diff options
Diffstat (limited to 'crypto/dh.c')
-rw-r--r-- | crypto/dh.c | 140 |
1 files changed, 137 insertions, 3 deletions
diff --git a/crypto/dh.c b/crypto/dh.c index d0adb1705fe7..869a0476e5e2 100644 --- a/crypto/dh.c +++ b/crypto/dh.c @@ -10,6 +10,7 @@ #include <crypto/internal/kpp.h> #include <crypto/kpp.h> #include <crypto/dh.h> +#include <crypto/rng.h> #include <linux/mpi.h> struct dh_ctx { @@ -315,6 +316,128 @@ static void dh_safe_prime_exit_tfm(struct crypto_kpp *tfm) crypto_free_kpp(tfm_ctx->dh_tfm); } +static u64 __add_u64_to_be(__be64 *dst, unsigned int n, u64 val) +{ + unsigned int i; + + for (i = n; val && i > 0; --i) { + u64 tmp = be64_to_cpu(dst[i - 1]); + + tmp += val; + val = tmp >= val ? 0 : 1; + dst[i - 1] = cpu_to_be64(tmp); + } + + return val; +} + +static void *dh_safe_prime_gen_privkey(const struct dh_safe_prime *safe_prime, + unsigned int *key_size) +{ + unsigned int n, oversampling_size; + __be64 *key; + int err; + u64 h, o; + + /* + * Generate a private key following NIST SP800-56Ar3, + * sec. 5.6.1.1.1 and 5.6.1.1.3 resp.. + * + * 5.6.1.1.1: choose key length N such that + * 2 * ->max_strength <= N <= log2(q) + 1 = ->p_size * 8 - 1 + * with q = (p - 1) / 2 for the safe-prime groups. + * Choose the lower bound's next power of two for N in order to + * avoid excessively large private keys while still + * maintaining some extra reserve beyond the bare minimum in + * most cases. Note that for each entry in safe_prime_groups[], + * the following holds for such N: + * - N >= 256, in particular it is a multiple of 2^6 = 64 + * bits and + * - N < log2(q) + 1, i.e. N respects the upper bound. + */ + n = roundup_pow_of_two(2 * safe_prime->max_strength); + WARN_ON_ONCE(n & ((1u << 6) - 1)); + n >>= 6; /* Convert N into units of u64. */ + + /* + * Reserve one extra u64 to hold the extra random bits + * required as per 5.6.1.1.3. + */ + oversampling_size = (n + 1) * sizeof(__be64); + key = kmalloc(oversampling_size, GFP_KERNEL); + if (!key) + return ERR_PTR(-ENOMEM); + + /* + * 5.6.1.1.3, step 3 (and implicitly step 4): obtain N + 64 + * random bits and interpret them as a big endian integer. + */ + err = -EFAULT; + if (crypto_get_default_rng()) + goto out_err; + + err = crypto_rng_get_bytes(crypto_default_rng, (u8 *)key, + oversampling_size); + crypto_put_default_rng(); + if (err) + goto out_err; + + /* + * 5.6.1.1.3, step 5 is implicit: 2^N < q and thus, + * M = min(2^N, q) = 2^N. + * + * For step 6, calculate + * key = (key[] mod (M - 1)) + 1 = (key[] mod (2^N - 1)) + 1. + * + * In order to avoid expensive divisions, note that + * 2^N mod (2^N - 1) = 1 and thus, for any integer h, + * 2^N * h mod (2^N - 1) = h mod (2^N - 1) always holds. + * The big endian integer key[] composed of n + 1 64bit words + * may be written as key[] = h * 2^N + l, with h = key[0] + * representing the 64 most significant bits and l + * corresponding to the remaining 2^N bits. With the remark + * from above, + * h * 2^N + l mod (2^N - 1) = l + h mod (2^N - 1). + * As both, l and h are less than 2^N, their sum after + * this first reduction is guaranteed to be <= 2^(N + 1) - 2. + * Or equivalently, that their sum can again be written as + * h' * 2^N + l' with h' now either zero or one and if one, + * then l' <= 2^N - 2. Thus, all bits at positions >= N will + * be zero after a second reduction: + * h' * 2^N + l' mod (2^N - 1) = l' + h' mod (2^N - 1). + * At this point, it is still possible that + * l' + h' = 2^N - 1, i.e. that l' + h' mod (2^N - 1) + * is zero. This condition will be detected below by means of + * the final increment overflowing in this case. + */ + h = be64_to_cpu(key[0]); + h = __add_u64_to_be(key + 1, n, h); + h = __add_u64_to_be(key + 1, n, h); + WARN_ON_ONCE(h); + + /* Increment to obtain the final result. */ + o = __add_u64_to_be(key + 1, n, 1); + /* + * The overflow bit o from the increment is either zero or + * one. If zero, key[1:n] holds the final result in big-endian + * order. If one, key[1:n] is zero now, but needs to be set to + * one, c.f. above. + */ + if (o) + key[n] = cpu_to_be64(1); + + /* n is in units of u64, convert to bytes. */ + *key_size = n << 3; + /* Strip the leading extra __be64, which is (virtually) zero by now. */ + memmove(key, &key[1], *key_size); + + return key; + +out_err: + kfree_sensitive(key); + return ERR_PTR(err); +} + static int dh_safe_prime_set_secret(struct crypto_kpp *tfm, const void *buffer, unsigned int len) { @@ -322,7 +445,7 @@ static int dh_safe_prime_set_secret(struct crypto_kpp *tfm, const void *buffer, dh_safe_prime_instance_ctx(tfm); struct dh_safe_prime_tfm_ctx *tfm_ctx = kpp_tfm_ctx(tfm); struct dh params; - void *buf; + void *buf = NULL, *key = NULL; unsigned int buf_size; int err; @@ -338,10 +461,20 @@ static int dh_safe_prime_set_secret(struct crypto_kpp *tfm, const void *buffer, params.g = safe_prime_g; params.g_size = sizeof(safe_prime_g); + if (!params.key_size) { + key = dh_safe_prime_gen_privkey(inst_ctx->safe_prime, + ¶ms.key_size); + if (IS_ERR(key)) + return PTR_ERR(key); + params.key = key; + } + buf_size = crypto_dh_key_len(¶ms); buf = kmalloc(buf_size, GFP_KERNEL); - if (!buf) - return -ENOMEM; + if (!buf) { + err = -ENOMEM; + goto out; + } err = crypto_dh_encode_key(buf, buf_size, ¶ms); if (err) @@ -350,6 +483,7 @@ static int dh_safe_prime_set_secret(struct crypto_kpp *tfm, const void *buffer, err = crypto_kpp_set_secret(tfm_ctx->dh_tfm, buf, buf_size); out: kfree_sensitive(buf); + kfree_sensitive(key); return err; } |