summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/i915/i915_perf.c
blob: 4d31b70df4529245bf5d88078fdd72341c0f245a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
/*
 * Copyright © 2015-2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *   Robert Bragg <robert@sixbynine.org>
 */


/**
 * DOC: i915 Perf Overview
 *
 * Gen graphics supports a large number of performance counters that can help
 * driver and application developers understand and optimize their use of the
 * GPU.
 *
 * This i915 perf interface enables userspace to configure and open a file
 * descriptor representing a stream of GPU metrics which can then be read() as
 * a stream of sample records.
 *
 * The interface is particularly suited to exposing buffered metrics that are
 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
 *
 * Streams representing a single context are accessible to applications with a
 * corresponding drm file descriptor, such that OpenGL can use the interface
 * without special privileges. Access to system-wide metrics requires root
 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
 * sysctl option.
 *
 */

/**
 * DOC: i915 Perf History and Comparison with Core Perf
 *
 * The interface was initially inspired by the core Perf infrastructure but
 * some notable differences are:
 *
 * i915 perf file descriptors represent a "stream" instead of an "event"; where
 * a perf event primarily corresponds to a single 64bit value, while a stream
 * might sample sets of tightly-coupled counters, depending on the
 * configuration.  For example the Gen OA unit isn't designed to support
 * orthogonal configurations of individual counters; it's configured for a set
 * of related counters. Samples for an i915 perf stream capturing OA metrics
 * will include a set of counter values packed in a compact HW specific format.
 * The OA unit supports a number of different packing formats which can be
 * selected by the user opening the stream. Perf has support for grouping
 * events, but each event in the group is configured, validated and
 * authenticated individually with separate system calls.
 *
 * i915 perf stream configurations are provided as an array of u64 (key,value)
 * pairs, instead of a fixed struct with multiple miscellaneous config members,
 * interleaved with event-type specific members.
 *
 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
 * The supported metrics are being written to memory by the GPU unsynchronized
 * with the CPU, using HW specific packing formats for counter sets. Sometimes
 * the constraints on HW configuration require reports to be filtered before it
 * would be acceptable to expose them to unprivileged applications - to hide
 * the metrics of other processes/contexts. For these use cases a read() based
 * interface is a good fit, and provides an opportunity to filter data as it
 * gets copied from the GPU mapped buffers to userspace buffers.
 *
 *
 * Issues hit with first prototype based on Core Perf
 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 * The first prototype of this driver was based on the core perf
 * infrastructure, and while we did make that mostly work, with some changes to
 * perf, we found we were breaking or working around too many assumptions baked
 * into perf's currently cpu centric design.
 *
 * In the end we didn't see a clear benefit to making perf's implementation and
 * interface more complex by changing design assumptions while we knew we still
 * wouldn't be able to use any existing perf based userspace tools.
 *
 * Also considering the Gen specific nature of the Observability hardware and
 * how userspace will sometimes need to combine i915 perf OA metrics with
 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
 * expecting the interface to be used by a platform specific userspace such as
 * OpenGL or tools. This is to say; we aren't inherently missing out on having
 * a standard vendor/architecture agnostic interface by not using perf.
 *
 *
 * For posterity, in case we might re-visit trying to adapt core perf to be
 * better suited to exposing i915 metrics these were the main pain points we
 * hit:
 *
 * - The perf based OA PMU driver broke some significant design assumptions:
 *
 *   Existing perf pmus are used for profiling work on a cpu and we were
 *   introducing the idea of _IS_DEVICE pmus with different security
 *   implications, the need to fake cpu-related data (such as user/kernel
 *   registers) to fit with perf's current design, and adding _DEVICE records
 *   as a way to forward device-specific status records.
 *
 *   The OA unit writes reports of counters into a circular buffer, without
 *   involvement from the CPU, making our PMU driver the first of a kind.
 *
 *   Given the way we were periodically forward data from the GPU-mapped, OA
 *   buffer to perf's buffer, those bursts of sample writes looked to perf like
 *   we were sampling too fast and so we had to subvert its throttling checks.
 *
 *   Perf supports groups of counters and allows those to be read via
 *   transactions internally but transactions currently seem designed to be
 *   explicitly initiated from the cpu (say in response to a userspace read())
 *   and while we could pull a report out of the OA buffer we can't
 *   trigger a report from the cpu on demand.
 *
 *   Related to being report based; the OA counters are configured in HW as a
 *   set while perf generally expects counter configurations to be orthogonal.
 *   Although counters can be associated with a group leader as they are
 *   opened, there's no clear precedent for being able to provide group-wide
 *   configuration attributes (for example we want to let userspace choose the
 *   OA unit report format used to capture all counters in a set, or specify a
 *   GPU context to filter metrics on). We avoided using perf's grouping
 *   feature and forwarded OA reports to userspace via perf's 'raw' sample
 *   field. This suited our userspace well considering how coupled the counters
 *   are when dealing with normalizing. It would be inconvenient to split
 *   counters up into separate events, only to require userspace to recombine
 *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
 *   for combining with the side-band raw reports it captures using
 *   MI_REPORT_PERF_COUNT commands.
 *
 *   - As a side note on perf's grouping feature; there was also some concern
 *     that using PERF_FORMAT_GROUP as a way to pack together counter values
 *     would quite drastically inflate our sample sizes, which would likely
 *     lower the effective sampling resolutions we could use when the available
 *     memory bandwidth is limited.
 *
 *     With the OA unit's report formats, counters are packed together as 32
 *     or 40bit values, with the largest report size being 256 bytes.
 *
 *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
 *     documented ordering to the values, implying PERF_FORMAT_ID must also be
 *     used to add a 64bit ID before each value; giving 16 bytes per counter.
 *
 *   Related to counter orthogonality; we can't time share the OA unit, while
 *   event scheduling is a central design idea within perf for allowing
 *   userspace to open + enable more events than can be configured in HW at any
 *   one time.  The OA unit is not designed to allow re-configuration while in
 *   use. We can't reconfigure the OA unit without losing internal OA unit
 *   state which we can't access explicitly to save and restore. Reconfiguring
 *   the OA unit is also relatively slow, involving ~100 register writes. From
 *   userspace Mesa also depends on a stable OA configuration when emitting
 *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
 *   disabled while there are outstanding MI_RPC commands lest we hang the
 *   command streamer.
 *
 *   The contents of sample records aren't extensible by device drivers (i.e.
 *   the sample_type bits). As an example; Sourab Gupta had been looking to
 *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
 *   into sample records by using the 'raw' field, but it's tricky to pack more
 *   than one thing into this field because events/core.c currently only lets a
 *   pmu give a single raw data pointer plus len which will be copied into the
 *   ring buffer. To include more than the OA report we'd have to copy the
 *   report into an intermediate larger buffer. I'd been considering allowing a
 *   vector of data+len values to be specified for copying the raw data, but
 *   it felt like a kludge to being using the raw field for this purpose.
 *
 * - It felt like our perf based PMU was making some technical compromises
 *   just for the sake of using perf:
 *
 *   perf_event_open() requires events to either relate to a pid or a specific
 *   cpu core, while our device pmu related to neither.  Events opened with a
 *   pid will be automatically enabled/disabled according to the scheduling of
 *   that process - so not appropriate for us. When an event is related to a
 *   cpu id, perf ensures pmu methods will be invoked via an inter process
 *   interrupt on that core. To avoid invasive changes our userspace opened OA
 *   perf events for a specific cpu. This was workable but it meant the
 *   majority of the OA driver ran in atomic context, including all OA report
 *   forwarding, which wasn't really necessary in our case and seems to make
 *   our locking requirements somewhat complex as we handled the interaction
 *   with the rest of the i915 driver.
 */

#include <linux/anon_inodes.h>
#include <linux/sizes.h>

#include "i915_drv.h"
#include "i915_oa_hsw.h"

/* HW requires this to be a power of two, between 128k and 16M, though driver
 * is currently generally designed assuming the largest 16M size is used such
 * that the overflow cases are unlikely in normal operation.
 */
#define OA_BUFFER_SIZE		SZ_16M

#define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))

/**
 * DOC: OA Tail Pointer Race
 *
 * There's a HW race condition between OA unit tail pointer register updates and
 * writes to memory whereby the tail pointer can sometimes get ahead of what's
 * been written out to the OA buffer so far (in terms of what's visible to the
 * CPU).
 *
 * Although this can be observed explicitly while copying reports to userspace
 * by checking for a zeroed report-id field in tail reports, we want to account
 * for this earlier, as part of the _oa_buffer_check to avoid lots of redundant
 * read() attempts.
 *
 * In effect we define a tail pointer for reading that lags the real tail
 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
 * time for the corresponding reports to become visible to the CPU.
 *
 * To manage this we actually track two tail pointers:
 *  1) An 'aging' tail with an associated timestamp that is tracked until we
 *     can trust the corresponding data is visible to the CPU; at which point
 *     it is considered 'aged'.
 *  2) An 'aged' tail that can be used for read()ing.
 *
 * The two separate pointers let us decouple read()s from tail pointer aging.
 *
 * The tail pointers are checked and updated at a limited rate within a hrtimer
 * callback (the same callback that is used for delivering POLLIN events)
 *
 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
 * indicates that an updated tail pointer is needed.
 *
 * Most of the implementation details for this workaround are in
 * gen7_oa_buffer_check_unlocked() and gen7_appand_oa_reports()
 *
 * Note for posterity: previously the driver used to define an effective tail
 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
 * This was flawed considering that the OA unit may also automatically generate
 * non-periodic reports (such as on context switch) or the OA unit may be
 * enabled without any periodic sampling.
 */
#define OA_TAIL_MARGIN_NSEC	100000ULL
#define INVALID_TAIL_PTR	0xffffffff

/* frequency for checking whether the OA unit has written new reports to the
 * circular OA buffer...
 */
#define POLL_FREQUENCY 200
#define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)

/* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
static int zero;
static int one = 1;
static u32 i915_perf_stream_paranoid = true;

/* The maximum exponent the hardware accepts is 63 (essentially it selects one
 * of the 64bit timestamp bits to trigger reports from) but there's currently
 * no known use case for sampling as infrequently as once per 47 thousand years.
 *
 * Since the timestamps included in OA reports are only 32bits it seems
 * reasonable to limit the OA exponent where it's still possible to account for
 * overflow in OA report timestamps.
 */
#define OA_EXPONENT_MAX 31

#define INVALID_CTX_ID 0xffffffff


/* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
 *
 * 160ns is the smallest sampling period we can theoretically program the OA
 * unit with on Haswell, corresponding to 6.25MHz.
 */
static int oa_sample_rate_hard_limit = 6250000;

/* Theoretically we can program the OA unit to sample every 160ns but don't
 * allow that by default unless root...
 *
 * The default threshold of 100000Hz is based on perf's similar
 * kernel.perf_event_max_sample_rate sysctl parameter.
 */
static u32 i915_oa_max_sample_rate = 100000;

/* XXX: beware if future OA HW adds new report formats that the current
 * code assumes all reports have a power-of-two size and ~(size - 1) can
 * be used as a mask to align the OA tail pointer.
 */
static struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
	[I915_OA_FORMAT_A13]	    = { 0, 64 },
	[I915_OA_FORMAT_A29]	    = { 1, 128 },
	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
};

#define SAMPLE_OA_REPORT      (1<<0)

/**
 * struct perf_open_properties - for validated properties given to open a stream
 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
 * @single_context: Whether a single or all gpu contexts should be monitored
 * @ctx_handle: A gem ctx handle for use with @single_context
 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
 * @oa_format: An OA unit HW report format
 * @oa_periodic: Whether to enable periodic OA unit sampling
 * @oa_period_exponent: The OA unit sampling period is derived from this
 *
 * As read_properties_unlocked() enumerates and validates the properties given
 * to open a stream of metrics the configuration is built up in the structure
 * which starts out zero initialized.
 */
struct perf_open_properties {
	u32 sample_flags;

	u64 single_context:1;
	u64 ctx_handle;

	/* OA sampling state */
	int metrics_set;
	int oa_format;
	bool oa_periodic;
	int oa_period_exponent;
};

/**
 * gen7_oa_buffer_check_unlocked - check for data and update tail ptr state
 * @dev_priv: i915 device instance
 *
 * This is either called via fops (for blocking reads in user ctx) or the poll
 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
 * if there is data available for userspace to read.
 *
 * This function is central to providing a workaround for the OA unit tail
 * pointer having a race with respect to what data is visible to the CPU.
 * It is responsible for reading tail pointers from the hardware and giving
 * the pointers time to 'age' before they are made available for reading.
 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
 *
 * Besides returning true when there is data available to read() this function
 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
 * and .aged_tail_idx state used for reading.
 *
 * Note: It's safe to read OA config state here unlocked, assuming that this is
 * only called while the stream is enabled, while the global OA configuration
 * can't be modified.
 *
 * Returns: %true if the OA buffer contains data, else %false
 */
static bool gen7_oa_buffer_check_unlocked(struct drm_i915_private *dev_priv)
{
	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
	unsigned long flags;
	unsigned int aged_idx;
	u32 oastatus1;
	u32 head, hw_tail, aged_tail, aging_tail;
	u64 now;

	/* We have to consider the (unlikely) possibility that read() errors
	 * could result in an OA buffer reset which might reset the head,
	 * tails[] and aged_tail state.
	 */
	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);

	/* NB: The head we observe here might effectively be a little out of
	 * date (between head and tails[aged_idx].offset if there is currently
	 * a read() in progress.
	 */
	head = dev_priv->perf.oa.oa_buffer.head;

	aged_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
	aged_tail = dev_priv->perf.oa.oa_buffer.tails[aged_idx].offset;
	aging_tail = dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset;

	oastatus1 = I915_READ(GEN7_OASTATUS1);
	hw_tail = oastatus1 & GEN7_OASTATUS1_TAIL_MASK;

	/* The tail pointer increases in 64 byte increments,
	 * not in report_size steps...
	 */
	hw_tail &= ~(report_size - 1);

	now = ktime_get_mono_fast_ns();

	/* Update the aged tail
	 *
	 * Flip the tail pointer available for read()s once the aging tail is
	 * old enough to trust that the corresponding data will be visible to
	 * the CPU...
	 *
	 * Do this before updating the aging pointer in case we may be able to
	 * immediately start aging a new pointer too (if new data has become
	 * available) without needing to wait for a later hrtimer callback.
	 */
	if (aging_tail != INVALID_TAIL_PTR &&
	    ((now - dev_priv->perf.oa.oa_buffer.aging_timestamp) >
	     OA_TAIL_MARGIN_NSEC)) {
		aged_idx ^= 1;
		dev_priv->perf.oa.oa_buffer.aged_tail_idx = aged_idx;

		aged_tail = aging_tail;

		/* Mark that we need a new pointer to start aging... */
		dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
		aging_tail = INVALID_TAIL_PTR;
	}

	/* Update the aging tail
	 *
	 * We throttle aging tail updates until we have a new tail that
	 * represents >= one report more data than is already available for
	 * reading. This ensures there will be enough data for a successful
	 * read once this new pointer has aged and ensures we will give the new
	 * pointer time to age.
	 */
	if (aging_tail == INVALID_TAIL_PTR &&
	    (aged_tail == INVALID_TAIL_PTR ||
	     OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
		struct i915_vma *vma = dev_priv->perf.oa.oa_buffer.vma;
		u32 gtt_offset = i915_ggtt_offset(vma);

		/* Be paranoid and do a bounds check on the pointer read back
		 * from hardware, just in case some spurious hardware condition
		 * could put the tail out of bounds...
		 */
		if (hw_tail >= gtt_offset &&
		    hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
			dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset =
				aging_tail = hw_tail;
			dev_priv->perf.oa.oa_buffer.aging_timestamp = now;
		} else {
			DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n",
				  hw_tail);
		}
	}

	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);

	return aged_tail == INVALID_TAIL_PTR ?
		false : OA_TAKEN(aged_tail, head) >= report_size;
}

/**
 * append_oa_status - Appends a status record to a userspace read() buffer.
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 * @type: The kind of status to report to userspace
 *
 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
 * into the userspace read() buffer.
 *
 * The @buf @offset will only be updated on success.
 *
 * Returns: 0 on success, negative error code on failure.
 */
static int append_oa_status(struct i915_perf_stream *stream,
			    char __user *buf,
			    size_t count,
			    size_t *offset,
			    enum drm_i915_perf_record_type type)
{
	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };

	if ((count - *offset) < header.size)
		return -ENOSPC;

	if (copy_to_user(buf + *offset, &header, sizeof(header)))
		return -EFAULT;

	(*offset) += header.size;

	return 0;
}

/**
 * append_oa_sample - Copies single OA report into userspace read() buffer.
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 * @report: A single OA report to (optionally) include as part of the sample
 *
 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
 * properties when opening a stream, tracked as `stream->sample_flags`. This
 * function copies the requested components of a single sample to the given
 * read() @buf.
 *
 * The @buf @offset will only be updated on success.
 *
 * Returns: 0 on success, negative error code on failure.
 */
static int append_oa_sample(struct i915_perf_stream *stream,
			    char __user *buf,
			    size_t count,
			    size_t *offset,
			    const u8 *report)
{
	struct drm_i915_private *dev_priv = stream->dev_priv;
	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
	struct drm_i915_perf_record_header header;
	u32 sample_flags = stream->sample_flags;

	header.type = DRM_I915_PERF_RECORD_SAMPLE;
	header.pad = 0;
	header.size = stream->sample_size;

	if ((count - *offset) < header.size)
		return -ENOSPC;

	buf += *offset;
	if (copy_to_user(buf, &header, sizeof(header)))
		return -EFAULT;
	buf += sizeof(header);

	if (sample_flags & SAMPLE_OA_REPORT) {
		if (copy_to_user(buf, report, report_size))
			return -EFAULT;
	}

	(*offset) += header.size;

	return 0;
}

/**
 * Copies all buffered OA reports into userspace read() buffer.
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 *
 * Notably any error condition resulting in a short read (-%ENOSPC or
 * -%EFAULT) will be returned even though one or more records may
 * have been successfully copied. In this case it's up to the caller
 * to decide if the error should be squashed before returning to
 * userspace.
 *
 * Note: reports are consumed from the head, and appended to the
 * tail, so the tail chases the head?... If you think that's mad
 * and back-to-front you're not alone, but this follows the
 * Gen PRM naming convention.
 *
 * Returns: 0 on success, negative error code on failure.
 */
static int gen7_append_oa_reports(struct i915_perf_stream *stream,
				  char __user *buf,
				  size_t count,
				  size_t *offset)
{
	struct drm_i915_private *dev_priv = stream->dev_priv;
	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
	u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
	u32 mask = (OA_BUFFER_SIZE - 1);
	size_t start_offset = *offset;
	unsigned long flags;
	unsigned int aged_tail_idx;
	u32 head, tail;
	u32 taken;
	int ret = 0;

	if (WARN_ON(!stream->enabled))
		return -EIO;

	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);

	head = dev_priv->perf.oa.oa_buffer.head;
	aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
	tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;

	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);

	/* An invalid tail pointer here means we're still waiting for the poll
	 * hrtimer callback to give us a pointer
	 */
	if (tail == INVALID_TAIL_PTR)
		return -EAGAIN;

	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
	 * while indexing relative to oa_buf_base.
	 */
	head -= gtt_offset;
	tail -= gtt_offset;

	/* An out of bounds or misaligned head or tail pointer implies a driver
	 * bug since we validate + align the tail pointers we read from the
	 * hardware and we are in full control of the head pointer which should
	 * only be incremented by multiples of the report size (notably also
	 * all a power of two).
	 */
	if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
		      tail > OA_BUFFER_SIZE || tail % report_size,
		      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
		      head, tail))
		return -EIO;


	for (/* none */;
	     (taken = OA_TAKEN(tail, head));
	     head = (head + report_size) & mask) {
		u8 *report = oa_buf_base + head;
		u32 *report32 = (void *)report;

		/* All the report sizes factor neatly into the buffer
		 * size so we never expect to see a report split
		 * between the beginning and end of the buffer.
		 *
		 * Given the initial alignment check a misalignment
		 * here would imply a driver bug that would result
		 * in an overrun.
		 */
		if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
			DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
			break;
		}

		/* The report-ID field for periodic samples includes
		 * some undocumented flags related to what triggered
		 * the report and is never expected to be zero so we
		 * can check that the report isn't invalid before
		 * copying it to userspace...
		 */
		if (report32[0] == 0) {
			DRM_NOTE("Skipping spurious, invalid OA report\n");
			continue;
		}

		ret = append_oa_sample(stream, buf, count, offset, report);
		if (ret)
			break;

		/* The above report-id field sanity check is based on
		 * the assumption that the OA buffer is initially
		 * zeroed and we reset the field after copying so the
		 * check is still meaningful once old reports start
		 * being overwritten.
		 */
		report32[0] = 0;
	}

	if (start_offset != *offset) {
		spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);

		/* We removed the gtt_offset for the copy loop above, indexing
		 * relative to oa_buf_base so put back here...
		 */
		head += gtt_offset;

		I915_WRITE(GEN7_OASTATUS2,
			   ((head & GEN7_OASTATUS2_HEAD_MASK) |
			    OA_MEM_SELECT_GGTT));
		dev_priv->perf.oa.oa_buffer.head = head;

		spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
	}

	return ret;
}

/**
 * gen7_oa_read - copy status records then buffered OA reports
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 *
 * Checks Gen 7 specific OA unit status registers and if necessary appends
 * corresponding status records for userspace (such as for a buffer full
 * condition) and then initiate appending any buffered OA reports.
 *
 * Updates @offset according to the number of bytes successfully copied into
 * the userspace buffer.
 *
 * Returns: zero on success or a negative error code
 */
static int gen7_oa_read(struct i915_perf_stream *stream,
			char __user *buf,
			size_t count,
			size_t *offset)
{
	struct drm_i915_private *dev_priv = stream->dev_priv;
	u32 oastatus1;
	int ret;

	if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
		return -EIO;

	oastatus1 = I915_READ(GEN7_OASTATUS1);

	/* XXX: On Haswell we don't have a safe way to clear oastatus1
	 * bits while the OA unit is enabled (while the tail pointer
	 * may be updated asynchronously) so we ignore status bits
	 * that have already been reported to userspace.
	 */
	oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1;

	/* We treat OABUFFER_OVERFLOW as a significant error:
	 *
	 * - The status can be interpreted to mean that the buffer is
	 *   currently full (with a higher precedence than OA_TAKEN()
	 *   which will start to report a near-empty buffer after an
	 *   overflow) but it's awkward that we can't clear the status
	 *   on Haswell, so without a reset we won't be able to catch
	 *   the state again.
	 *
	 * - Since it also implies the HW has started overwriting old
	 *   reports it may also affect our sanity checks for invalid
	 *   reports when copying to userspace that assume new reports
	 *   are being written to cleared memory.
	 *
	 * - In the future we may want to introduce a flight recorder
	 *   mode where the driver will automatically maintain a safe
	 *   guard band between head/tail, avoiding this overflow
	 *   condition, but we avoid the added driver complexity for
	 *   now.
	 */
	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
		ret = append_oa_status(stream, buf, count, offset,
				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
		if (ret)
			return ret;

		DRM_DEBUG("OA buffer overflow: force restart\n");

		dev_priv->perf.oa.ops.oa_disable(dev_priv);
		dev_priv->perf.oa.ops.oa_enable(dev_priv);

		oastatus1 = I915_READ(GEN7_OASTATUS1);
	}

	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
		ret = append_oa_status(stream, buf, count, offset,
				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
		if (ret)
			return ret;
		dev_priv->perf.oa.gen7_latched_oastatus1 |=
			GEN7_OASTATUS1_REPORT_LOST;
	}

	return gen7_append_oa_reports(stream, buf, count, offset);
}

/**
 * i915_oa_wait_unlocked - handles blocking IO until OA data available
 * @stream: An i915-perf stream opened for OA metrics
 *
 * Called when userspace tries to read() from a blocking stream FD opened
 * for OA metrics. It waits until the hrtimer callback finds a non-empty
 * OA buffer and wakes us.
 *
 * Note: it's acceptable to have this return with some false positives
 * since any subsequent read handling will return -EAGAIN if there isn't
 * really data ready for userspace yet.
 *
 * Returns: zero on success or a negative error code
 */
static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
{
	struct drm_i915_private *dev_priv = stream->dev_priv;

	/* We would wait indefinitely if periodic sampling is not enabled */
	if (!dev_priv->perf.oa.periodic)
		return -EIO;

	return wait_event_interruptible(dev_priv->perf.oa.poll_wq,
					dev_priv->perf.oa.ops.oa_buffer_check(dev_priv));
}

/**
 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
 * @stream: An i915-perf stream opened for OA metrics
 * @file: An i915 perf stream file
 * @wait: poll() state table
 *
 * For handling userspace polling on an i915 perf stream opened for OA metrics,
 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
 * when it sees data ready to read in the circular OA buffer.
 */
static void i915_oa_poll_wait(struct i915_perf_stream *stream,
			      struct file *file,
			      poll_table *wait)
{
	struct drm_i915_private *dev_priv = stream->dev_priv;

	poll_wait(file, &dev_priv->perf.oa.poll_wq, wait);
}

/**
 * i915_oa_read - just calls through to &i915_oa_ops->read
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 *
 * Updates @offset according to the number of bytes successfully copied into
 * the userspace buffer.
 *
 * Returns: zero on success or a negative error code
 */
static int i915_oa_read(struct i915_perf_stream *stream,
			char __user *buf,
			size_t count,
			size_t *offset)
{
	struct drm_i915_private *dev_priv = stream->dev_priv;

	return dev_priv->perf.oa.ops.read(stream, buf, count, offset);
}

/**
 * oa_get_render_ctx_id - determine and hold ctx hw id
 * @stream: An i915-perf stream opened for OA metrics
 *
 * Determine the render context hw id, and ensure it remains fixed for the
 * lifetime of the stream. This ensures that we don't have to worry about
 * updating the context ID in OACONTROL on the fly.
 *
 * Returns: zero on success or a negative error code
 */
static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
{
	struct drm_i915_private *dev_priv = stream->dev_priv;
	struct intel_engine_cs *engine = dev_priv->engine[RCS];
	struct intel_ring *ring;
	int ret;

	ret = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (ret)
		return ret;

	/* As the ID is the gtt offset of the context's vma we pin
	 * the vma to ensure the ID remains fixed.
	 *
	 * NB: implied RCS engine...
	 */
	ring = engine->context_pin(engine, stream->ctx);
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (IS_ERR(ring))
		return PTR_ERR(ring);

	/* Explicitly track the ID (instead of calling i915_ggtt_offset()
	 * on the fly) considering the difference with gen8+ and
	 * execlists
	 */
	dev_priv->perf.oa.specific_ctx_id =
		i915_ggtt_offset(stream->ctx->engine[engine->id].state);

	return 0;
}

/**
 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
 * @stream: An i915-perf stream opened for OA metrics
 *
 * In case anything needed doing to ensure the context HW ID would remain valid
 * for the lifetime of the stream, then that can be undone here.
 */
static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
{
	struct drm_i915_private *dev_priv = stream->dev_priv;
	struct intel_engine_cs *engine = dev_priv->engine[RCS];

	mutex_lock(&dev_priv->drm.struct_mutex);

	dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
	engine->context_unpin(engine, stream->ctx);

	mutex_unlock(&dev_priv->drm.struct_mutex);
}

static void
free_oa_buffer(struct drm_i915_private *i915)
{
	mutex_lock(&i915->drm.struct_mutex);

	i915_gem_object_unpin_map(i915->perf.oa.oa_buffer.vma->obj);
	i915_vma_unpin(i915->perf.oa.oa_buffer.vma);
	i915_gem_object_put(i915->perf.oa.oa_buffer.vma->obj);

	i915->perf.oa.oa_buffer.vma = NULL;
	i915->perf.oa.oa_buffer.vaddr = NULL;

	mutex_unlock(&i915->drm.struct_mutex);
}

static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
{
	struct drm_i915_private *dev_priv = stream->dev_priv;

	BUG_ON(stream != dev_priv->perf.oa.exclusive_stream);

	dev_priv->perf.oa.ops.disable_metric_set(dev_priv);

	free_oa_buffer(dev_priv);

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	intel_runtime_pm_put(dev_priv);

	if (stream->ctx)
		oa_put_render_ctx_id(stream);

	dev_priv->perf.oa.exclusive_stream = NULL;
}

static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv)
{
	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);

	/* Pre-DevBDW: OABUFFER must be set with counters off,
	 * before OASTATUS1, but after OASTATUS2
	 */
	I915_WRITE(GEN7_OASTATUS2, gtt_offset | OA_MEM_SELECT_GGTT); /* head */
	dev_priv->perf.oa.oa_buffer.head = gtt_offset;

	I915_WRITE(GEN7_OABUFFER, gtt_offset);

	I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */

	/* Mark that we need updated tail pointers to read from... */
	dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
	dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;

	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);

	/* On Haswell we have to track which OASTATUS1 flags we've
	 * already seen since they can't be cleared while periodic
	 * sampling is enabled.
	 */
	dev_priv->perf.oa.gen7_latched_oastatus1 = 0;

	/* NB: although the OA buffer will initially be allocated
	 * zeroed via shmfs (and so this memset is redundant when
	 * first allocating), we may re-init the OA buffer, either
	 * when re-enabling a stream or in error/reset paths.
	 *
	 * The reason we clear the buffer for each re-init is for the
	 * sanity check in gen7_append_oa_reports() that looks at the
	 * report-id field to make sure it's non-zero which relies on
	 * the assumption that new reports are being written to zeroed
	 * memory...
	 */
	memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);

	/* Maybe make ->pollin per-stream state if we support multiple
	 * concurrent streams in the future.
	 */
	dev_priv->perf.oa.pollin = false;
}

static int alloc_oa_buffer(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *bo;
	struct i915_vma *vma;
	int ret;

	if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma))
		return -ENODEV;

	ret = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (ret)
		return ret;

	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);

	bo = i915_gem_object_create(dev_priv, OA_BUFFER_SIZE);
	if (IS_ERR(bo)) {
		DRM_ERROR("Failed to allocate OA buffer\n");
		ret = PTR_ERR(bo);
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(bo, I915_CACHE_LLC);
	if (ret)
		goto err_unref;

	/* PreHSW required 512K alignment, HSW requires 16M */
	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}
	dev_priv->perf.oa.oa_buffer.vma = vma;

	dev_priv->perf.oa.oa_buffer.vaddr =
		i915_gem_object_pin_map(bo, I915_MAP_WB);
	if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) {
		ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr);
		goto err_unpin;
	}

	dev_priv->perf.oa.ops.init_oa_buffer(dev_priv);

	DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n",
			 i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma),
			 dev_priv->perf.oa.oa_buffer.vaddr);

	goto unlock;

err_unpin:
	__i915_vma_unpin(vma);

err_unref:
	i915_gem_object_put(bo);

	dev_priv->perf.oa.oa_buffer.vaddr = NULL;
	dev_priv->perf.oa.oa_buffer.vma = NULL;

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
	return ret;
}

static void config_oa_regs(struct drm_i915_private *dev_priv,
			   const struct i915_oa_reg *regs,
			   int n_regs)
{
	int i;

	for (i = 0; i < n_regs; i++) {
		const struct i915_oa_reg *reg = regs + i;

		I915_WRITE(reg->addr, reg->value);
	}
}

static int hsw_enable_metric_set(struct drm_i915_private *dev_priv)
{
	int ret = i915_oa_select_metric_set_hsw(dev_priv);

	if (ret)
		return ret;

	I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) |
				      GT_NOA_ENABLE));

	/* PRM:
	 *
	 * OA unit is using “crclk” for its functionality. When trunk
	 * level clock gating takes place, OA clock would be gated,
	 * unable to count the events from non-render clock domain.
	 * Render clock gating must be disabled when OA is enabled to
	 * count the events from non-render domain. Unit level clock
	 * gating for RCS should also be disabled.
	 */
	I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
				    ~GEN7_DOP_CLOCK_GATE_ENABLE));
	I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) |
				  GEN6_CSUNIT_CLOCK_GATE_DISABLE));

	config_oa_regs(dev_priv, dev_priv->perf.oa.mux_regs,
		       dev_priv->perf.oa.mux_regs_len);

	/* It apparently takes a fairly long time for a new MUX
	 * configuration to be be applied after these register writes.
	 * This delay duration was derived empirically based on the
	 * render_basic config but hopefully it covers the maximum
	 * configuration latency.
	 *
	 * As a fallback, the checks in _append_oa_reports() to skip
	 * invalid OA reports do also seem to work to discard reports
	 * generated before this config has completed - albeit not
	 * silently.
	 *
	 * Unfortunately this is essentially a magic number, since we
	 * don't currently know of a reliable mechanism for predicting
	 * how long the MUX config will take to apply and besides
	 * seeing invalid reports we don't know of a reliable way to
	 * explicitly check that the MUX config has landed.
	 *
	 * It's even possible we've miss characterized the underlying
	 * problem - it just seems like the simplest explanation why
	 * a delay at this location would mitigate any invalid reports.
	 */
	usleep_range(15000, 20000);

	config_oa_regs(dev_priv, dev_priv->perf.oa.b_counter_regs,
		       dev_priv->perf.oa.b_counter_regs_len);

	return 0;
}

static void hsw_disable_metric_set(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) &
				  ~GEN6_CSUNIT_CLOCK_GATE_DISABLE));
	I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) |
				    GEN7_DOP_CLOCK_GATE_ENABLE));

	I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
				      ~GT_NOA_ENABLE));
}

static void gen7_update_oacontrol_locked(struct drm_i915_private *dev_priv)
{
	lockdep_assert_held(&dev_priv->perf.hook_lock);

	if (dev_priv->perf.oa.exclusive_stream->enabled) {
		struct i915_gem_context *ctx =
			dev_priv->perf.oa.exclusive_stream->ctx;
		u32 ctx_id = dev_priv->perf.oa.specific_ctx_id;

		bool periodic = dev_priv->perf.oa.periodic;
		u32 period_exponent = dev_priv->perf.oa.period_exponent;
		u32 report_format = dev_priv->perf.oa.oa_buffer.format;

		I915_WRITE(GEN7_OACONTROL,
			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
			   (period_exponent <<
			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
			   GEN7_OACONTROL_ENABLE);
	} else
		I915_WRITE(GEN7_OACONTROL, 0);
}

static void gen7_oa_enable(struct drm_i915_private *dev_priv)
{
	unsigned long flags;

	/* Reset buf pointers so we don't forward reports from before now.
	 *
	 * Think carefully if considering trying to avoid this, since it
	 * also ensures status flags and the buffer itself are cleared
	 * in error paths, and we have checks for invalid reports based
	 * on the assumption that certain fields are written to zeroed
	 * memory which this helps maintains.
	 */
	gen7_init_oa_buffer(dev_priv);

	spin_lock_irqsave(&dev_priv->perf.hook_lock, flags);
	gen7_update_oacontrol_locked(dev_priv);
	spin_unlock_irqrestore(&dev_priv->perf.hook_lock, flags);
}

/**
 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
 * @stream: An i915 perf stream opened for OA metrics
 *
 * [Re]enables hardware periodic sampling according to the period configured
 * when opening the stream. This also starts a hrtimer that will periodically
 * check for data in the circular OA buffer for notifying userspace (e.g.
 * during a read() or poll()).
 */
static void i915_oa_stream_enable(struct i915_perf_stream *stream)
{
	struct drm_i915_private *dev_priv = stream->dev_priv;

	dev_priv->perf.oa.ops.oa_enable(dev_priv);

	if (dev_priv->perf.oa.periodic)
		hrtimer_start(&dev_priv->perf.oa.poll_check_timer,
			      ns_to_ktime(POLL_PERIOD),
			      HRTIMER_MODE_REL_PINNED);
}

static void gen7_oa_disable(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN7_OACONTROL, 0);
}

/**
 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
 * @stream: An i915 perf stream opened for OA metrics
 *
 * Stops the OA unit from periodically writing counter reports into the
 * circular OA buffer. This also stops the hrtimer that periodically checks for
 * data in the circular OA buffer, for notifying userspace.
 */
static void i915_oa_stream_disable(struct i915_perf_stream *stream)
{
	struct drm_i915_private *dev_priv = stream->dev_priv;

	dev_priv->perf.oa.ops.oa_disable(dev_priv);

	if (dev_priv->perf.oa.periodic)
		hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer);
}

static const struct i915_perf_stream_ops i915_oa_stream_ops = {
	.destroy = i915_oa_stream_destroy,
	.enable = i915_oa_stream_enable,
	.disable = i915_oa_stream_disable,
	.wait_unlocked = i915_oa_wait_unlocked,
	.poll_wait = i915_oa_poll_wait,
	.read = i915_oa_read,
};

/**
 * i915_oa_stream_init - validate combined props for OA stream and init
 * @stream: An i915 perf stream
 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
 * @props: The property state that configures stream (individually validated)
 *
 * While read_properties_unlocked() validates properties in isolation it
 * doesn't ensure that the combination necessarily makes sense.
 *
 * At this point it has been determined that userspace wants a stream of
 * OA metrics, but still we need to further validate the combined
 * properties are OK.
 *
 * If the configuration makes sense then we can allocate memory for
 * a circular OA buffer and apply the requested metric set configuration.
 *
 * Returns: zero on success or a negative error code.
 */
static int i915_oa_stream_init(struct i915_perf_stream *stream,
			       struct drm_i915_perf_open_param *param,
			       struct perf_open_properties *props)
{
	struct drm_i915_private *dev_priv = stream->dev_priv;
	int format_size;
	int ret;

	/* If the sysfs metrics/ directory wasn't registered for some
	 * reason then don't let userspace try their luck with config
	 * IDs
	 */
	if (!dev_priv->perf.metrics_kobj) {
		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
		return -EINVAL;
	}

	if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
		DRM_DEBUG("Only OA report sampling supported\n");
		return -EINVAL;
	}

	if (!dev_priv->perf.oa.ops.init_oa_buffer) {
		DRM_DEBUG("OA unit not supported\n");
		return -ENODEV;
	}

	/* To avoid the complexity of having to accurately filter
	 * counter reports and marshal to the appropriate client
	 * we currently only allow exclusive access
	 */
	if (dev_priv->perf.oa.exclusive_stream) {
		DRM_DEBUG("OA unit already in use\n");
		return -EBUSY;
	}

	if (!props->metrics_set) {
		DRM_DEBUG("OA metric set not specified\n");
		return -EINVAL;
	}

	if (!props->oa_format) {
		DRM_DEBUG("OA report format not specified\n");
		return -EINVAL;
	}

	stream->sample_size = sizeof(struct drm_i915_perf_record_header);

	format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size;

	stream->sample_flags |= SAMPLE_OA_REPORT;
	stream->sample_size += format_size;

	dev_priv->perf.oa.oa_buffer.format_size = format_size;
	if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0))
		return -EINVAL;

	dev_priv->perf.oa.oa_buffer.format =
		dev_priv->perf.oa.oa_formats[props->oa_format].format;

	dev_priv->perf.oa.metrics_set = props->metrics_set;

	dev_priv->perf.oa.periodic = props->oa_periodic;
	if (dev_priv->perf.oa.periodic)
		dev_priv->perf.oa.period_exponent = props->oa_period_exponent;

	if (stream->ctx) {
		ret = oa_get_render_ctx_id(stream);
		if (ret)
			return ret;
	}

	ret = alloc_oa_buffer(dev_priv);
	if (ret)
		goto err_oa_buf_alloc;

	/* PRM - observability performance counters:
	 *
	 *   OACONTROL, performance counter enable, note:
	 *
	 *   "When this bit is set, in order to have coherent counts,
	 *   RC6 power state and trunk clock gating must be disabled.
	 *   This can be achieved by programming MMIO registers as
	 *   0xA094=0 and 0xA090[31]=1"
	 *
	 *   In our case we are expecting that taking pm + FORCEWAKE
	 *   references will effectively disable RC6.
	 */
	intel_runtime_pm_get(dev_priv);
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	ret = dev_priv->perf.oa.ops.enable_metric_set(dev_priv);
	if (ret)
		goto err_enable;

	stream->ops = &i915_oa_stream_ops;

	dev_priv->perf.oa.exclusive_stream = stream;

	return 0;

err_enable:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	intel_runtime_pm_put(dev_priv);
	free_oa_buffer(dev_priv);

err_oa_buf_alloc:
	if (stream->ctx)
		oa_put_render_ctx_id(stream);

	return ret;
}

/**
 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
 * @stream: An i915 perf stream
 * @file: An i915 perf stream file
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @ppos: (inout) file seek position (unused)
 *
 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
 * ensure that if we've successfully copied any data then reporting that takes
 * precedence over any internal error status, so the data isn't lost.
 *
 * For example ret will be -ENOSPC whenever there is more buffered data than
 * can be copied to userspace, but that's only interesting if we weren't able
 * to copy some data because it implies the userspace buffer is too small to
 * receive a single record (and we never split records).
 *
 * Another case with ret == -EFAULT is more of a grey area since it would seem
 * like bad form for userspace to ask us to overrun its buffer, but the user
 * knows best:
 *
 *   http://yarchive.net/comp/linux/partial_reads_writes.html
 *
 * Returns: The number of bytes copied or a negative error code on failure.
 */
static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
				     struct file *file,
				     char __user *buf,
				     size_t count,
				     loff_t *ppos)
{
	/* Note we keep the offset (aka bytes read) separate from any
	 * error status so that the final check for whether we return
	 * the bytes read with a higher precedence than any error (see
	 * comment below) doesn't need to be handled/duplicated in
	 * stream->ops->read() implementations.
	 */
	size_t offset = 0;
	int ret = stream->ops->read(stream, buf, count, &offset);

	return offset ?: (ret ?: -EAGAIN);
}

/**
 * i915_perf_read - handles read() FOP for i915 perf stream FDs
 * @file: An i915 perf stream file
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @ppos: (inout) file seek position (unused)
 *
 * The entry point for handling a read() on a stream file descriptor from
 * userspace. Most of the work is left to the i915_perf_read_locked() and
 * &i915_perf_stream_ops->read but to save having stream implementations (of
 * which we might have multiple later) we handle blocking read here.
 *
 * We can also consistently treat trying to read from a disabled stream
 * as an IO error so implementations can assume the stream is enabled
 * while reading.
 *
 * Returns: The number of bytes copied or a negative error code on failure.
 */
static ssize_t i915_perf_read(struct file *file,
			      char __user *buf,
			      size_t count,
			      loff_t *ppos)
{
	struct i915_perf_stream *stream = file->private_data;
	struct drm_i915_private *dev_priv = stream->dev_priv;
	ssize_t ret;

	/* To ensure it's handled consistently we simply treat all reads of a
	 * disabled stream as an error. In particular it might otherwise lead
	 * to a deadlock for blocking file descriptors...
	 */
	if (!stream->enabled)
		return -EIO;

	if (!(file->f_flags & O_NONBLOCK)) {
		/* There's the small chance of false positives from
		 * stream->ops->wait_unlocked.
		 *
		 * E.g. with single context filtering since we only wait until
		 * oabuffer has >= 1 report we don't immediately know whether
		 * any reports really belong to the current context
		 */
		do {
			ret = stream->ops->wait_unlocked(stream);
			if (ret)
				return ret;

			mutex_lock(&dev_priv->perf.lock);
			ret = i915_perf_read_locked(stream, file,
						    buf, count, ppos);
			mutex_unlock(&dev_priv->perf.lock);
		} while (ret == -EAGAIN);
	} else {
		mutex_lock(&dev_priv->perf.lock);
		ret = i915_perf_read_locked(stream, file, buf, count, ppos);
		mutex_unlock(&dev_priv->perf.lock);
	}

	/* We allow the poll checking to sometimes report false positive POLLIN
	 * events where we might actually report EAGAIN on read() if there's
	 * not really any data available. In this situation though we don't
	 * want to enter a busy loop between poll() reporting a POLLIN event
	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
	 * effectively ensures we back off until the next hrtimer callback
	 * before reporting another POLLIN event.
	 */
	if (ret >= 0 || ret == -EAGAIN) {
		/* Maybe make ->pollin per-stream state if we support multiple
		 * concurrent streams in the future.
		 */
		dev_priv->perf.oa.pollin = false;
	}

	return ret;
}

static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
{
	struct drm_i915_private *dev_priv =
		container_of(hrtimer, typeof(*dev_priv),
			     perf.oa.poll_check_timer);

	if (dev_priv->perf.oa.ops.oa_buffer_check(dev_priv)) {
		dev_priv->perf.oa.pollin = true;
		wake_up(&dev_priv->perf.oa.poll_wq);
	}

	hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));

	return HRTIMER_RESTART;
}

/**
 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
 * @dev_priv: i915 device instance
 * @stream: An i915 perf stream
 * @file: An i915 perf stream file
 * @wait: poll() state table
 *
 * For handling userspace polling on an i915 perf stream, this calls through to
 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
 * will be woken for new stream data.
 *
 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
 * with any non-file-operation driver hooks.
 *
 * Returns: any poll events that are ready without sleeping
 */
static unsigned int i915_perf_poll_locked(struct drm_i915_private *dev_priv,
					  struct i915_perf_stream *stream,
					  struct file *file,
					  poll_table *wait)
{
	unsigned int events = 0;

	stream->ops->poll_wait(stream, file, wait);

	/* Note: we don't explicitly check whether there's something to read
	 * here since this path may be very hot depending on what else
	 * userspace is polling, or on the timeout in use. We rely solely on
	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
	 * samples to read.
	 */
	if (dev_priv->perf.oa.pollin)
		events |= POLLIN;

	return events;
}

/**
 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
 * @file: An i915 perf stream file
 * @wait: poll() state table
 *
 * For handling userspace polling on an i915 perf stream, this ensures
 * poll_wait() gets called with a wait queue that will be woken for new stream
 * data.
 *
 * Note: Implementation deferred to i915_perf_poll_locked()
 *
 * Returns: any poll events that are ready without sleeping
 */
static unsigned int i915_perf_poll(struct file *file, poll_table *wait)
{
	struct i915_perf_stream *stream = file->private_data;
	struct drm_i915_private *dev_priv = stream->dev_priv;
	int ret;

	mutex_lock(&dev_priv->perf.lock);
	ret = i915_perf_poll_locked(dev_priv, stream, file, wait);
	mutex_unlock(&dev_priv->perf.lock);

	return ret;
}

/**
 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
 * @stream: A disabled i915 perf stream
 *
 * [Re]enables the associated capture of data for this stream.
 *
 * If a stream was previously enabled then there's currently no intention
 * to provide userspace any guarantee about the preservation of previously
 * buffered data.
 */
static void i915_perf_enable_locked(struct i915_perf_stream *stream)
{
	if (stream->enabled)
		return;

	/* Allow stream->ops->enable() to refer to this */
	stream->enabled = true;

	if (stream->ops->enable)
		stream->ops->enable(stream);
}

/**
 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
 * @stream: An enabled i915 perf stream
 *
 * Disables the associated capture of data for this stream.
 *
 * The intention is that disabling an re-enabling a stream will ideally be
 * cheaper than destroying and re-opening a stream with the same configuration,
 * though there are no formal guarantees about what state or buffered data
 * must be retained between disabling and re-enabling a stream.
 *
 * Note: while a stream is disabled it's considered an error for userspace
 * to attempt to read from the stream (-EIO).
 */
static void i915_perf_disable_locked(struct i915_perf_stream *stream)
{
	if (!stream->enabled)
		return;

	/* Allow stream->ops->disable() to refer to this */
	stream->enabled = false;

	if (stream->ops->disable)
		stream->ops->disable(stream);
}

/**
 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
 * @stream: An i915 perf stream
 * @cmd: the ioctl request
 * @arg: the ioctl data
 *
 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
 * with any non-file-operation driver hooks.
 *
 * Returns: zero on success or a negative error code. Returns -EINVAL for
 * an unknown ioctl request.
 */
static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
				   unsigned int cmd,
				   unsigned long arg)
{
	switch (cmd) {
	case I915_PERF_IOCTL_ENABLE:
		i915_perf_enable_locked(stream);
		return 0;
	case I915_PERF_IOCTL_DISABLE:
		i915_perf_disable_locked(stream);
		return 0;
	}

	return -EINVAL;
}

/**
 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
 * @file: An i915 perf stream file
 * @cmd: the ioctl request
 * @arg: the ioctl data
 *
 * Implementation deferred to i915_perf_ioctl_locked().
 *
 * Returns: zero on success or a negative error code. Returns -EINVAL for
 * an unknown ioctl request.
 */
static long i915_perf_ioctl(struct file *file,
			    unsigned int cmd,
			    unsigned long arg)
{
	struct i915_perf_stream *stream = file->private_data;
	struct drm_i915_private *dev_priv = stream->dev_priv;
	long ret;

	mutex_lock(&dev_priv->perf.lock);
	ret = i915_perf_ioctl_locked(stream, cmd, arg);
	mutex_unlock(&dev_priv->perf.lock);

	return ret;
}

/**
 * i915_perf_destroy_locked - destroy an i915 perf stream
 * @stream: An i915 perf stream
 *
 * Frees all resources associated with the given i915 perf @stream, disabling
 * any associated data capture in the process.
 *
 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
 * with any non-file-operation driver hooks.
 */
static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
{
	if (stream->enabled)
		i915_perf_disable_locked(stream);

	if (stream->ops->destroy)
		stream->ops->destroy(stream);

	list_del(&stream->link);

	if (stream->ctx)
		i915_gem_context_put_unlocked(stream->ctx);

	kfree(stream);
}

/**
 * i915_perf_release - handles userspace close() of a stream file
 * @inode: anonymous inode associated with file
 * @file: An i915 perf stream file
 *
 * Cleans up any resources associated with an open i915 perf stream file.
 *
 * NB: close() can't really fail from the userspace point of view.
 *
 * Returns: zero on success or a negative error code.
 */
static int i915_perf_release(struct inode *inode, struct file *file)
{
	struct i915_perf_stream *stream = file->private_data;
	struct drm_i915_private *dev_priv = stream->dev_priv;

	mutex_lock(&dev_priv->perf.lock);
	i915_perf_destroy_locked(stream);
	mutex_unlock(&dev_priv->perf.lock);

	return 0;
}


static const struct file_operations fops = {
	.owner		= THIS_MODULE,
	.llseek		= no_llseek,
	.release	= i915_perf_release,
	.poll		= i915_perf_poll,
	.read		= i915_perf_read,
	.unlocked_ioctl	= i915_perf_ioctl,
};


static struct i915_gem_context *
lookup_context(struct drm_i915_private *dev_priv,
	       struct drm_i915_file_private *file_priv,
	       u32 ctx_user_handle)
{
	struct i915_gem_context *ctx;
	int ret;

	ret = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (ret)
		return ERR_PTR(ret);

	ctx = i915_gem_context_lookup(file_priv, ctx_user_handle);
	if (!IS_ERR(ctx))
		i915_gem_context_get(ctx);

	mutex_unlock(&dev_priv->drm.struct_mutex);

	return ctx;
}

/**
 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
 * @dev_priv: i915 device instance
 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
 * @props: individually validated u64 property value pairs
 * @file: drm file
 *
 * See i915_perf_ioctl_open() for interface details.
 *
 * Implements further stream config validation and stream initialization on
 * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex
 * taken to serialize with any non-file-operation driver hooks.
 *
 * Note: at this point the @props have only been validated in isolation and
 * it's still necessary to validate that the combination of properties makes
 * sense.
 *
 * In the case where userspace is interested in OA unit metrics then further
 * config validation and stream initialization details will be handled by
 * i915_oa_stream_init(). The code here should only validate config state that
 * will be relevant to all stream types / backends.
 *
 * Returns: zero on success or a negative error code.
 */
static int
i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv,
			    struct drm_i915_perf_open_param *param,
			    struct perf_open_properties *props,
			    struct drm_file *file)
{
	struct i915_gem_context *specific_ctx = NULL;
	struct i915_perf_stream *stream = NULL;
	unsigned long f_flags = 0;
	int stream_fd;
	int ret;

	if (props->single_context) {
		u32 ctx_handle = props->ctx_handle;
		struct drm_i915_file_private *file_priv = file->driver_priv;

		specific_ctx = lookup_context(dev_priv, file_priv, ctx_handle);
		if (IS_ERR(specific_ctx)) {
			ret = PTR_ERR(specific_ctx);
			if (ret != -EINTR)
				DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
					  ctx_handle);
			goto err;
		}
	}

	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
	 * we check a dev.i915.perf_stream_paranoid sysctl option
	 * to determine if it's ok to access system wide OA counters
	 * without CAP_SYS_ADMIN privileges.
	 */
	if (!specific_ctx &&
	    i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
		DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n");
		ret = -EACCES;
		goto err_ctx;
	}

	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
	if (!stream) {
		ret = -ENOMEM;
		goto err_ctx;
	}

	stream->dev_priv = dev_priv;
	stream->ctx = specific_ctx;

	ret = i915_oa_stream_init(stream, param, props);
	if (ret)
		goto err_alloc;

	/* we avoid simply assigning stream->sample_flags = props->sample_flags
	 * to have _stream_init check the combination of sample flags more
	 * thoroughly, but still this is the expected result at this point.
	 */
	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
		ret = -ENODEV;
		goto err_flags;
	}

	list_add(&stream->link, &dev_priv->perf.streams);

	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;
	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
		f_flags |= O_NONBLOCK;

	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
	if (stream_fd < 0) {
		ret = stream_fd;
		goto err_open;
	}

	if (!(param->flags & I915_PERF_FLAG_DISABLED))
		i915_perf_enable_locked(stream);

	return stream_fd;

err_open:
	list_del(&stream->link);
err_flags:
	if (stream->ops->destroy)
		stream->ops->destroy(stream);
err_alloc:
	kfree(stream);
err_ctx:
	if (specific_ctx)
		i915_gem_context_put_unlocked(specific_ctx);
err:
	return ret;
}

/**
 * read_properties_unlocked - validate + copy userspace stream open properties
 * @dev_priv: i915 device instance
 * @uprops: The array of u64 key value pairs given by userspace
 * @n_props: The number of key value pairs expected in @uprops
 * @props: The stream configuration built up while validating properties
 *
 * Note this function only validates properties in isolation it doesn't
 * validate that the combination of properties makes sense or that all
 * properties necessary for a particular kind of stream have been set.
 *
 * Note that there currently aren't any ordering requirements for properties so
 * we shouldn't validate or assume anything about ordering here. This doesn't
 * rule out defining new properties with ordering requirements in the future.
 */
static int read_properties_unlocked(struct drm_i915_private *dev_priv,
				    u64 __user *uprops,
				    u32 n_props,
				    struct perf_open_properties *props)
{
	u64 __user *uprop = uprops;
	int i;

	memset(props, 0, sizeof(struct perf_open_properties));

	if (!n_props) {
		DRM_DEBUG("No i915 perf properties given\n");
		return -EINVAL;
	}

	/* Considering that ID = 0 is reserved and assuming that we don't
	 * (currently) expect any configurations to ever specify duplicate
	 * values for a particular property ID then the last _PROP_MAX value is
	 * one greater than the maximum number of properties we expect to get
	 * from userspace.
	 */
	if (n_props >= DRM_I915_PERF_PROP_MAX) {
		DRM_DEBUG("More i915 perf properties specified than exist\n");
		return -EINVAL;
	}

	for (i = 0; i < n_props; i++) {
		u64 oa_period, oa_freq_hz;
		u64 id, value;
		int ret;

		ret = get_user(id, uprop);
		if (ret)
			return ret;

		ret = get_user(value, uprop + 1);
		if (ret)
			return ret;

		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
			DRM_DEBUG("Unknown i915 perf property ID\n");
			return -EINVAL;
		}

		switch ((enum drm_i915_perf_property_id)id) {
		case DRM_I915_PERF_PROP_CTX_HANDLE:
			props->single_context = 1;
			props->ctx_handle = value;
			break;
		case DRM_I915_PERF_PROP_SAMPLE_OA:
			props->sample_flags |= SAMPLE_OA_REPORT;
			break;
		case DRM_I915_PERF_PROP_OA_METRICS_SET:
			if (value == 0 ||
			    value > dev_priv->perf.oa.n_builtin_sets) {
				DRM_DEBUG("Unknown OA metric set ID\n");
				return -EINVAL;
			}
			props->metrics_set = value;
			break;
		case DRM_I915_PERF_PROP_OA_FORMAT:
			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
				DRM_DEBUG("Out-of-range OA report format %llu\n",
					  value);
				return -EINVAL;
			}
			if (!dev_priv->perf.oa.oa_formats[value].size) {
				DRM_DEBUG("Unsupported OA report format %llu\n",
					  value);
				return -EINVAL;
			}
			props->oa_format = value;
			break;
		case DRM_I915_PERF_PROP_OA_EXPONENT:
			if (value > OA_EXPONENT_MAX) {
				DRM_DEBUG("OA timer exponent too high (> %u)\n",
					 OA_EXPONENT_MAX);
				return -EINVAL;
			}

			/* Theoretically we can program the OA unit to sample
			 * every 160ns but don't allow that by default unless
			 * root.
			 *
			 * On Haswell the period is derived from the exponent
			 * as:
			 *
			 *   period = 80ns * 2^(exponent + 1)
			 */
			BUILD_BUG_ON(sizeof(oa_period) != 8);
			oa_period = 80ull * (2ull << value);

			/* This check is primarily to ensure that oa_period <=
			 * UINT32_MAX (before passing to do_div which only
			 * accepts a u32 denominator), but we can also skip
			 * checking anything < 1Hz which implicitly can't be
			 * limited via an integer oa_max_sample_rate.
			 */
			if (oa_period <= NSEC_PER_SEC) {
				u64 tmp = NSEC_PER_SEC;
				do_div(tmp, oa_period);
				oa_freq_hz = tmp;
			} else
				oa_freq_hz = 0;

			if (oa_freq_hz > i915_oa_max_sample_rate &&
			    !capable(CAP_SYS_ADMIN)) {
				DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
					  i915_oa_max_sample_rate);
				return -EACCES;
			}

			props->oa_periodic = true;
			props->oa_period_exponent = value;
			break;
		case DRM_I915_PERF_PROP_MAX:
			MISSING_CASE(id);
			return -EINVAL;
		}

		uprop += 2;
	}

	return 0;
}

/**
 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
 * @dev: drm device
 * @data: ioctl data copied from userspace (unvalidated)
 * @file: drm file
 *
 * Validates the stream open parameters given by userspace including flags
 * and an array of u64 key, value pair properties.
 *
 * Very little is assumed up front about the nature of the stream being
 * opened (for instance we don't assume it's for periodic OA unit metrics). An
 * i915-perf stream is expected to be a suitable interface for other forms of
 * buffered data written by the GPU besides periodic OA metrics.
 *
 * Note we copy the properties from userspace outside of the i915 perf
 * mutex to avoid an awkward lockdep with mmap_sem.
 *
 * Most of the implementation details are handled by
 * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock
 * mutex for serializing with any non-file-operation driver hooks.
 *
 * Return: A newly opened i915 Perf stream file descriptor or negative
 * error code on failure.
 */
int i915_perf_open_ioctl(struct drm_device *dev, void *data,
			 struct drm_file *file)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_perf_open_param *param = data;
	struct perf_open_properties props;
	u32 known_open_flags;
	int ret;

	if (!dev_priv->perf.initialized) {
		DRM_DEBUG("i915 perf interface not available for this system\n");
		return -ENOTSUPP;
	}

	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
			   I915_PERF_FLAG_FD_NONBLOCK |
			   I915_PERF_FLAG_DISABLED;
	if (param->flags & ~known_open_flags) {
		DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
		return -EINVAL;
	}

	ret = read_properties_unlocked(dev_priv,
				       u64_to_user_ptr(param->properties_ptr),
				       param->num_properties,
				       &props);
	if (ret)
		return ret;

	mutex_lock(&dev_priv->perf.lock);
	ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file);
	mutex_unlock(&dev_priv->perf.lock);

	return ret;
}

/**
 * i915_perf_register - exposes i915-perf to userspace
 * @dev_priv: i915 device instance
 *
 * In particular OA metric sets are advertised under a sysfs metrics/
 * directory allowing userspace to enumerate valid IDs that can be
 * used to open an i915-perf stream.
 */
void i915_perf_register(struct drm_i915_private *dev_priv)
{
	if (!IS_HASWELL(dev_priv))
		return;

	if (!dev_priv->perf.initialized)
		return;

	/* To be sure we're synchronized with an attempted
	 * i915_perf_open_ioctl(); considering that we register after
	 * being exposed to userspace.
	 */
	mutex_lock(&dev_priv->perf.lock);

	dev_priv->perf.metrics_kobj =
		kobject_create_and_add("metrics",
				       &dev_priv->drm.primary->kdev->kobj);
	if (!dev_priv->perf.metrics_kobj)
		goto exit;

	if (i915_perf_register_sysfs_hsw(dev_priv)) {
		kobject_put(dev_priv->perf.metrics_kobj);
		dev_priv->perf.metrics_kobj = NULL;
	}

exit:
	mutex_unlock(&dev_priv->perf.lock);
}

/**
 * i915_perf_unregister - hide i915-perf from userspace
 * @dev_priv: i915 device instance
 *
 * i915-perf state cleanup is split up into an 'unregister' and
 * 'deinit' phase where the interface is first hidden from
 * userspace by i915_perf_unregister() before cleaning up
 * remaining state in i915_perf_fini().
 */
void i915_perf_unregister(struct drm_i915_private *dev_priv)
{
	if (!IS_HASWELL(dev_priv))
		return;

	if (!dev_priv->perf.metrics_kobj)
		return;

	i915_perf_unregister_sysfs_hsw(dev_priv);

	kobject_put(dev_priv->perf.metrics_kobj);
	dev_priv->perf.metrics_kobj = NULL;
}

static struct ctl_table oa_table[] = {
	{
	 .procname = "perf_stream_paranoid",
	 .data = &i915_perf_stream_paranoid,
	 .maxlen = sizeof(i915_perf_stream_paranoid),
	 .mode = 0644,
	 .proc_handler = proc_dointvec_minmax,
	 .extra1 = &zero,
	 .extra2 = &one,
	 },
	{
	 .procname = "oa_max_sample_rate",
	 .data = &i915_oa_max_sample_rate,
	 .maxlen = sizeof(i915_oa_max_sample_rate),
	 .mode = 0644,
	 .proc_handler = proc_dointvec_minmax,
	 .extra1 = &zero,
	 .extra2 = &oa_sample_rate_hard_limit,
	 },
	{}
};

static struct ctl_table i915_root[] = {
	{
	 .procname = "i915",
	 .maxlen = 0,
	 .mode = 0555,
	 .child = oa_table,
	 },
	{}
};

static struct ctl_table dev_root[] = {
	{
	 .procname = "dev",
	 .maxlen = 0,
	 .mode = 0555,
	 .child = i915_root,
	 },
	{}
};

/**
 * i915_perf_init - initialize i915-perf state on module load
 * @dev_priv: i915 device instance
 *
 * Initializes i915-perf state without exposing anything to userspace.
 *
 * Note: i915-perf initialization is split into an 'init' and 'register'
 * phase with the i915_perf_register() exposing state to userspace.
 */
void i915_perf_init(struct drm_i915_private *dev_priv)
{
	if (!IS_HASWELL(dev_priv))
		return;

	hrtimer_init(&dev_priv->perf.oa.poll_check_timer,
		     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb;
	init_waitqueue_head(&dev_priv->perf.oa.poll_wq);

	INIT_LIST_HEAD(&dev_priv->perf.streams);
	mutex_init(&dev_priv->perf.lock);
	spin_lock_init(&dev_priv->perf.hook_lock);
	spin_lock_init(&dev_priv->perf.oa.oa_buffer.ptr_lock);

	dev_priv->perf.oa.ops.init_oa_buffer = gen7_init_oa_buffer;
	dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set;
	dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set;
	dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable;
	dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable;
	dev_priv->perf.oa.ops.read = gen7_oa_read;
	dev_priv->perf.oa.ops.oa_buffer_check =
		gen7_oa_buffer_check_unlocked;

	dev_priv->perf.oa.oa_formats = hsw_oa_formats;

	dev_priv->perf.oa.n_builtin_sets =
		i915_oa_n_builtin_metric_sets_hsw;

	dev_priv->perf.sysctl_header = register_sysctl_table(dev_root);

	dev_priv->perf.initialized = true;
}

/**
 * i915_perf_fini - Counter part to i915_perf_init()
 * @dev_priv: i915 device instance
 */
void i915_perf_fini(struct drm_i915_private *dev_priv)
{
	if (!dev_priv->perf.initialized)
		return;

	unregister_sysctl_table(dev_priv->perf.sysctl_header);

	memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops));
	dev_priv->perf.initialized = false;
}