1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
|
// SPDX-License-Identifier: GPL-2.0
#define pr_fmt(fmt) "smccc: KVM: " fmt
#include <linux/arm-smccc.h>
#include <linux/bitmap.h>
#include <linux/cache.h>
#include <linux/kernel.h>
#include <linux/memblock.h>
#include <linux/string.h>
#include <uapi/linux/psci.h>
#include <asm/hypervisor.h>
static DECLARE_BITMAP(__kvm_arm_hyp_services, ARM_SMCCC_KVM_NUM_FUNCS) __ro_after_init = { };
void __init kvm_init_hyp_services(void)
{
struct arm_smccc_res res;
u32 val[4];
if (arm_smccc_1_1_get_conduit() != SMCCC_CONDUIT_HVC)
return;
arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_CALL_UID_FUNC_ID, &res);
if (res.a0 != ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_0 ||
res.a1 != ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_1 ||
res.a2 != ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_2 ||
res.a3 != ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_3)
return;
memset(&res, 0, sizeof(res));
arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_FEATURES_FUNC_ID, &res);
val[0] = lower_32_bits(res.a0);
val[1] = lower_32_bits(res.a1);
val[2] = lower_32_bits(res.a2);
val[3] = lower_32_bits(res.a3);
bitmap_from_arr32(__kvm_arm_hyp_services, val, ARM_SMCCC_KVM_NUM_FUNCS);
pr_info("hypervisor services detected (0x%08lx 0x%08lx 0x%08lx 0x%08lx)\n",
res.a3, res.a2, res.a1, res.a0);
kvm_arch_init_hyp_services();
}
bool kvm_arm_hyp_service_available(u32 func_id)
{
if (func_id >= ARM_SMCCC_KVM_NUM_FUNCS)
return false;
return test_bit(func_id, __kvm_arm_hyp_services);
}
EXPORT_SYMBOL_GPL(kvm_arm_hyp_service_available);
#ifdef CONFIG_ARM64
void __init kvm_arm_target_impl_cpu_init(void)
{
int i;
u32 ver;
u64 max_cpus;
struct arm_smccc_res res;
struct target_impl_cpu *target;
if (!kvm_arm_hyp_service_available(ARM_SMCCC_KVM_FUNC_DISCOVER_IMPL_VER) ||
!kvm_arm_hyp_service_available(ARM_SMCCC_KVM_FUNC_DISCOVER_IMPL_CPUS))
return;
arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_DISCOVER_IMPL_VER_FUNC_ID,
0, &res);
if (res.a0 != SMCCC_RET_SUCCESS)
return;
/* Version info is in lower 32 bits and is in SMMCCC_VERSION format */
ver = lower_32_bits(res.a1);
if (PSCI_VERSION_MAJOR(ver) != 1) {
pr_warn("Unsupported target CPU implementation version v%d.%d\n",
PSCI_VERSION_MAJOR(ver), PSCI_VERSION_MINOR(ver));
return;
}
if (!res.a2) {
pr_warn("No target implementation CPUs specified\n");
return;
}
max_cpus = res.a2;
target = memblock_alloc(sizeof(*target) * max_cpus, __alignof__(*target));
if (!target) {
pr_warn("Not enough memory for struct target_impl_cpu\n");
return;
}
for (i = 0; i < max_cpus; i++) {
arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_DISCOVER_IMPL_CPUS_FUNC_ID,
i, &res);
if (res.a0 != SMCCC_RET_SUCCESS) {
pr_warn("Discovering target implementation CPUs failed\n");
goto mem_free;
}
target[i].midr = res.a1;
target[i].revidr = res.a2;
target[i].aidr = res.a3;
};
if (!cpu_errata_set_target_impl(max_cpus, target)) {
pr_warn("Failed to set target implementation CPUs\n");
goto mem_free;
}
pr_info("Number of target implementation CPUs is %lld\n", max_cpus);
return;
mem_free:
memblock_free(target, sizeof(*target) * max_cpus);
}
#endif
|