summaryrefslogtreecommitdiff
path: root/tools/sched_ext/scx_central.bpf.c
diff options
context:
space:
mode:
Diffstat (limited to 'tools/sched_ext/scx_central.bpf.c')
-rw-r--r--tools/sched_ext/scx_central.bpf.c361
1 files changed, 361 insertions, 0 deletions
diff --git a/tools/sched_ext/scx_central.bpf.c b/tools/sched_ext/scx_central.bpf.c
new file mode 100644
index 000000000000..8dd8eb73b6b8
--- /dev/null
+++ b/tools/sched_ext/scx_central.bpf.c
@@ -0,0 +1,361 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * A central FIFO sched_ext scheduler which demonstrates the followings:
+ *
+ * a. Making all scheduling decisions from one CPU:
+ *
+ * The central CPU is the only one making scheduling decisions. All other
+ * CPUs kick the central CPU when they run out of tasks to run.
+ *
+ * There is one global BPF queue and the central CPU schedules all CPUs by
+ * dispatching from the global queue to each CPU's local dsq from dispatch().
+ * This isn't the most straightforward. e.g. It'd be easier to bounce
+ * through per-CPU BPF queues. The current design is chosen to maximally
+ * utilize and verify various SCX mechanisms such as LOCAL_ON dispatching.
+ *
+ * b. Tickless operation
+ *
+ * All tasks are dispatched with the infinite slice which allows stopping the
+ * ticks on CONFIG_NO_HZ_FULL kernels running with the proper nohz_full
+ * parameter. The tickless operation can be observed through
+ * /proc/interrupts.
+ *
+ * Periodic switching is enforced by a periodic timer checking all CPUs and
+ * preempting them as necessary. Unfortunately, BPF timer currently doesn't
+ * have a way to pin to a specific CPU, so the periodic timer isn't pinned to
+ * the central CPU.
+ *
+ * c. Preemption
+ *
+ * Kthreads are unconditionally queued to the head of a matching local dsq
+ * and dispatched with SCX_DSQ_PREEMPT. This ensures that a kthread is always
+ * prioritized over user threads, which is required for ensuring forward
+ * progress as e.g. the periodic timer may run on a ksoftirqd and if the
+ * ksoftirqd gets starved by a user thread, there may not be anything else to
+ * vacate that user thread.
+ *
+ * SCX_KICK_PREEMPT is used to trigger scheduling and CPUs to move to the
+ * next tasks.
+ *
+ * This scheduler is designed to maximize usage of various SCX mechanisms. A
+ * more practical implementation would likely put the scheduling loop outside
+ * the central CPU's dispatch() path and add some form of priority mechanism.
+ *
+ * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
+ * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
+ * Copyright (c) 2022 David Vernet <dvernet@meta.com>
+ */
+#include <scx/common.bpf.h>
+
+char _license[] SEC("license") = "GPL";
+
+enum {
+ FALLBACK_DSQ_ID = 0,
+ MS_TO_NS = 1000LLU * 1000,
+ TIMER_INTERVAL_NS = 1 * MS_TO_NS,
+};
+
+const volatile s32 central_cpu;
+const volatile u32 nr_cpu_ids = 1; /* !0 for veristat, set during init */
+const volatile u64 slice_ns = SCX_SLICE_DFL;
+
+bool timer_pinned = true;
+u64 nr_total, nr_locals, nr_queued, nr_lost_pids;
+u64 nr_timers, nr_dispatches, nr_mismatches, nr_retries;
+u64 nr_overflows;
+
+UEI_DEFINE(uei);
+
+struct {
+ __uint(type, BPF_MAP_TYPE_QUEUE);
+ __uint(max_entries, 4096);
+ __type(value, s32);
+} central_q SEC(".maps");
+
+/* can't use percpu map due to bad lookups */
+bool RESIZABLE_ARRAY(data, cpu_gimme_task);
+u64 RESIZABLE_ARRAY(data, cpu_started_at);
+
+struct central_timer {
+ struct bpf_timer timer;
+};
+
+struct {
+ __uint(type, BPF_MAP_TYPE_ARRAY);
+ __uint(max_entries, 1);
+ __type(key, u32);
+ __type(value, struct central_timer);
+} central_timer SEC(".maps");
+
+static bool vtime_before(u64 a, u64 b)
+{
+ return (s64)(a - b) < 0;
+}
+
+s32 BPF_STRUCT_OPS(central_select_cpu, struct task_struct *p,
+ s32 prev_cpu, u64 wake_flags)
+{
+ /*
+ * Steer wakeups to the central CPU as much as possible to avoid
+ * disturbing other CPUs. It's safe to blindly return the central cpu as
+ * select_cpu() is a hint and if @p can't be on it, the kernel will
+ * automatically pick a fallback CPU.
+ */
+ return central_cpu;
+}
+
+void BPF_STRUCT_OPS(central_enqueue, struct task_struct *p, u64 enq_flags)
+{
+ s32 pid = p->pid;
+
+ __sync_fetch_and_add(&nr_total, 1);
+
+ /*
+ * Push per-cpu kthreads at the head of local dsq's and preempt the
+ * corresponding CPU. This ensures that e.g. ksoftirqd isn't blocked
+ * behind other threads which is necessary for forward progress
+ * guarantee as we depend on the BPF timer which may run from ksoftirqd.
+ */
+ if ((p->flags & PF_KTHREAD) && p->nr_cpus_allowed == 1) {
+ __sync_fetch_and_add(&nr_locals, 1);
+ scx_bpf_dispatch(p, SCX_DSQ_LOCAL, SCX_SLICE_INF,
+ enq_flags | SCX_ENQ_PREEMPT);
+ return;
+ }
+
+ if (bpf_map_push_elem(&central_q, &pid, 0)) {
+ __sync_fetch_and_add(&nr_overflows, 1);
+ scx_bpf_dispatch(p, FALLBACK_DSQ_ID, SCX_SLICE_INF, enq_flags);
+ return;
+ }
+
+ __sync_fetch_and_add(&nr_queued, 1);
+
+ if (!scx_bpf_task_running(p))
+ scx_bpf_kick_cpu(central_cpu, SCX_KICK_PREEMPT);
+}
+
+static bool dispatch_to_cpu(s32 cpu)
+{
+ struct task_struct *p;
+ s32 pid;
+
+ bpf_repeat(BPF_MAX_LOOPS) {
+ if (bpf_map_pop_elem(&central_q, &pid))
+ break;
+
+ __sync_fetch_and_sub(&nr_queued, 1);
+
+ p = bpf_task_from_pid(pid);
+ if (!p) {
+ __sync_fetch_and_add(&nr_lost_pids, 1);
+ continue;
+ }
+
+ /*
+ * If we can't run the task at the top, do the dumb thing and
+ * bounce it to the fallback dsq.
+ */
+ if (!bpf_cpumask_test_cpu(cpu, p->cpus_ptr)) {
+ __sync_fetch_and_add(&nr_mismatches, 1);
+ scx_bpf_dispatch(p, FALLBACK_DSQ_ID, SCX_SLICE_INF, 0);
+ bpf_task_release(p);
+ /*
+ * We might run out of dispatch buffer slots if we continue dispatching
+ * to the fallback DSQ, without dispatching to the local DSQ of the
+ * target CPU. In such a case, break the loop now as will fail the
+ * next dispatch operation.
+ */
+ if (!scx_bpf_dispatch_nr_slots())
+ break;
+ continue;
+ }
+
+ /* dispatch to local and mark that @cpu doesn't need more */
+ scx_bpf_dispatch(p, SCX_DSQ_LOCAL_ON | cpu, SCX_SLICE_INF, 0);
+
+ if (cpu != central_cpu)
+ scx_bpf_kick_cpu(cpu, SCX_KICK_IDLE);
+
+ bpf_task_release(p);
+ return true;
+ }
+
+ return false;
+}
+
+void BPF_STRUCT_OPS(central_dispatch, s32 cpu, struct task_struct *prev)
+{
+ if (cpu == central_cpu) {
+ /* dispatch for all other CPUs first */
+ __sync_fetch_and_add(&nr_dispatches, 1);
+
+ bpf_for(cpu, 0, nr_cpu_ids) {
+ bool *gimme;
+
+ if (!scx_bpf_dispatch_nr_slots())
+ break;
+
+ /* central's gimme is never set */
+ gimme = ARRAY_ELEM_PTR(cpu_gimme_task, cpu, nr_cpu_ids);
+ if (!gimme || !*gimme)
+ continue;
+
+ if (dispatch_to_cpu(cpu))
+ *gimme = false;
+ }
+
+ /*
+ * Retry if we ran out of dispatch buffer slots as we might have
+ * skipped some CPUs and also need to dispatch for self. The ext
+ * core automatically retries if the local dsq is empty but we
+ * can't rely on that as we're dispatching for other CPUs too.
+ * Kick self explicitly to retry.
+ */
+ if (!scx_bpf_dispatch_nr_slots()) {
+ __sync_fetch_and_add(&nr_retries, 1);
+ scx_bpf_kick_cpu(central_cpu, SCX_KICK_PREEMPT);
+ return;
+ }
+
+ /* look for a task to run on the central CPU */
+ if (scx_bpf_consume(FALLBACK_DSQ_ID))
+ return;
+ dispatch_to_cpu(central_cpu);
+ } else {
+ bool *gimme;
+
+ if (scx_bpf_consume(FALLBACK_DSQ_ID))
+ return;
+
+ gimme = ARRAY_ELEM_PTR(cpu_gimme_task, cpu, nr_cpu_ids);
+ if (gimme)
+ *gimme = true;
+
+ /*
+ * Force dispatch on the scheduling CPU so that it finds a task
+ * to run for us.
+ */
+ scx_bpf_kick_cpu(central_cpu, SCX_KICK_PREEMPT);
+ }
+}
+
+void BPF_STRUCT_OPS(central_running, struct task_struct *p)
+{
+ s32 cpu = scx_bpf_task_cpu(p);
+ u64 *started_at = ARRAY_ELEM_PTR(cpu_started_at, cpu, nr_cpu_ids);
+ if (started_at)
+ *started_at = bpf_ktime_get_ns() ?: 1; /* 0 indicates idle */
+}
+
+void BPF_STRUCT_OPS(central_stopping, struct task_struct *p, bool runnable)
+{
+ s32 cpu = scx_bpf_task_cpu(p);
+ u64 *started_at = ARRAY_ELEM_PTR(cpu_started_at, cpu, nr_cpu_ids);
+ if (started_at)
+ *started_at = 0;
+}
+
+static int central_timerfn(void *map, int *key, struct bpf_timer *timer)
+{
+ u64 now = bpf_ktime_get_ns();
+ u64 nr_to_kick = nr_queued;
+ s32 i, curr_cpu;
+
+ curr_cpu = bpf_get_smp_processor_id();
+ if (timer_pinned && (curr_cpu != central_cpu)) {
+ scx_bpf_error("Central timer ran on CPU %d, not central CPU %d",
+ curr_cpu, central_cpu);
+ return 0;
+ }
+
+ bpf_for(i, 0, nr_cpu_ids) {
+ s32 cpu = (nr_timers + i) % nr_cpu_ids;
+ u64 *started_at;
+
+ if (cpu == central_cpu)
+ continue;
+
+ /* kick iff the current one exhausted its slice */
+ started_at = ARRAY_ELEM_PTR(cpu_started_at, cpu, nr_cpu_ids);
+ if (started_at && *started_at &&
+ vtime_before(now, *started_at + slice_ns))
+ continue;
+
+ /* and there's something pending */
+ if (scx_bpf_dsq_nr_queued(FALLBACK_DSQ_ID) ||
+ scx_bpf_dsq_nr_queued(SCX_DSQ_LOCAL_ON | cpu))
+ ;
+ else if (nr_to_kick)
+ nr_to_kick--;
+ else
+ continue;
+
+ scx_bpf_kick_cpu(cpu, SCX_KICK_PREEMPT);
+ }
+
+ bpf_timer_start(timer, TIMER_INTERVAL_NS, BPF_F_TIMER_CPU_PIN);
+ __sync_fetch_and_add(&nr_timers, 1);
+ return 0;
+}
+
+int BPF_STRUCT_OPS_SLEEPABLE(central_init)
+{
+ u32 key = 0;
+ struct bpf_timer *timer;
+ int ret;
+
+ ret = scx_bpf_create_dsq(FALLBACK_DSQ_ID, -1);
+ if (ret)
+ return ret;
+
+ timer = bpf_map_lookup_elem(&central_timer, &key);
+ if (!timer)
+ return -ESRCH;
+
+ if (bpf_get_smp_processor_id() != central_cpu) {
+ scx_bpf_error("init from non-central CPU");
+ return -EINVAL;
+ }
+
+ bpf_timer_init(timer, &central_timer, CLOCK_MONOTONIC);
+ bpf_timer_set_callback(timer, central_timerfn);
+
+ ret = bpf_timer_start(timer, TIMER_INTERVAL_NS, BPF_F_TIMER_CPU_PIN);
+ /*
+ * BPF_F_TIMER_CPU_PIN is pretty new (>=6.7). If we're running in a
+ * kernel which doesn't have it, bpf_timer_start() will return -EINVAL.
+ * Retry without the PIN. This would be the perfect use case for
+ * bpf_core_enum_value_exists() but the enum type doesn't have a name
+ * and can't be used with bpf_core_enum_value_exists(). Oh well...
+ */
+ if (ret == -EINVAL) {
+ timer_pinned = false;
+ ret = bpf_timer_start(timer, TIMER_INTERVAL_NS, 0);
+ }
+ if (ret)
+ scx_bpf_error("bpf_timer_start failed (%d)", ret);
+ return ret;
+}
+
+void BPF_STRUCT_OPS(central_exit, struct scx_exit_info *ei)
+{
+ UEI_RECORD(uei, ei);
+}
+
+SCX_OPS_DEFINE(central_ops,
+ /*
+ * We are offloading all scheduling decisions to the central CPU
+ * and thus being the last task on a given CPU doesn't mean
+ * anything special. Enqueue the last tasks like any other tasks.
+ */
+ .flags = SCX_OPS_ENQ_LAST,
+
+ .select_cpu = (void *)central_select_cpu,
+ .enqueue = (void *)central_enqueue,
+ .dispatch = (void *)central_dispatch,
+ .running = (void *)central_running,
+ .stopping = (void *)central_stopping,
+ .init = (void *)central_init,
+ .exit = (void *)central_exit,
+ .name = "central");