summaryrefslogtreecommitdiff
path: root/drivers/ata/sata_highbank.c
blob: 63ef7bb073ce03362b9290d32d07fe5392385c19 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Calxeda Highbank AHCI SATA platform driver
 * Copyright 2012 Calxeda, Inc.
 *
 * based on the AHCI SATA platform driver by Jeff Garzik and Anton Vorontsov
 */
#include <linux/kernel.h>
#include <linux/gfp.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/spinlock.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/libata.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/gpio/consumer.h>

#include "ahci.h"

#define CPHY_MAP(dev, addr) ((((dev) & 0x1f) << 7) | (((addr) >> 9) & 0x7f))
#define CPHY_ADDR(addr) (((addr) & 0x1ff) << 2)
#define SERDES_CR_CTL			0x80a0
#define SERDES_CR_ADDR			0x80a1
#define SERDES_CR_DATA			0x80a2
#define CR_BUSY				0x0001
#define CR_START			0x0001
#define CR_WR_RDN			0x0002
#define CPHY_TX_INPUT_STS		0x2001
#define CPHY_RX_INPUT_STS		0x2002
#define CPHY_SATA_TX_OVERRIDE		0x8000
#define CPHY_SATA_RX_OVERRIDE	 	0x4000
#define CPHY_TX_OVERRIDE		0x2004
#define CPHY_RX_OVERRIDE		0x2005
#define SPHY_LANE			0x100
#define SPHY_HALF_RATE			0x0001
#define CPHY_SATA_DPLL_MODE		0x0700
#define CPHY_SATA_DPLL_SHIFT		8
#define CPHY_SATA_DPLL_RESET		(1 << 11)
#define CPHY_SATA_TX_ATTEN		0x1c00
#define CPHY_SATA_TX_ATTEN_SHIFT	10
#define CPHY_PHY_COUNT			6
#define CPHY_LANE_COUNT			4
#define CPHY_PORT_COUNT			(CPHY_PHY_COUNT * CPHY_LANE_COUNT)

static DEFINE_SPINLOCK(cphy_lock);
/* Each of the 6 phys can have up to 4 sata ports attached to i. Map 0-based
 * sata ports to their phys and then to their lanes within the phys
 */
struct phy_lane_info {
	void __iomem *phy_base;
	u8 lane_mapping;
	u8 phy_devs;
	u8 tx_atten;
};
static struct phy_lane_info port_data[CPHY_PORT_COUNT];

static DEFINE_SPINLOCK(sgpio_lock);
#define SCLOCK				0
#define SLOAD				1
#define SDATA				2
#define SGPIO_PINS			3
#define SGPIO_PORTS			8

struct ecx_plat_data {
	u32		n_ports;
	/* number of extra clocks that the SGPIO PIC controller expects */
	u32		pre_clocks;
	u32		post_clocks;
	struct gpio_desc *sgpio_gpiod[SGPIO_PINS];
	u32		sgpio_pattern;
	u32		port_to_sgpio[SGPIO_PORTS];
};

#define SGPIO_SIGNALS			3
#define ECX_ACTIVITY_BITS		0x300000
#define ECX_ACTIVITY_SHIFT		0
#define ECX_LOCATE_BITS			0x80000
#define ECX_LOCATE_SHIFT		1
#define ECX_FAULT_BITS			0x400000
#define ECX_FAULT_SHIFT			2
static inline int sgpio_bit_shift(struct ecx_plat_data *pdata, u32 port,
				u32 shift)
{
	return 1 << (3 * pdata->port_to_sgpio[port] + shift);
}

static void ecx_parse_sgpio(struct ecx_plat_data *pdata, u32 port, u32 state)
{
	if (state & ECX_ACTIVITY_BITS)
		pdata->sgpio_pattern |= sgpio_bit_shift(pdata, port,
						ECX_ACTIVITY_SHIFT);
	else
		pdata->sgpio_pattern &= ~sgpio_bit_shift(pdata, port,
						ECX_ACTIVITY_SHIFT);
	if (state & ECX_LOCATE_BITS)
		pdata->sgpio_pattern |= sgpio_bit_shift(pdata, port,
						ECX_LOCATE_SHIFT);
	else
		pdata->sgpio_pattern &= ~sgpio_bit_shift(pdata, port,
						ECX_LOCATE_SHIFT);
	if (state & ECX_FAULT_BITS)
		pdata->sgpio_pattern |= sgpio_bit_shift(pdata, port,
						ECX_FAULT_SHIFT);
	else
		pdata->sgpio_pattern &= ~sgpio_bit_shift(pdata, port,
						ECX_FAULT_SHIFT);
}

/*
 * Tell the LED controller that the signal has changed by raising the clock
 * line for 50 uS and then lowering it for 50 uS.
 */
static void ecx_led_cycle_clock(struct ecx_plat_data *pdata)
{
	gpiod_set_value(pdata->sgpio_gpiod[SCLOCK], 1);
	udelay(50);
	gpiod_set_value(pdata->sgpio_gpiod[SCLOCK], 0);
	udelay(50);
}

static ssize_t ecx_transmit_led_message(struct ata_port *ap, u32 state,
					ssize_t size)
{
	struct ahci_host_priv *hpriv =  ap->host->private_data;
	struct ecx_plat_data *pdata = hpriv->plat_data;
	struct ahci_port_priv *pp = ap->private_data;
	unsigned long flags;
	int pmp, i;
	struct ahci_em_priv *emp;
	u32 sgpio_out;

	/* get the slot number from the message */
	pmp = (state & EM_MSG_LED_PMP_SLOT) >> 8;
	if (pmp < EM_MAX_SLOTS)
		emp = &pp->em_priv[pmp];
	else
		return -EINVAL;

	if (!(hpriv->em_msg_type & EM_MSG_TYPE_LED))
		return size;

	spin_lock_irqsave(&sgpio_lock, flags);
	ecx_parse_sgpio(pdata, ap->port_no, state);
	sgpio_out = pdata->sgpio_pattern;
	for (i = 0; i < pdata->pre_clocks; i++)
		ecx_led_cycle_clock(pdata);

	gpiod_set_value(pdata->sgpio_gpiod[SLOAD], 1);
	ecx_led_cycle_clock(pdata);
	gpiod_set_value(pdata->sgpio_gpiod[SLOAD], 0);
	/*
	 * bit-bang out the SGPIO pattern, by consuming a bit and then
	 * clocking it out.
	 */
	for (i = 0; i < (SGPIO_SIGNALS * pdata->n_ports); i++) {
		gpiod_set_value(pdata->sgpio_gpiod[SDATA], sgpio_out & 1);
		sgpio_out >>= 1;
		ecx_led_cycle_clock(pdata);
	}
	for (i = 0; i < pdata->post_clocks; i++)
		ecx_led_cycle_clock(pdata);

	/* save off new led state for port/slot */
	emp->led_state = state;

	spin_unlock_irqrestore(&sgpio_lock, flags);
	return size;
}

static void highbank_set_em_messages(struct device *dev,
					struct ahci_host_priv *hpriv,
					struct ata_port_info *pi)
{
	struct device_node *np = dev->of_node;
	struct ecx_plat_data *pdata = hpriv->plat_data;
	int i;

	for (i = 0; i < SGPIO_PINS; i++) {
		struct gpio_desc *gpiod;

		gpiod = devm_gpiod_get_index(dev, "calxeda,sgpio", i,
					     GPIOD_OUT_HIGH);
		if (IS_ERR(gpiod)) {
			dev_err(dev, "failed to get GPIO %d\n", i);
			continue;
		}
		gpiod_set_consumer_name(gpiod, "CX SGPIO");

		pdata->sgpio_gpiod[i] = gpiod;
	}
	of_property_read_u32_array(np, "calxeda,led-order",
						pdata->port_to_sgpio,
						pdata->n_ports);
	if (of_property_read_u32(np, "calxeda,pre-clocks", &pdata->pre_clocks))
		pdata->pre_clocks = 0;
	if (of_property_read_u32(np, "calxeda,post-clocks",
				&pdata->post_clocks))
		pdata->post_clocks = 0;

	/* store em_loc */
	hpriv->em_loc = 0;
	hpriv->em_buf_sz = 4;
	hpriv->em_msg_type = EM_MSG_TYPE_LED;
	pi->flags |= ATA_FLAG_EM | ATA_FLAG_SW_ACTIVITY;
}

static u32 __combo_phy_reg_read(u8 sata_port, u32 addr)
{
	u32 data;
	u8 dev = port_data[sata_port].phy_devs;
	spin_lock(&cphy_lock);
	writel(CPHY_MAP(dev, addr), port_data[sata_port].phy_base + 0x800);
	data = readl(port_data[sata_port].phy_base + CPHY_ADDR(addr));
	spin_unlock(&cphy_lock);
	return data;
}

static void __combo_phy_reg_write(u8 sata_port, u32 addr, u32 data)
{
	u8 dev = port_data[sata_port].phy_devs;
	spin_lock(&cphy_lock);
	writel(CPHY_MAP(dev, addr), port_data[sata_port].phy_base + 0x800);
	writel(data, port_data[sata_port].phy_base + CPHY_ADDR(addr));
	spin_unlock(&cphy_lock);
}

static void combo_phy_wait_for_ready(u8 sata_port)
{
	while (__combo_phy_reg_read(sata_port, SERDES_CR_CTL) & CR_BUSY)
		udelay(5);
}

static u32 combo_phy_read(u8 sata_port, u32 addr)
{
	combo_phy_wait_for_ready(sata_port);
	__combo_phy_reg_write(sata_port, SERDES_CR_ADDR, addr);
	__combo_phy_reg_write(sata_port, SERDES_CR_CTL, CR_START);
	combo_phy_wait_for_ready(sata_port);
	return __combo_phy_reg_read(sata_port, SERDES_CR_DATA);
}

static void combo_phy_write(u8 sata_port, u32 addr, u32 data)
{
	combo_phy_wait_for_ready(sata_port);
	__combo_phy_reg_write(sata_port, SERDES_CR_ADDR, addr);
	__combo_phy_reg_write(sata_port, SERDES_CR_DATA, data);
	__combo_phy_reg_write(sata_port, SERDES_CR_CTL, CR_WR_RDN | CR_START);
}

static void highbank_cphy_disable_overrides(u8 sata_port)
{
	u8 lane = port_data[sata_port].lane_mapping;
	u32 tmp;
	if (unlikely(port_data[sata_port].phy_base == NULL))
		return;
	tmp = combo_phy_read(sata_port, CPHY_RX_INPUT_STS + lane * SPHY_LANE);
	tmp &= ~CPHY_SATA_RX_OVERRIDE;
	combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp);
}

static void cphy_override_tx_attenuation(u8 sata_port, u32 val)
{
	u8 lane = port_data[sata_port].lane_mapping;
	u32 tmp;

	if (val & 0x8)
		return;

	tmp = combo_phy_read(sata_port, CPHY_TX_INPUT_STS + lane * SPHY_LANE);
	tmp &= ~CPHY_SATA_TX_OVERRIDE;
	combo_phy_write(sata_port, CPHY_TX_OVERRIDE + lane * SPHY_LANE, tmp);

	tmp |= CPHY_SATA_TX_OVERRIDE;
	combo_phy_write(sata_port, CPHY_TX_OVERRIDE + lane * SPHY_LANE, tmp);

	tmp |= (val << CPHY_SATA_TX_ATTEN_SHIFT) & CPHY_SATA_TX_ATTEN;
	combo_phy_write(sata_port, CPHY_TX_OVERRIDE + lane * SPHY_LANE, tmp);
}

static void cphy_override_rx_mode(u8 sata_port, u32 val)
{
	u8 lane = port_data[sata_port].lane_mapping;
	u32 tmp;
	tmp = combo_phy_read(sata_port, CPHY_RX_INPUT_STS + lane * SPHY_LANE);
	tmp &= ~CPHY_SATA_RX_OVERRIDE;
	combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp);

	tmp |= CPHY_SATA_RX_OVERRIDE;
	combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp);

	tmp &= ~CPHY_SATA_DPLL_MODE;
	tmp |= val << CPHY_SATA_DPLL_SHIFT;
	combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp);

	tmp |= CPHY_SATA_DPLL_RESET;
	combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp);

	tmp &= ~CPHY_SATA_DPLL_RESET;
	combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp);

	msleep(15);
}

static void highbank_cphy_override_lane(u8 sata_port)
{
	u8 lane = port_data[sata_port].lane_mapping;
	u32 tmp, k = 0;

	if (unlikely(port_data[sata_port].phy_base == NULL))
		return;
	do {
		tmp = combo_phy_read(sata_port, CPHY_RX_INPUT_STS +
						lane * SPHY_LANE);
	} while ((tmp & SPHY_HALF_RATE) && (k++ < 1000));
	cphy_override_rx_mode(sata_port, 3);
	cphy_override_tx_attenuation(sata_port, port_data[sata_port].tx_atten);
}

static int highbank_initialize_phys(struct device *dev, void __iomem *addr)
{
	struct device_node *sata_node = dev->of_node;
	int phy_count = 0, phy, port = 0, i;
	void __iomem *cphy_base[CPHY_PHY_COUNT] = {};
	struct device_node *phy_nodes[CPHY_PHY_COUNT] = {};
	u32 tx_atten[CPHY_PORT_COUNT] = {};

	memset(port_data, 0, sizeof(struct phy_lane_info) * CPHY_PORT_COUNT);

	do {
		u32 tmp;
		struct of_phandle_args phy_data;
		if (of_parse_phandle_with_args(sata_node,
				"calxeda,port-phys", "#phy-cells",
				port, &phy_data))
			break;
		for (phy = 0; phy < phy_count; phy++) {
			if (phy_nodes[phy] == phy_data.np)
				break;
		}
		if (phy_nodes[phy] == NULL) {
			phy_nodes[phy] = phy_data.np;
			cphy_base[phy] = of_iomap(phy_nodes[phy], 0);
			if (cphy_base[phy] == NULL) {
				return 0;
			}
			phy_count += 1;
		}
		port_data[port].lane_mapping = phy_data.args[0];
		of_property_read_u32(phy_nodes[phy], "phydev", &tmp);
		port_data[port].phy_devs = tmp;
		port_data[port].phy_base = cphy_base[phy];
		of_node_put(phy_data.np);
		port += 1;
	} while (port < CPHY_PORT_COUNT);
	of_property_read_u32_array(sata_node, "calxeda,tx-atten",
				tx_atten, port);
	for (i = 0; i < port; i++)
		port_data[i].tx_atten = (u8) tx_atten[i];
	return 0;
}

/*
 * The Calxeda SATA phy intermittently fails to bring up a link with Gen3
 * Retrying the phy hard reset can work around the issue, but the drive
 * may fail again. In less than 150 out of 15000 test runs, it took more
 * than 10 tries for the link to be established (but never more than 35).
 * Triple the maximum observed retry count to provide plenty of margin for
 * rare events and to guarantee that the link is established.
 *
 * Also, the default 2 second time-out on a failed drive is too long in
 * this situation. The uboot implementation of the same driver function
 * uses a much shorter time-out period and never experiences a time out
 * issue. Reducing the time-out to 500ms improves the responsiveness.
 * The other timing constants were kept the same as the stock AHCI driver.
 * This change was also tested 15000 times on 24 drives and none of them
 * experienced a time out.
 */
static int ahci_highbank_hardreset(struct ata_link *link, unsigned int *class,
				unsigned long deadline)
{
	static const unsigned int timing[] = { 5, 100, 500};
	struct ata_port *ap = link->ap;
	struct ahci_port_priv *pp = ap->private_data;
	struct ahci_host_priv *hpriv = ap->host->private_data;
	u8 *d2h_fis = pp->rx_fis + RX_FIS_D2H_REG;
	struct ata_taskfile tf;
	bool online;
	u32 sstatus;
	int rc;
	int retry = 100;

	hpriv->stop_engine(ap);

	/* clear D2H reception area to properly wait for D2H FIS */
	ata_tf_init(link->device, &tf);
	tf.status = ATA_BUSY;
	ata_tf_to_fis(&tf, 0, 0, d2h_fis);

	do {
		highbank_cphy_disable_overrides(link->ap->port_no);
		rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
		highbank_cphy_override_lane(link->ap->port_no);

		/* If the status is 1, we are connected, but the link did not
		 * come up. So retry resetting the link again.
		 */
		if (sata_scr_read(link, SCR_STATUS, &sstatus))
			break;
		if (!(sstatus & 0x3))
			break;
	} while (!online && retry--);

	hpriv->start_engine(ap);

	if (online)
		*class = ahci_dev_classify(ap);

	return rc;
}

static struct ata_port_operations ahci_highbank_ops = {
	.inherits		= &ahci_ops,
	.hardreset		= ahci_highbank_hardreset,
	.transmit_led_message   = ecx_transmit_led_message,
};

static const struct ata_port_info ahci_highbank_port_info = {
	.flags          = AHCI_FLAG_COMMON,
	.pio_mask       = ATA_PIO4,
	.udma_mask      = ATA_UDMA6,
	.port_ops       = &ahci_highbank_ops,
};

static const struct scsi_host_template ahci_highbank_platform_sht = {
	AHCI_SHT("sata_highbank"),
};

static const struct of_device_id ahci_of_match[] = {
	{ .compatible = "calxeda,hb-ahci" },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, ahci_of_match);

static int ahci_highbank_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct ahci_host_priv *hpriv;
	struct ecx_plat_data *pdata;
	struct ata_host *host;
	struct resource *mem;
	int irq;
	int i;
	int rc;
	u32 n_ports;
	struct ata_port_info pi = ahci_highbank_port_info;
	const struct ata_port_info *ppi[] = { &pi, NULL };

	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!mem) {
		dev_err(dev, "no mmio space\n");
		return -EINVAL;
	}

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;
	if (!irq)
		return -EINVAL;

	hpriv = devm_kzalloc(dev, sizeof(*hpriv), GFP_KERNEL);
	if (!hpriv) {
		dev_err(dev, "can't alloc ahci_host_priv\n");
		return -ENOMEM;
	}
	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
	if (!pdata) {
		dev_err(dev, "can't alloc ecx_plat_data\n");
		return -ENOMEM;
	}

	hpriv->irq = irq;
	hpriv->flags |= (unsigned long)pi.private_data;

	hpriv->mmio = devm_ioremap(dev, mem->start, resource_size(mem));
	if (!hpriv->mmio) {
		dev_err(dev, "can't map %pR\n", mem);
		return -ENOMEM;
	}

	rc = highbank_initialize_phys(dev, hpriv->mmio);
	if (rc)
		return rc;


	ahci_save_initial_config(dev, hpriv);

	/* prepare host */
	if (hpriv->cap & HOST_CAP_NCQ)
		pi.flags |= ATA_FLAG_NCQ;

	if (hpriv->cap & HOST_CAP_PMP)
		pi.flags |= ATA_FLAG_PMP;

	if (hpriv->cap & HOST_CAP_64)
		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));

	/* CAP.NP sometimes indicate the index of the last enabled
	 * port, at other times, that of the last possible port, so
	 * determining the maximum port number requires looking at
	 * both CAP.NP and port_map.
	 */
	n_ports = max(ahci_nr_ports(hpriv->cap), fls(hpriv->port_map));

	pdata->n_ports = n_ports;
	hpriv->plat_data = pdata;
	highbank_set_em_messages(dev, hpriv, &pi);

	host = ata_host_alloc_pinfo(dev, ppi, n_ports);
	if (!host) {
		rc = -ENOMEM;
		goto err0;
	}

	host->private_data = hpriv;

	if (!(hpriv->cap & HOST_CAP_SSS) || ahci_ignore_sss)
		host->flags |= ATA_HOST_PARALLEL_SCAN;

	for (i = 0; i < host->n_ports; i++) {
		struct ata_port *ap = host->ports[i];

		ata_port_desc(ap, "mmio %pR", mem);
		ata_port_desc(ap, "port 0x%x", 0x100 + ap->port_no * 0x80);

		/* set enclosure management message type */
		if (ap->flags & ATA_FLAG_EM)
			ap->em_message_type = hpriv->em_msg_type;

		/* disabled/not-implemented port */
		if (!(hpriv->port_map & (1 << i)))
			ap->ops = &ata_dummy_port_ops;
	}

	rc = ahci_reset_controller(host);
	if (rc)
		goto err0;

	ahci_init_controller(host);
	ahci_print_info(host, "platform");

	rc = ahci_host_activate(host, &ahci_highbank_platform_sht);
	if (rc)
		goto err0;

	return 0;
err0:
	return rc;
}

#ifdef CONFIG_PM_SLEEP
static int ahci_highbank_suspend(struct device *dev)
{
	struct ata_host *host = dev_get_drvdata(dev);
	struct ahci_host_priv *hpriv = host->private_data;
	void __iomem *mmio = hpriv->mmio;
	u32 ctl;

	if (hpriv->flags & AHCI_HFLAG_NO_SUSPEND) {
		dev_err(dev, "firmware update required for suspend/resume\n");
		return -EIO;
	}

	/*
	 * AHCI spec rev1.1 section 8.3.3:
	 * Software must disable interrupts prior to requesting a
	 * transition of the HBA to D3 state.
	 */
	ctl = readl(mmio + HOST_CTL);
	ctl &= ~HOST_IRQ_EN;
	writel(ctl, mmio + HOST_CTL);
	readl(mmio + HOST_CTL); /* flush */

	ata_host_suspend(host, PMSG_SUSPEND);
	return 0;
}

static int ahci_highbank_resume(struct device *dev)
{
	struct ata_host *host = dev_get_drvdata(dev);
	int rc;

	if (dev->power.power_state.event == PM_EVENT_SUSPEND) {
		rc = ahci_reset_controller(host);
		if (rc)
			return rc;

		ahci_init_controller(host);
	}

	ata_host_resume(host);

	return 0;
}
#endif

static SIMPLE_DEV_PM_OPS(ahci_highbank_pm_ops,
		  ahci_highbank_suspend, ahci_highbank_resume);

static struct platform_driver ahci_highbank_driver = {
	.remove_new = ata_platform_remove_one,
        .driver = {
                .name = "highbank-ahci",
                .of_match_table = ahci_of_match,
                .pm = &ahci_highbank_pm_ops,
        },
	.probe = ahci_highbank_probe,
};

module_platform_driver(ahci_highbank_driver);

MODULE_DESCRIPTION("Calxeda Highbank AHCI SATA platform driver");
MODULE_AUTHOR("Mark Langsdorf <mark.langsdorf@calxeda.com>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("sata:highbank");