summaryrefslogtreecommitdiff
path: root/arch/unicore32/mm/mmu.c
blob: aa2060beb40840d91b9023fce78f116f26c8952d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
/*
 * linux/arch/unicore32/mm/mmu.c
 *
 * Code specific to PKUnity SoC and UniCore ISA
 *
 * Copyright (C) 2001-2010 GUAN Xue-tao
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
#include <linux/memblock.h>
#include <linux/fs.h>
#include <linux/io.h>

#include <asm/cputype.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/sizes.h>
#include <asm/tlb.h>
#include <asm/memblock.h>

#include <mach/map.h>

#include "mm.h"

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
EXPORT_SYMBOL(empty_zero_page);

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

pgprot_t pgprot_user;
EXPORT_SYMBOL(pgprot_user);

pgprot_t pgprot_kernel;
EXPORT_SYMBOL(pgprot_kernel);

static int __init noalign_setup(char *__unused)
{
	cr_alignment &= ~CR_A;
	cr_no_alignment &= ~CR_A;
	set_cr(cr_alignment);
	return 1;
}
__setup("noalign", noalign_setup);

void adjust_cr(unsigned long mask, unsigned long set)
{
	unsigned long flags;

	mask &= ~CR_A;

	set &= mask;

	local_irq_save(flags);

	cr_no_alignment = (cr_no_alignment & ~mask) | set;
	cr_alignment = (cr_alignment & ~mask) | set;

	set_cr((get_cr() & ~mask) | set);

	local_irq_restore(flags);
}

struct map_desc {
	unsigned long virtual;
	unsigned long pfn;
	unsigned long length;
	unsigned int type;
};

#define PROT_PTE_DEVICE		(PTE_PRESENT | PTE_YOUNG |	\
				PTE_DIRTY | PTE_READ | PTE_WRITE)
#define PROT_SECT_DEVICE	(PMD_TYPE_SECT | PMD_PRESENT |	\
				PMD_SECT_READ | PMD_SECT_WRITE)

static struct mem_type mem_types[] = {
	[MT_DEVICE] = {		  /* Strongly ordered */
		.prot_pte	= PROT_PTE_DEVICE,
		.prot_l1	= PMD_TYPE_TABLE | PMD_PRESENT,
		.prot_sect	= PROT_SECT_DEVICE,
	},
	/*
	 * MT_KUSER: pte for vecpage -- cacheable,
	 *       and sect for unigfx mmap -- noncacheable
	 */
	[MT_KUSER] = {
		.prot_pte  = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
				PTE_CACHEABLE | PTE_READ | PTE_EXEC,
		.prot_l1   = PMD_TYPE_TABLE | PMD_PRESENT,
		.prot_sect = PROT_SECT_DEVICE,
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
				PTE_CACHEABLE | PTE_READ | PTE_WRITE |
				PTE_EXEC,
		.prot_l1   = PMD_TYPE_TABLE | PMD_PRESENT,
	},
	[MT_MEMORY] = {
		.prot_pte  = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
				PTE_WRITE | PTE_EXEC,
		.prot_l1   = PMD_TYPE_TABLE | PMD_PRESENT,
		.prot_sect = PMD_TYPE_SECT | PMD_PRESENT | PMD_SECT_CACHEABLE |
				PMD_SECT_READ | PMD_SECT_WRITE | PMD_SECT_EXEC,
	},
	[MT_ROM] = {
		.prot_sect = PMD_TYPE_SECT | PMD_PRESENT | PMD_SECT_CACHEABLE |
				PMD_SECT_READ,
	},
};

const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
EXPORT_SYMBOL(get_mem_type);

/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	pgprot_user   = __pgprot(PTE_PRESENT | PTE_YOUNG | PTE_CACHEABLE);
	pgprot_kernel = __pgprot(PTE_PRESENT | PTE_YOUNG |
				 PTE_DIRTY | PTE_READ | PTE_WRITE |
				 PTE_EXEC | PTE_CACHEABLE);
}

#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
		unsigned long prot)
{
	if (pmd_none(*pmd)) {
		size_t size = PTRS_PER_PTE * sizeof(pte_t);
		pte_t *pte = memblock_alloc(size, size);

		if (!pte)
			panic("%s: Failed to allocate %zu bytes align=%zx\n",
			      __func__, size, size);

		__pmd_populate(pmd, __pa(pte) | prot);
	}
	BUG_ON(pmd_bad(*pmd));
	return pte_offset_kernel(pmd, addr);
}

static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
				  const struct mem_type *type)
{
	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
	do {
		set_pte(pte, pfn_pte(pfn, __pgprot(type->prot_pte)));
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
				      unsigned long end, unsigned long phys,
				      const struct mem_type *type)
{
	pmd_t *pmd = pmd_offset((pud_t *)pgd, addr);

	/*
	 * Try a section mapping - end, addr and phys must all be aligned
	 * to a section boundary.
	 */
	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
		pmd_t *p = pmd;

		do {
			set_pmd(pmd, __pmd(phys | type->prot_sect));
			phys += SECTION_SIZE;
		} while (pmd++, addr += SECTION_SIZE, addr != end);

		flush_pmd_entry(p);
	} else {
		/*
		 * No need to loop; pte's aren't interested in the
		 * individual L1 entries.
		 */
		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
	}
}

/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections.
 */
static void __init create_mapping(struct map_desc *md)
{
	unsigned long phys, addr, length, end;
	const struct mem_type *type;
	pgd_t *pgd;

	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
		printk(KERN_WARNING "BUG: not creating mapping for "
		       "0x%08llx at 0x%08lx in user region\n",
		       __pfn_to_phys((u64)md->pfn), md->virtual);
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
	    md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
		printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
		       "overlaps vmalloc space\n",
		       __pfn_to_phys((u64)md->pfn), md->virtual);
	}

	type = &mem_types[md->type];

	addr = md->virtual & PAGE_MASK;
	phys = (unsigned long)__pfn_to_phys(md->pfn);
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));

	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
		printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
		       "be mapped using pages, ignoring.\n",
		       __pfn_to_phys(md->pfn), addr);
		return;
	}

	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);

		alloc_init_section(pgd, addr, next, phys, type);

		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
}

static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the vmalloc
 * area - the default is 128m.
 */
static int __init early_vmalloc(char *arg)
{
	unsigned long vmalloc_reserve = memparse(arg, NULL);

	if (vmalloc_reserve < SZ_16M) {
		vmalloc_reserve = SZ_16M;
		printk(KERN_WARNING
			"vmalloc area too small, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}

	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
		printk(KERN_WARNING
			"vmalloc area is too big, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}

	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
	return 0;
}
early_param("vmalloc", early_vmalloc);

static phys_addr_t lowmem_limit __initdata = SZ_1G;

static void __init sanity_check_meminfo(void)
{
	int i, j;

	lowmem_limit = __pa(vmalloc_min - 1) + 1;
	memblock_set_current_limit(lowmem_limit);

	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
		struct membank *bank = &meminfo.bank[j];
		*bank = meminfo.bank[i];
		j++;
	}
	meminfo.nr_banks = j;
}

static inline void prepare_page_table(void)
{
	unsigned long addr;
	phys_addr_t end;

	/*
	 * Clear out all the mappings below the kernel image.
	 */
	for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
		pmd_clear(pmd_off_k(addr));

	for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
		pmd_clear(pmd_off_k(addr));

	/*
	 * Find the end of the first block of lowmem.
	 */
	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
	if (end >= lowmem_limit)
		end = lowmem_limit;

	/*
	 * Clear out all the kernel space mappings, except for the first
	 * memory bank, up to the end of the vmalloc region.
	 */
	for (addr = __phys_to_virt(end);
	     addr < VMALLOC_END; addr += PGDIR_SIZE)
		pmd_clear(pmd_off_k(addr));
}

/*
 * Reserve the special regions of memory
 */
void __init uc32_mm_memblock_reserve(void)
{
	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
	memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
}

/*
 * Set up device the mappings.  Since we clear out the page tables for all
 * mappings above VMALLOC_END, we will remove any debug device mappings.
 * This means you have to be careful how you debug this function, or any
 * called function.  This means you can't use any function or debugging
 * method which may touch any device, otherwise the kernel _will_ crash.
 */
static void __init devicemaps_init(void)
{
	struct map_desc map;
	unsigned long addr;
	void *vectors;

	/*
	 * Allocate the vector page early.
	 */
	vectors = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
	if (!vectors)
		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
		      __func__, PAGE_SIZE, PAGE_SIZE);

	for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
		pmd_clear(pmd_off_k(addr));

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
	map.virtual = VECTORS_BASE;
	map.length = PAGE_SIZE;
	map.type = MT_HIGH_VECTORS;
	create_mapping(&map);

	/*
	 * Create a mapping for the kuser page at the special
	 * location (0xbfff0000) to the same vectors location.
	 */
	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
	map.virtual = KUSER_VECPAGE_BASE;
	map.length = PAGE_SIZE;
	map.type = MT_KUSER;
	create_mapping(&map);

	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
}

static void __init map_lowmem(void)
{
	struct memblock_region *reg;

	/* Map all the lowmem memory banks. */
	for_each_memblock(memory, reg) {
		phys_addr_t start = reg->base;
		phys_addr_t end = start + reg->size;
		struct map_desc map;

		if (end > lowmem_limit)
			end = lowmem_limit;
		if (start >= end)
			break;

		map.pfn = __phys_to_pfn(start);
		map.virtual = __phys_to_virt(start);
		map.length = end - start;
		map.type = MT_MEMORY;

		create_mapping(&map);
	}
}

/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
void __init paging_init(void)
{
	void *zero_page;

	build_mem_type_table();
	sanity_check_meminfo();
	prepare_page_table();
	map_lowmem();
	devicemaps_init();

	top_pmd = pmd_off_k(0xffff0000);

	/* allocate the zero page. */
	zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
	if (!zero_page)
		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
		      __func__, PAGE_SIZE, PAGE_SIZE);

	bootmem_init();

	empty_zero_page = virt_to_page(zero_page);
	__flush_dcache_page(NULL, empty_zero_page);
}

/*
 * In order to soft-boot, we need to insert a 1:1 mapping in place of
 * the user-mode pages.  This will then ensure that we have predictable
 * results when turning the mmu off
 */
void setup_mm_for_reboot(void)
{
	unsigned long base_pmdval;
	pgd_t *pgd;
	int i;

	/*
	 * We need to access to user-mode page tables here. For kernel threads
	 * we don't have any user-mode mappings so we use the context that we
	 * "borrowed".
	 */
	pgd = current->active_mm->pgd;

	base_pmdval = PMD_SECT_WRITE | PMD_SECT_READ | PMD_TYPE_SECT;

	for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
		unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
		pmd_t *pmd;

		pmd = pmd_off(pgd, i << PGDIR_SHIFT);
		set_pmd(pmd, __pmd(pmdval));
		flush_pmd_entry(pmd);
	}

	local_flush_tlb_all();
}

/*
 * Take care of architecture specific things when placing a new PTE into
 * a page table, or changing an existing PTE.  Basically, there are two
 * things that we need to take care of:
 *
 *  1. If PG_dcache_clean is not set for the page, we need to ensure
 *     that any cache entries for the kernels virtual memory
 *     range are written back to the page.
 *  2. If we have multiple shared mappings of the same space in
 *     an object, we need to deal with the cache aliasing issues.
 *
 * Note that the pte lock will be held.
 */
void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
	pte_t *ptep)
{
	unsigned long pfn = pte_pfn(*ptep);
	struct address_space *mapping;
	struct page *page;

	if (!pfn_valid(pfn))
		return;

	/*
	 * The zero page is never written to, so never has any dirty
	 * cache lines, and therefore never needs to be flushed.
	 */
	page = pfn_to_page(pfn);
	if (page == ZERO_PAGE(0))
		return;

	mapping = page_mapping_file(page);
	if (!test_and_set_bit(PG_dcache_clean, &page->flags))
		__flush_dcache_page(mapping, page);
	if (mapping)
		if (vma->vm_flags & VM_EXEC)
			__flush_icache_all();
}