_split_pipe;
ops->setup_clk_force_ctrl = dpu_hw_setup_clk_force_ctrl;
ops->get_danger_status = dpu_hw_get_danger_status;
if (cap & BIT(DPU_MDP_VSYNC_SEL))
ops->setup_vsync_source = dpu_hw_setup_vsync_sel;
else
ops->setup_vsync_source = dpu_hw_setup_wd_timer;
ops->get_safe_status = dpu_hw_get_safe_status;
if (cap & BIT(DPU_MDP_AUDIO_SELECT))
ops->intf_audio_select = dpu_hw_intf_audio_select;
}
struct dpu_hw_mdp *dpu_hw_mdptop_init(struct drm_device *dev,
const struct dpu_mdp_cfg *cfg,
void __iomem *addr,
const struct dpu_mdss_cfg *m)
{
struct dpu_hw_mdp *mdp;
if (!addr)
return ERR_PTR(-EINVAL);
mdp = drmm_kzalloc(dev, sizeof(*mdp), GFP_KERNEL);
if (!mdp)
return ERR_PTR(-ENOMEM);
mdp->hw.blk_addr = addr + cfg->base;
mdp->hw.log_mask = DPU_DBG_MASK_TOP;
/*
* Assign ops
*/
mdp->caps = cfg;
_setup_mdp_ops(&mdp->ops, mdp->caps->features);
return mdp;
}
|