1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
|
/* SPDX-License-Identifier: MIT */
/*
* Copyright 2023 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dml2_policy.h"
static void get_optimal_ntuple(
const struct soc_bounding_box_st *socbb,
struct soc_state_bounding_box_st *entry)
{
if (entry->dcfclk_mhz > 0) {
float bw_on_sdp = (float)(entry->dcfclk_mhz * socbb->return_bus_width_bytes * ((float)socbb->pct_ideal_sdp_bw_after_urgent / 100));
entry->fabricclk_mhz = bw_on_sdp / (socbb->return_bus_width_bytes * ((float)socbb->pct_ideal_fabric_bw_after_urgent / 100));
entry->dram_speed_mts = bw_on_sdp / (socbb->num_chans *
socbb->dram_channel_width_bytes * ((float)socbb->pct_ideal_dram_bw_after_urgent_pixel_only / 100));
} else if (entry->fabricclk_mhz > 0) {
float bw_on_fabric = (float)(entry->fabricclk_mhz * socbb->return_bus_width_bytes * ((float)socbb->pct_ideal_fabric_bw_after_urgent / 100));
entry->dcfclk_mhz = bw_on_fabric / (socbb->return_bus_width_bytes * ((float)socbb->pct_ideal_sdp_bw_after_urgent / 100));
entry->dram_speed_mts = bw_on_fabric / (socbb->num_chans *
socbb->dram_channel_width_bytes * ((float)socbb->pct_ideal_dram_bw_after_urgent_pixel_only / 100));
} else if (entry->dram_speed_mts > 0) {
float bw_on_dram = (float)(entry->dram_speed_mts * socbb->num_chans *
socbb->dram_channel_width_bytes * ((float)socbb->pct_ideal_dram_bw_after_urgent_pixel_only / 100));
entry->fabricclk_mhz = bw_on_dram / (socbb->return_bus_width_bytes * ((float)socbb->pct_ideal_fabric_bw_after_urgent / 100));
entry->dcfclk_mhz = bw_on_dram / (socbb->return_bus_width_bytes * ((float)socbb->pct_ideal_sdp_bw_after_urgent / 100));
}
}
static float calculate_net_bw_in_mbytes_sec(const struct soc_bounding_box_st *socbb,
struct soc_state_bounding_box_st *entry)
{
float memory_bw_mbytes_sec = (float)(entry->dram_speed_mts * socbb->num_chans *
socbb->dram_channel_width_bytes * ((float)socbb->pct_ideal_dram_bw_after_urgent_pixel_only / 100));
float fabric_bw_mbytes_sec = (float)(entry->fabricclk_mhz * socbb->return_bus_width_bytes * ((float)socbb->pct_ideal_fabric_bw_after_urgent / 100));
float sdp_bw_mbytes_sec = (float)(entry->dcfclk_mhz * socbb->return_bus_width_bytes * ((float)socbb->pct_ideal_sdp_bw_after_urgent / 100));
float limiting_bw_mbytes_sec = memory_bw_mbytes_sec;
if (fabric_bw_mbytes_sec < limiting_bw_mbytes_sec)
limiting_bw_mbytes_sec = fabric_bw_mbytes_sec;
if (sdp_bw_mbytes_sec < limiting_bw_mbytes_sec)
limiting_bw_mbytes_sec = sdp_bw_mbytes_sec;
return limiting_bw_mbytes_sec;
}
static void insert_entry_into_table_sorted(const struct soc_bounding_box_st *socbb,
struct soc_states_st *table,
struct soc_state_bounding_box_st *entry)
{
int index = 0;
int i = 0;
float net_bw_of_new_state = 0;
get_optimal_ntuple(socbb, entry);
if (table->num_states == 0) {
index = 0;
} else {
net_bw_of_new_state = calculate_net_bw_in_mbytes_sec(socbb, entry);
while (net_bw_of_new_state > calculate_net_bw_in_mbytes_sec(socbb, &table->state_array[index])) {
index++;
if (index >= (int) table->num_states)
break;
}
for (i = table->num_states; i > index; i--) {
table->state_array[i] = table->state_array[i - 1];
}
//ASSERT(index < MAX_CLK_TABLE_SIZE);
}
table->state_array[index] = *entry;
table->state_array[index].dcfclk_mhz = (int)entry->dcfclk_mhz;
table->state_array[index].fabricclk_mhz = (int)entry->fabricclk_mhz;
table->state_array[index].dram_speed_mts = (int)entry->dram_speed_mts;
table->num_states++;
}
static void remove_entry_from_table_at_index(struct soc_states_st *table,
unsigned int index)
{
int i;
if (table->num_states == 0)
return;
for (i = index; i < (int) table->num_states - 1; i++) {
table->state_array[i] = table->state_array[i + 1];
}
memset(&table->state_array[--table->num_states], 0, sizeof(struct soc_state_bounding_box_st));
}
int dml2_policy_build_synthetic_soc_states(struct dml2_policy_build_synthetic_soc_states_scratch *s,
struct dml2_policy_build_synthetic_soc_states_params *p)
{
int i, j;
unsigned int min_fclk_mhz = p->in_states->state_array[0].fabricclk_mhz;
unsigned int min_dcfclk_mhz = p->in_states->state_array[0].dcfclk_mhz;
unsigned int min_socclk_mhz = p->in_states->state_array[0].socclk_mhz;
int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0,
max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0,
max_uclk_mhz = 0, max_socclk_mhz = 0;
int num_uclk_dpms = 0, num_fclk_dpms = 0;
for (i = 0; i < __DML_MAX_STATE_ARRAY_SIZE__; i++) {
if (p->in_states->state_array[i].dcfclk_mhz > max_dcfclk_mhz)
max_dcfclk_mhz = (int) p->in_states->state_array[i].dcfclk_mhz;
if (p->in_states->state_array[i].fabricclk_mhz > max_fclk_mhz)
max_fclk_mhz = (int) p->in_states->state_array[i].fabricclk_mhz;
if (p->in_states->state_array[i].socclk_mhz > max_socclk_mhz)
max_socclk_mhz = (int) p->in_states->state_array[i].socclk_mhz;
if (p->in_states->state_array[i].dram_speed_mts > max_uclk_mhz)
max_uclk_mhz = (int) p->in_states->state_array[i].dram_speed_mts;
if (p->in_states->state_array[i].dispclk_mhz > max_dispclk_mhz)
max_dispclk_mhz = (int) p->in_states->state_array[i].dispclk_mhz;
if (p->in_states->state_array[i].dppclk_mhz > max_dppclk_mhz)
max_dppclk_mhz = (int) p->in_states->state_array[i].dppclk_mhz;
if (p->in_states->state_array[i].phyclk_mhz > max_phyclk_mhz)
max_phyclk_mhz = (int)p->in_states->state_array[i].phyclk_mhz;
if (p->in_states->state_array[i].dtbclk_mhz > max_dtbclk_mhz)
max_dtbclk_mhz = (int)p->in_states->state_array[i].dtbclk_mhz;
if (p->in_states->state_array[i].fabricclk_mhz > 0)
num_fclk_dpms++;
if (p->in_states->state_array[i].dram_speed_mts > 0)
num_uclk_dpms++;
}
if (!max_dcfclk_mhz || !max_dispclk_mhz || !max_dppclk_mhz || !max_phyclk_mhz || !max_dtbclk_mhz)
return -1;
p->out_states->num_states = 0;
s->entry = p->in_states->state_array[0];
s->entry.dispclk_mhz = max_dispclk_mhz;
s->entry.dppclk_mhz = max_dppclk_mhz;
s->entry.dtbclk_mhz = max_dtbclk_mhz;
s->entry.phyclk_mhz = max_phyclk_mhz;
s->entry.dscclk_mhz = max_dispclk_mhz / 3;
s->entry.phyclk_mhz = max_phyclk_mhz;
s->entry.dtbclk_mhz = max_dtbclk_mhz;
// Insert all the DCFCLK STAs first
for (i = 0; i < p->num_dcfclk_stas; i++) {
s->entry.dcfclk_mhz = p->dcfclk_stas_mhz[i];
s->entry.fabricclk_mhz = 0;
s->entry.dram_speed_mts = 0;
if (i > 0)
s->entry.socclk_mhz = max_socclk_mhz;
insert_entry_into_table_sorted(p->in_bbox, p->out_states, &s->entry);
}
// Insert the UCLK DPMS
for (i = 0; i < num_uclk_dpms; i++) {
s->entry.dcfclk_mhz = 0;
s->entry.fabricclk_mhz = 0;
s->entry.dram_speed_mts = p->in_states->state_array[i].dram_speed_mts;
if (i == 0) {
s->entry.socclk_mhz = min_socclk_mhz;
} else {
s->entry.socclk_mhz = max_socclk_mhz;
}
insert_entry_into_table_sorted(p->in_bbox, p->out_states, &s->entry);
}
// Insert FCLK DPMs (if present)
if (num_fclk_dpms > 2) {
for (i = 0; i < num_fclk_dpms; i++) {
s->entry.dcfclk_mhz = 0;
s->entry.fabricclk_mhz = p->in_states->state_array[i].fabricclk_mhz;
s->entry.dram_speed_mts = 0;
insert_entry_into_table_sorted(p->in_bbox, p->out_states, &s->entry);
}
}
// Add max FCLK
else {
s->entry.dcfclk_mhz = 0;
s->entry.fabricclk_mhz = p->in_states->state_array[num_fclk_dpms - 1].fabricclk_mhz;
s->entry.dram_speed_mts = 0;
insert_entry_into_table_sorted(p->in_bbox, p->out_states, &s->entry);
}
// Remove states that require higher clocks than are supported
for (i = p->out_states->num_states - 1; i >= 0; i--) {
if (p->out_states->state_array[i].dcfclk_mhz > max_dcfclk_mhz ||
p->out_states->state_array[i].fabricclk_mhz > max_fclk_mhz ||
p->out_states->state_array[i].dram_speed_mts > max_uclk_mhz)
remove_entry_from_table_at_index(p->out_states, i);
}
// At this point, the table contains all "points of interest" based on
// DPMs from PMFW, and STAs. Table is sorted by BW, and all clock
// ratios (by derate, are exact).
// Round up UCLK to DPMs
for (i = p->out_states->num_states - 1; i >= 0; i--) {
for (j = 0; j < num_uclk_dpms; j++) {
if (p->in_states->state_array[j].dram_speed_mts >= p->out_states->state_array[i].dram_speed_mts) {
p->out_states->state_array[i].dram_speed_mts = p->in_states->state_array[j].dram_speed_mts;
break;
}
}
}
// If FCLK is coarse grained, round up to next DPMs
if (num_fclk_dpms > 2) {
for (i = p->out_states->num_states - 1; i >= 0; i--) {
for (j = 0; j < num_fclk_dpms; j++) {
if (p->in_states->state_array[j].fabricclk_mhz >= p->out_states->state_array[i].fabricclk_mhz) {
p->out_states->state_array[i].fabricclk_mhz = p->in_states->state_array[j].fabricclk_mhz;
break;
}
}
}
}
// Clamp to min FCLK/DCFCLK
for (i = p->out_states->num_states - 1; i >= 0; i--) {
if (p->out_states->state_array[i].fabricclk_mhz < min_fclk_mhz) {
p->out_states->state_array[i].fabricclk_mhz = min_fclk_mhz;
}
if (p->out_states->state_array[i].dcfclk_mhz < min_dcfclk_mhz) {
p->out_states->state_array[i].dcfclk_mhz = min_dcfclk_mhz;
}
}
// Remove duplicate states, note duplicate states are always neighbouring since table is sorted.
i = 0;
while (i < (int) p->out_states->num_states - 1) {
if (p->out_states->state_array[i].dcfclk_mhz == p->out_states->state_array[i + 1].dcfclk_mhz &&
p->out_states->state_array[i].fabricclk_mhz == p->out_states->state_array[i + 1].fabricclk_mhz &&
p->out_states->state_array[i].dram_speed_mts == p->out_states->state_array[i + 1].dram_speed_mts)
remove_entry_from_table_at_index(p->out_states, i);
else
i++;
}
return 0;
}
void build_unoptimized_policy_settings(enum dml_project_id project, struct dml_mode_eval_policy_st *policy)
{
for (int i = 0; i < __DML_NUM_PLANES__; i++) {
policy->MPCCombineUse[i] = dml_mpc_as_needed_for_voltage; // TOREVIEW: Is this still needed? When is MPCC useful for pstate given CRB?
policy->ODMUse[i] = dml_odm_use_policy_combine_as_needed;
policy->ImmediateFlipRequirement[i] = dml_immediate_flip_required;
policy->AllowForPStateChangeOrStutterInVBlank[i] = dml_prefetch_support_uclk_fclk_and_stutter_if_possible;
}
/* Change the default policy initializations as per spreadsheet. We might need to
* review and change them later on as per Jun's earlier comments.
*/
policy->UseUnboundedRequesting = dml_unbounded_requesting_enable;
policy->UseMinimumRequiredDCFCLK = false;
policy->DRAMClockChangeRequirementFinal = true; // TOREVIEW: What does this mean?
policy->FCLKChangeRequirementFinal = true; // TOREVIEW: What does this mean?
policy->USRRetrainingRequiredFinal = true;
policy->EnhancedPrefetchScheduleAccelerationFinal = true; // TOREVIEW: What does this mean?
policy->NomDETInKByteOverrideEnable = false;
policy->NomDETInKByteOverrideValue = 0;
policy->DCCProgrammingAssumesScanDirectionUnknownFinal = true;
policy->SynchronizeTimingsFinal = true;
policy->SynchronizeDRRDisplaysForUCLKPStateChangeFinal = true;
policy->AssumeModeSupportAtMaxPwrStateEvenDRAMClockChangeNotSupported = true; // TOREVIEW: What does this mean?
policy->AssumeModeSupportAtMaxPwrStateEvenFClockChangeNotSupported = true; // TOREVIEW: What does this mean?
if (project == dml_project_dcn35 ||
project == dml_project_dcn351) {
policy->DCCProgrammingAssumesScanDirectionUnknownFinal = false;
policy->EnhancedPrefetchScheduleAccelerationFinal = 0;
policy->AllowForPStateChangeOrStutterInVBlankFinal = dml_prefetch_support_uclk_fclk_and_stutter_if_possible; /*new*/
policy->UseOnlyMaxPrefetchModes = 1;
}
}
|