summaryrefslogtreecommitdiff
path: root/drivers/dma/dw/idma32.c
blob: dac617c183e6a564bc382d25fc8a00c3bc4874f9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2013,2018,2020-2021 Intel Corporation

#include <linux/bitops.h>
#include <linux/dmaengine.h>
#include <linux/errno.h>
#include <linux/io.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/types.h>

#include "internal.h"

#define DMA_CTL_CH(x)			(0x1000 + (x) * 4)
#define DMA_SRC_ADDR_FILLIN(x)		(0x1100 + (x) * 4)
#define DMA_DST_ADDR_FILLIN(x)		(0x1200 + (x) * 4)
#define DMA_XBAR_SEL(x)			(0x1300 + (x) * 4)
#define DMA_REGACCESS_CHID_CFG		(0x1400)

#define CTL_CH_TRANSFER_MODE_MASK	GENMASK(1, 0)
#define CTL_CH_TRANSFER_MODE_S2S	0
#define CTL_CH_TRANSFER_MODE_S2D	1
#define CTL_CH_TRANSFER_MODE_D2S	2
#define CTL_CH_TRANSFER_MODE_D2D	3
#define CTL_CH_RD_RS_MASK		GENMASK(4, 3)
#define CTL_CH_WR_RS_MASK		GENMASK(6, 5)
#define CTL_CH_RD_NON_SNOOP_BIT		BIT(8)
#define CTL_CH_WR_NON_SNOOP_BIT		BIT(9)

#define XBAR_SEL_DEVID_MASK		GENMASK(15, 0)
#define XBAR_SEL_RX_TX_BIT		BIT(16)
#define XBAR_SEL_RX_TX_SHIFT		16

#define REGACCESS_CHID_MASK		GENMASK(2, 0)

static unsigned int idma32_get_slave_devfn(struct dw_dma_chan *dwc)
{
	struct device *slave = dwc->chan.slave;

	if (!slave || !dev_is_pci(slave))
		return 0;

	return to_pci_dev(slave)->devfn;
}

static void idma32_initialize_chan_xbar(struct dw_dma_chan *dwc)
{
	struct dw_dma *dw = to_dw_dma(dwc->chan.device);
	void __iomem *misc = __dw_regs(dw);
	u32 cfghi = 0, cfglo = 0;
	u8 dst_id, src_id;
	u32 value;

	/* DMA Channel ID Configuration register must be programmed first */
	value = readl(misc + DMA_REGACCESS_CHID_CFG);

	value &= ~REGACCESS_CHID_MASK;
	value |= dwc->chan.chan_id;

	writel(value, misc + DMA_REGACCESS_CHID_CFG);

	/* Configure channel attributes */
	value = readl(misc + DMA_CTL_CH(dwc->chan.chan_id));

	value &= ~(CTL_CH_RD_NON_SNOOP_BIT | CTL_CH_WR_NON_SNOOP_BIT);
	value &= ~(CTL_CH_RD_RS_MASK | CTL_CH_WR_RS_MASK);
	value &= ~CTL_CH_TRANSFER_MODE_MASK;

	switch (dwc->direction) {
	case DMA_MEM_TO_DEV:
		value |= CTL_CH_TRANSFER_MODE_D2S;
		value |= CTL_CH_WR_NON_SNOOP_BIT;
		break;
	case DMA_DEV_TO_MEM:
		value |= CTL_CH_TRANSFER_MODE_S2D;
		value |= CTL_CH_RD_NON_SNOOP_BIT;
		break;
	default:
		/*
		 * Memory-to-Memory and Device-to-Device are ignored for now.
		 *
		 * For Memory-to-Memory transfers we would need to set mode
		 * and disable snooping on both sides.
		 */
		return;
	}

	writel(value, misc + DMA_CTL_CH(dwc->chan.chan_id));

	/* Configure crossbar selection */
	value = readl(misc + DMA_XBAR_SEL(dwc->chan.chan_id));

	/* DEVFN selection */
	value &= ~XBAR_SEL_DEVID_MASK;
	value |= idma32_get_slave_devfn(dwc);

	switch (dwc->direction) {
	case DMA_MEM_TO_DEV:
		value |= XBAR_SEL_RX_TX_BIT;
		break;
	case DMA_DEV_TO_MEM:
		value &= ~XBAR_SEL_RX_TX_BIT;
		break;
	default:
		/* Memory-to-Memory and Device-to-Device are ignored for now */
		return;
	}

	writel(value, misc + DMA_XBAR_SEL(dwc->chan.chan_id));

	/* Configure DMA channel low and high registers */
	switch (dwc->direction) {
	case DMA_MEM_TO_DEV:
		dst_id = dwc->chan.chan_id;
		src_id = dwc->dws.src_id;
		break;
	case DMA_DEV_TO_MEM:
		dst_id = dwc->dws.dst_id;
		src_id = dwc->chan.chan_id;
		break;
	default:
		/* Memory-to-Memory and Device-to-Device are ignored for now */
		return;
	}

	/* Set default burst alignment */
	cfglo |= IDMA32C_CFGL_DST_BURST_ALIGN | IDMA32C_CFGL_SRC_BURST_ALIGN;

	/* Low 4 bits of the request lines */
	cfghi |= IDMA32C_CFGH_DST_PER(dst_id & 0xf);
	cfghi |= IDMA32C_CFGH_SRC_PER(src_id & 0xf);

	/* Request line extension (2 bits) */
	cfghi |= IDMA32C_CFGH_DST_PER_EXT(dst_id >> 4 & 0x3);
	cfghi |= IDMA32C_CFGH_SRC_PER_EXT(src_id >> 4 & 0x3);

	channel_writel(dwc, CFG_LO, cfglo);
	channel_writel(dwc, CFG_HI, cfghi);
}

static void idma32_initialize_chan_generic(struct dw_dma_chan *dwc)
{
	u32 cfghi = 0;
	u32 cfglo = 0;

	/* Set default burst alignment */
	cfglo |= IDMA32C_CFGL_DST_BURST_ALIGN | IDMA32C_CFGL_SRC_BURST_ALIGN;

	/* Low 4 bits of the request lines */
	cfghi |= IDMA32C_CFGH_DST_PER(dwc->dws.dst_id & 0xf);
	cfghi |= IDMA32C_CFGH_SRC_PER(dwc->dws.src_id & 0xf);

	/* Request line extension (2 bits) */
	cfghi |= IDMA32C_CFGH_DST_PER_EXT(dwc->dws.dst_id >> 4 & 0x3);
	cfghi |= IDMA32C_CFGH_SRC_PER_EXT(dwc->dws.src_id >> 4 & 0x3);

	channel_writel(dwc, CFG_LO, cfglo);
	channel_writel(dwc, CFG_HI, cfghi);
}

static void idma32_suspend_chan(struct dw_dma_chan *dwc, bool drain)
{
	u32 cfglo = channel_readl(dwc, CFG_LO);

	if (drain)
		cfglo |= IDMA32C_CFGL_CH_DRAIN;

	channel_writel(dwc, CFG_LO, cfglo | DWC_CFGL_CH_SUSP);
}

static void idma32_resume_chan(struct dw_dma_chan *dwc, bool drain)
{
	u32 cfglo = channel_readl(dwc, CFG_LO);

	if (drain)
		cfglo &= ~IDMA32C_CFGL_CH_DRAIN;

	channel_writel(dwc, CFG_LO, cfglo & ~DWC_CFGL_CH_SUSP);
}

static u32 idma32_bytes2block(struct dw_dma_chan *dwc,
			      size_t bytes, unsigned int width, size_t *len)
{
	u32 block;

	if (bytes > dwc->block_size) {
		block = dwc->block_size;
		*len = dwc->block_size;
	} else {
		block = bytes;
		*len = bytes;
	}

	return block;
}

static size_t idma32_block2bytes(struct dw_dma_chan *dwc, u32 block, u32 width)
{
	return IDMA32C_CTLH_BLOCK_TS(block);
}

static inline u8 idma32_encode_maxburst(u32 maxburst)
{
	return maxburst > 1 ? fls(maxburst) - 1 : 0;
}

static u32 idma32_prepare_ctllo(struct dw_dma_chan *dwc)
{
	struct dma_slave_config	*sconfig = &dwc->dma_sconfig;
	u8 smsize = 0, dmsize = 0;

	if (dwc->direction == DMA_MEM_TO_DEV)
		dmsize = idma32_encode_maxburst(sconfig->dst_maxburst);
	else if (dwc->direction == DMA_DEV_TO_MEM)
		smsize = idma32_encode_maxburst(sconfig->src_maxburst);

	return DWC_CTLL_LLP_D_EN | DWC_CTLL_LLP_S_EN |
	       DWC_CTLL_DST_MSIZE(dmsize) | DWC_CTLL_SRC_MSIZE(smsize);
}

static void idma32_set_device_name(struct dw_dma *dw, int id)
{
	snprintf(dw->name, sizeof(dw->name), "idma32:dmac%d", id);
}

/*
 * Program FIFO size of channels.
 *
 * By default full FIFO (512 bytes) is assigned to channel 0. Here we
 * slice FIFO on equal parts between channels.
 */
static void idma32_fifo_partition(struct dw_dma *dw)
{
	u64 value = IDMA32C_FP_PSIZE_CH0(64) | IDMA32C_FP_PSIZE_CH1(64) |
		    IDMA32C_FP_UPDATE;
	u64 fifo_partition = 0;

	/* Fill FIFO_PARTITION low bits (Channels 0..1, 4..5) */
	fifo_partition |= value << 0;

	/* Fill FIFO_PARTITION high bits (Channels 2..3, 6..7) */
	fifo_partition |= value << 32;

	/* Program FIFO Partition registers - 64 bytes per channel */
	idma32_writeq(dw, FIFO_PARTITION1, fifo_partition);
	idma32_writeq(dw, FIFO_PARTITION0, fifo_partition);
}

static void idma32_disable(struct dw_dma *dw)
{
	do_dw_dma_off(dw);
	idma32_fifo_partition(dw);
}

static void idma32_enable(struct dw_dma *dw)
{
	idma32_fifo_partition(dw);
	do_dw_dma_on(dw);
}

int idma32_dma_probe(struct dw_dma_chip *chip)
{
	struct dw_dma *dw;

	dw = devm_kzalloc(chip->dev, sizeof(*dw), GFP_KERNEL);
	if (!dw)
		return -ENOMEM;

	/* Channel operations */
	if (chip->pdata->quirks & DW_DMA_QUIRK_XBAR_PRESENT)
		dw->initialize_chan = idma32_initialize_chan_xbar;
	else
		dw->initialize_chan = idma32_initialize_chan_generic;
	dw->suspend_chan = idma32_suspend_chan;
	dw->resume_chan = idma32_resume_chan;
	dw->prepare_ctllo = idma32_prepare_ctllo;
	dw->bytes2block = idma32_bytes2block;
	dw->block2bytes = idma32_block2bytes;

	/* Device operations */
	dw->set_device_name = idma32_set_device_name;
	dw->disable = idma32_disable;
	dw->enable = idma32_enable;

	chip->dw = dw;
	return do_dma_probe(chip);
}
EXPORT_SYMBOL_GPL(idma32_dma_probe);

int idma32_dma_remove(struct dw_dma_chip *chip)
{
	return do_dma_remove(chip);
}
EXPORT_SYMBOL_GPL(idma32_dma_remove);