summaryrefslogtreecommitdiff
path: root/arch/arm64/kvm/hyp/nvhe/switch.c
blob: 8f5c56d5b1cdf5c0d65774a8714a79ac95cc709f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2015 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 */

#include <hyp/switch.h>
#include <hyp/sysreg-sr.h>

#include <linux/arm-smccc.h>
#include <linux/kvm_host.h>
#include <linux/types.h>
#include <linux/jump_label.h>
#include <uapi/linux/psci.h>

#include <kvm/arm_psci.h>

#include <asm/barrier.h>
#include <asm/cpufeature.h>
#include <asm/kprobes.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/fpsimd.h>
#include <asm/debug-monitors.h>
#include <asm/processor.h>

#include <nvhe/fixed_config.h>
#include <nvhe/mem_protect.h>

/* Non-VHE specific context */
DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data);
DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
DEFINE_PER_CPU(unsigned long, kvm_hyp_vector);

extern void kvm_nvhe_prepare_backtrace(unsigned long fp, unsigned long pc);

static void __activate_traps(struct kvm_vcpu *vcpu)
{
	u64 val;

	___activate_traps(vcpu, vcpu->arch.hcr_el2);
	__activate_traps_common(vcpu);

	val = vcpu->arch.cptr_el2;
	val |= CPTR_EL2_TAM;	/* Same bit irrespective of E2H */
	val |= has_hvhe() ? CPACR_EL1_TTA : CPTR_EL2_TTA;
	if (cpus_have_final_cap(ARM64_SME)) {
		if (has_hvhe())
			val &= ~CPACR_ELx_SMEN;
		else
			val |= CPTR_EL2_TSM;
	}

	if (!guest_owns_fp_regs()) {
		if (has_hvhe())
			val &= ~(CPACR_ELx_FPEN | CPACR_ELx_ZEN);
		else
			val |= CPTR_EL2_TFP | CPTR_EL2_TZ;

		__activate_traps_fpsimd32(vcpu);
	}

	kvm_write_cptr_el2(val);
	write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el2);

	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
		struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt;

		isb();
		/*
		 * At this stage, and thanks to the above isb(), S2 is
		 * configured and enabled. We can now restore the guest's S1
		 * configuration: SCTLR, and only then TCR.
		 */
		write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1),	SYS_SCTLR);
		isb();
		write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1),	SYS_TCR);
	}
}

static void __deactivate_traps(struct kvm_vcpu *vcpu)
{
	extern char __kvm_hyp_host_vector[];

	___deactivate_traps(vcpu);

	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
		u64 val;

		/*
		 * Set the TCR and SCTLR registers in the exact opposite
		 * sequence as __activate_traps (first prevent walks,
		 * then force the MMU on). A generous sprinkling of isb()
		 * ensure that things happen in this exact order.
		 */
		val = read_sysreg_el1(SYS_TCR);
		write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR);
		isb();
		val = read_sysreg_el1(SYS_SCTLR);
		write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR);
		isb();
	}

	__deactivate_traps_common(vcpu);

	write_sysreg(this_cpu_ptr(&kvm_init_params)->hcr_el2, hcr_el2);

	kvm_reset_cptr_el2(vcpu);
	write_sysreg(__kvm_hyp_host_vector, vbar_el2);
}

/* Save VGICv3 state on non-VHE systems */
static void __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
{
	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
		__vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
		__vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
	}
}

/* Restore VGICv3 state on non-VHE systems */
static void __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
{
	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
		__vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
		__vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
	}
}

/*
 * Disable host events, enable guest events
 */
#ifdef CONFIG_HW_PERF_EVENTS
static bool __pmu_switch_to_guest(struct kvm_vcpu *vcpu)
{
	struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events;

	if (pmu->events_host)
		write_sysreg(pmu->events_host, pmcntenclr_el0);

	if (pmu->events_guest)
		write_sysreg(pmu->events_guest, pmcntenset_el0);

	return (pmu->events_host || pmu->events_guest);
}

/*
 * Disable guest events, enable host events
 */
static void __pmu_switch_to_host(struct kvm_vcpu *vcpu)
{
	struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events;

	if (pmu->events_guest)
		write_sysreg(pmu->events_guest, pmcntenclr_el0);

	if (pmu->events_host)
		write_sysreg(pmu->events_host, pmcntenset_el0);
}
#else
#define __pmu_switch_to_guest(v)	({ false; })
#define __pmu_switch_to_host(v)		do {} while (0)
#endif

/*
 * Handler for protected VM MSR, MRS or System instruction execution in AArch64.
 *
 * Returns true if the hypervisor has handled the exit, and control should go
 * back to the guest, or false if it hasn't.
 */
static bool kvm_handle_pvm_sys64(struct kvm_vcpu *vcpu, u64 *exit_code)
{
	/*
	 * Make sure we handle the exit for workarounds before the pKVM
	 * handling, as the latter could decide to UNDEF.
	 */
	return (kvm_hyp_handle_sysreg(vcpu, exit_code) ||
		kvm_handle_pvm_sysreg(vcpu, exit_code));
}

static void kvm_hyp_save_fpsimd_host(struct kvm_vcpu *vcpu)
{
	/*
	 * Non-protected kvm relies on the host restoring its sve state.
	 * Protected kvm restores the host's sve state as not to reveal that
	 * fpsimd was used by a guest nor leak upper sve bits.
	 */
	if (unlikely(is_protected_kvm_enabled() && system_supports_sve())) {
		__hyp_sve_save_host();

		/* Re-enable SVE traps if not supported for the guest vcpu. */
		if (!vcpu_has_sve(vcpu))
			cpacr_clear_set(CPACR_ELx_ZEN, 0);

	} else {
		__fpsimd_save_state(*host_data_ptr(fpsimd_state));
	}
}

static const exit_handler_fn hyp_exit_handlers[] = {
	[0 ... ESR_ELx_EC_MAX]		= NULL,
	[ESR_ELx_EC_CP15_32]		= kvm_hyp_handle_cp15_32,
	[ESR_ELx_EC_SYS64]		= kvm_hyp_handle_sysreg,
	[ESR_ELx_EC_SVE]		= kvm_hyp_handle_fpsimd,
	[ESR_ELx_EC_FP_ASIMD]		= kvm_hyp_handle_fpsimd,
	[ESR_ELx_EC_IABT_LOW]		= kvm_hyp_handle_iabt_low,
	[ESR_ELx_EC_DABT_LOW]		= kvm_hyp_handle_dabt_low,
	[ESR_ELx_EC_WATCHPT_LOW]	= kvm_hyp_handle_watchpt_low,
	[ESR_ELx_EC_MOPS]		= kvm_hyp_handle_mops,
};

static const exit_handler_fn pvm_exit_handlers[] = {
	[0 ... ESR_ELx_EC_MAX]		= NULL,
	[ESR_ELx_EC_SYS64]		= kvm_handle_pvm_sys64,
	[ESR_ELx_EC_SVE]		= kvm_handle_pvm_restricted,
	[ESR_ELx_EC_FP_ASIMD]		= kvm_hyp_handle_fpsimd,
	[ESR_ELx_EC_IABT_LOW]		= kvm_hyp_handle_iabt_low,
	[ESR_ELx_EC_DABT_LOW]		= kvm_hyp_handle_dabt_low,
	[ESR_ELx_EC_WATCHPT_LOW]	= kvm_hyp_handle_watchpt_low,
	[ESR_ELx_EC_MOPS]		= kvm_hyp_handle_mops,
};

static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu)
{
	if (unlikely(vcpu_is_protected(vcpu)))
		return pvm_exit_handlers;

	return hyp_exit_handlers;
}

/*
 * Some guests (e.g., protected VMs) are not be allowed to run in AArch32.
 * The ARMv8 architecture does not give the hypervisor a mechanism to prevent a
 * guest from dropping to AArch32 EL0 if implemented by the CPU. If the
 * hypervisor spots a guest in such a state ensure it is handled, and don't
 * trust the host to spot or fix it.  The check below is based on the one in
 * kvm_arch_vcpu_ioctl_run().
 *
 * Returns false if the guest ran in AArch32 when it shouldn't have, and
 * thus should exit to the host, or true if a the guest run loop can continue.
 */
static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code)
{
	if (unlikely(vcpu_is_protected(vcpu) && vcpu_mode_is_32bit(vcpu))) {
		/*
		 * As we have caught the guest red-handed, decide that it isn't
		 * fit for purpose anymore by making the vcpu invalid. The VMM
		 * can try and fix it by re-initializing the vcpu with
		 * KVM_ARM_VCPU_INIT, however, this is likely not possible for
		 * protected VMs.
		 */
		vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
		*exit_code &= BIT(ARM_EXIT_WITH_SERROR_BIT);
		*exit_code |= ARM_EXCEPTION_IL;
	}
}

/* Switch to the guest for legacy non-VHE systems */
int __kvm_vcpu_run(struct kvm_vcpu *vcpu)
{
	struct kvm_cpu_context *host_ctxt;
	struct kvm_cpu_context *guest_ctxt;
	struct kvm_s2_mmu *mmu;
	bool pmu_switch_needed;
	u64 exit_code;

	/*
	 * Having IRQs masked via PMR when entering the guest means the GIC
	 * will not signal the CPU of interrupts of lower priority, and the
	 * only way to get out will be via guest exceptions.
	 * Naturally, we want to avoid this.
	 */
	if (system_uses_irq_prio_masking()) {
		gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
		pmr_sync();
	}

	host_ctxt = host_data_ptr(host_ctxt);
	host_ctxt->__hyp_running_vcpu = vcpu;
	guest_ctxt = &vcpu->arch.ctxt;

	pmu_switch_needed = __pmu_switch_to_guest(vcpu);

	__sysreg_save_state_nvhe(host_ctxt);
	/*
	 * We must flush and disable the SPE buffer for nVHE, as
	 * the translation regime(EL1&0) is going to be loaded with
	 * that of the guest. And we must do this before we change the
	 * translation regime to EL2 (via MDCR_EL2_E2PB == 0) and
	 * before we load guest Stage1.
	 */
	__debug_save_host_buffers_nvhe(vcpu);

	/*
	 * We're about to restore some new MMU state. Make sure
	 * ongoing page-table walks that have started before we
	 * trapped to EL2 have completed. This also synchronises the
	 * above disabling of SPE and TRBE.
	 *
	 * See DDI0487I.a D8.1.5 "Out-of-context translation regimes",
	 * rule R_LFHQG and subsequent information statements.
	 */
	dsb(nsh);

	__kvm_adjust_pc(vcpu);

	/*
	 * We must restore the 32-bit state before the sysregs, thanks
	 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
	 *
	 * Also, and in order to be able to deal with erratum #1319537 (A57)
	 * and #1319367 (A72), we must ensure that all VM-related sysreg are
	 * restored before we enable S2 translation.
	 */
	__sysreg32_restore_state(vcpu);
	__sysreg_restore_state_nvhe(guest_ctxt);

	mmu = kern_hyp_va(vcpu->arch.hw_mmu);
	__load_stage2(mmu, kern_hyp_va(mmu->arch));
	__activate_traps(vcpu);

	__hyp_vgic_restore_state(vcpu);
	__timer_enable_traps(vcpu);

	__debug_switch_to_guest(vcpu);

	do {
		/* Jump in the fire! */
		exit_code = __guest_enter(vcpu);

		/* And we're baaack! */
	} while (fixup_guest_exit(vcpu, &exit_code));

	__sysreg_save_state_nvhe(guest_ctxt);
	__sysreg32_save_state(vcpu);
	__timer_disable_traps(vcpu);
	__hyp_vgic_save_state(vcpu);

	/*
	 * Same thing as before the guest run: we're about to switch
	 * the MMU context, so let's make sure we don't have any
	 * ongoing EL1&0 translations.
	 */
	dsb(nsh);

	__deactivate_traps(vcpu);
	__load_host_stage2();

	__sysreg_restore_state_nvhe(host_ctxt);

	if (guest_owns_fp_regs())
		__fpsimd_save_fpexc32(vcpu);

	__debug_switch_to_host(vcpu);
	/*
	 * This must come after restoring the host sysregs, since a non-VHE
	 * system may enable SPE here and make use of the TTBRs.
	 */
	__debug_restore_host_buffers_nvhe(vcpu);

	if (pmu_switch_needed)
		__pmu_switch_to_host(vcpu);

	/* Returning to host will clear PSR.I, remask PMR if needed */
	if (system_uses_irq_prio_masking())
		gic_write_pmr(GIC_PRIO_IRQOFF);

	host_ctxt->__hyp_running_vcpu = NULL;

	return exit_code;
}

asmlinkage void __noreturn hyp_panic(void)
{
	u64 spsr = read_sysreg_el2(SYS_SPSR);
	u64 elr = read_sysreg_el2(SYS_ELR);
	u64 par = read_sysreg_par();
	struct kvm_cpu_context *host_ctxt;
	struct kvm_vcpu *vcpu;

	host_ctxt = host_data_ptr(host_ctxt);
	vcpu = host_ctxt->__hyp_running_vcpu;

	if (vcpu) {
		__timer_disable_traps(vcpu);
		__deactivate_traps(vcpu);
		__load_host_stage2();
		__sysreg_restore_state_nvhe(host_ctxt);
	}

	/* Prepare to dump kvm nvhe hyp stacktrace */
	kvm_nvhe_prepare_backtrace((unsigned long)__builtin_frame_address(0),
				   _THIS_IP_);

	__hyp_do_panic(host_ctxt, spsr, elr, par);
	unreachable();
}

asmlinkage void __noreturn hyp_panic_bad_stack(void)
{
	hyp_panic();
}

asmlinkage void kvm_unexpected_el2_exception(void)
{
	__kvm_unexpected_el2_exception();
}