diff options
Diffstat (limited to 'arch/arm64/crypto/crct10dif-ce-core.S')
-rw-r--r-- | arch/arm64/crypto/crct10dif-ce-core.S | 496 |
1 files changed, 231 insertions, 265 deletions
diff --git a/arch/arm64/crypto/crct10dif-ce-core.S b/arch/arm64/crypto/crct10dif-ce-core.S index f7326259c40d..e545b42e6a46 100644 --- a/arch/arm64/crypto/crct10dif-ce-core.S +++ b/arch/arm64/crypto/crct10dif-ce-core.S @@ -2,12 +2,14 @@ // Accelerated CRC-T10DIF using arm64 NEON and Crypto Extensions instructions // // Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org> +// Copyright (C) 2019 Google LLC <ebiggers@google.com> // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License version 2 as // published by the Free Software Foundation. // +// Derived from the x86 version: // // Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions // @@ -54,19 +56,11 @@ // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // -// Function API: -// UINT16 crc_t10dif_pcl( -// UINT16 init_crc, //initial CRC value, 16 bits -// const unsigned char *buf, //buffer pointer to calculate CRC on -// UINT64 len //buffer length in bytes (64-bit data) -// ); -// // Reference paper titled "Fast CRC Computation for Generic // Polynomials Using PCLMULQDQ Instruction" // URL: http://www.intel.com/content/dam/www/public/us/en/documents // /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf // -// #include <linux/linkage.h> #include <asm/assembler.h> @@ -74,14 +68,14 @@ .text .cpu generic+crypto - arg1_low32 .req w19 - arg2 .req x20 - arg3 .req x21 + init_crc .req w19 + buf .req x20 + len .req x21 + fold_consts_ptr .req x22 - vzr .req v13 + fold_consts .req v10 ad .req v14 - bd .req v10 k00_16 .req v15 k32_48 .req v16 @@ -143,11 +137,11 @@ __pmull_p8_core: ext t5.8b, ad.8b, ad.8b, #2 // A2 ext t6.8b, ad.8b, ad.8b, #3 // A3 - pmull t4.8h, t4.8b, bd.8b // F = A1*B + pmull t4.8h, t4.8b, fold_consts.8b // F = A1*B pmull t8.8h, ad.8b, bd1.8b // E = A*B1 - pmull t5.8h, t5.8b, bd.8b // H = A2*B + pmull t5.8h, t5.8b, fold_consts.8b // H = A2*B pmull t7.8h, ad.8b, bd2.8b // G = A*B2 - pmull t6.8h, t6.8b, bd.8b // J = A3*B + pmull t6.8h, t6.8b, fold_consts.8b // J = A3*B pmull t9.8h, ad.8b, bd3.8b // I = A*B3 pmull t3.8h, ad.8b, bd4.8b // K = A*B4 b 0f @@ -157,11 +151,11 @@ __pmull_p8_core: tbl t5.16b, {ad.16b}, perm2.16b // A2 tbl t6.16b, {ad.16b}, perm3.16b // A3 - pmull2 t4.8h, t4.16b, bd.16b // F = A1*B + pmull2 t4.8h, t4.16b, fold_consts.16b // F = A1*B pmull2 t8.8h, ad.16b, bd1.16b // E = A*B1 - pmull2 t5.8h, t5.16b, bd.16b // H = A2*B + pmull2 t5.8h, t5.16b, fold_consts.16b // H = A2*B pmull2 t7.8h, ad.16b, bd2.16b // G = A*B2 - pmull2 t6.8h, t6.16b, bd.16b // J = A3*B + pmull2 t6.8h, t6.16b, fold_consts.16b // J = A3*B pmull2 t9.8h, ad.16b, bd3.16b // I = A*B3 pmull2 t3.8h, ad.16b, bd4.16b // K = A*B4 @@ -203,14 +197,14 @@ __pmull_p8_core: ENDPROC(__pmull_p8_core) .macro __pmull_p8, rq, ad, bd, i - .ifnc \bd, v10 + .ifnc \bd, fold_consts .err .endif mov ad.16b, \ad\().16b .ifb \i - pmull \rq\().8h, \ad\().8b, bd.8b // D = A*B + pmull \rq\().8h, \ad\().8b, \bd\().8b // D = A*B .else - pmull2 \rq\().8h, \ad\().16b, bd.16b // D = A*B + pmull2 \rq\().8h, \ad\().16b, \bd\().16b // D = A*B .endif bl .L__pmull_p8_core\i @@ -219,17 +213,19 @@ ENDPROC(__pmull_p8_core) eor \rq\().16b, \rq\().16b, t6.16b .endm - .macro fold64, p, reg1, reg2 - ldp q11, q12, [arg2], #0x20 + // Fold reg1, reg2 into the next 32 data bytes, storing the result back + // into reg1, reg2. + .macro fold_32_bytes, p, reg1, reg2 + ldp q11, q12, [buf], #0x20 - __pmull_\p v8, \reg1, v10, 2 - __pmull_\p \reg1, \reg1, v10 + __pmull_\p v8, \reg1, fold_consts, 2 + __pmull_\p \reg1, \reg1, fold_consts CPU_LE( rev64 v11.16b, v11.16b ) CPU_LE( rev64 v12.16b, v12.16b ) - __pmull_\p v9, \reg2, v10, 2 - __pmull_\p \reg2, \reg2, v10 + __pmull_\p v9, \reg2, fold_consts, 2 + __pmull_\p \reg2, \reg2, fold_consts CPU_LE( ext v11.16b, v11.16b, v11.16b, #8 ) CPU_LE( ext v12.16b, v12.16b, v12.16b, #8 ) @@ -240,15 +236,16 @@ CPU_LE( ext v12.16b, v12.16b, v12.16b, #8 ) eor \reg2\().16b, \reg2\().16b, v12.16b .endm - .macro fold16, p, reg, rk - __pmull_\p v8, \reg, v10 - __pmull_\p \reg, \reg, v10, 2 - .ifnb \rk - ldr_l q10, \rk, x8 - __pmull_pre_\p v10 + // Fold src_reg into dst_reg, optionally loading the next fold constants + .macro fold_16_bytes, p, src_reg, dst_reg, load_next_consts + __pmull_\p v8, \src_reg, fold_consts + __pmull_\p \src_reg, \src_reg, fold_consts, 2 + .ifnb \load_next_consts + ld1 {fold_consts.2d}, [fold_consts_ptr], #16 + __pmull_pre_\p fold_consts .endif - eor v7.16b, v7.16b, v8.16b - eor v7.16b, v7.16b, \reg\().16b + eor \dst_reg\().16b, \dst_reg\().16b, v8.16b + eor \dst_reg\().16b, \dst_reg\().16b, \src_reg\().16b .endm .macro __pmull_p64, rd, rn, rm, n @@ -260,40 +257,27 @@ CPU_LE( ext v12.16b, v12.16b, v12.16b, #8 ) .endm .macro crc_t10dif_pmull, p - frame_push 3, 128 + frame_push 4, 128 - mov arg1_low32, w0 - mov arg2, x1 - mov arg3, x2 - - movi vzr.16b, #0 // init zero register + mov init_crc, w0 + mov buf, x1 + mov len, x2 __pmull_init_\p - // adjust the 16-bit initial_crc value, scale it to 32 bits - lsl arg1_low32, arg1_low32, #16 - - // check if smaller than 256 - cmp arg3, #256 - - // for sizes less than 128, we can't fold 64B at a time... - b.lt .L_less_than_128_\@ + // For sizes less than 256 bytes, we can't fold 128 bytes at a time. + cmp len, #256 + b.lt .Lless_than_256_bytes_\@ - // load the initial crc value - // crc value does not need to be byte-reflected, but it needs - // to be moved to the high part of the register. - // because data will be byte-reflected and will align with - // initial crc at correct place. - movi v10.16b, #0 - mov v10.s[3], arg1_low32 // initial crc - - // receive the initial 64B data, xor the initial crc value - ldp q0, q1, [arg2] - ldp q2, q3, [arg2, #0x20] - ldp q4, q5, [arg2, #0x40] - ldp q6, q7, [arg2, #0x60] - add arg2, arg2, #0x80 + adr_l fold_consts_ptr, .Lfold_across_128_bytes_consts + // Load the first 128 data bytes. Byte swapping is necessary to make + // the bit order match the polynomial coefficient order. + ldp q0, q1, [buf] + ldp q2, q3, [buf, #0x20] + ldp q4, q5, [buf, #0x40] + ldp q6, q7, [buf, #0x60] + add buf, buf, #0x80 CPU_LE( rev64 v0.16b, v0.16b ) CPU_LE( rev64 v1.16b, v1.16b ) CPU_LE( rev64 v2.16b, v2.16b ) @@ -302,7 +286,6 @@ CPU_LE( rev64 v4.16b, v4.16b ) CPU_LE( rev64 v5.16b, v5.16b ) CPU_LE( rev64 v6.16b, v6.16b ) CPU_LE( rev64 v7.16b, v7.16b ) - CPU_LE( ext v0.16b, v0.16b, v0.16b, #8 ) CPU_LE( ext v1.16b, v1.16b, v1.16b, #8 ) CPU_LE( ext v2.16b, v2.16b, v2.16b, #8 ) @@ -312,36 +295,29 @@ CPU_LE( ext v5.16b, v5.16b, v5.16b, #8 ) CPU_LE( ext v6.16b, v6.16b, v6.16b, #8 ) CPU_LE( ext v7.16b, v7.16b, v7.16b, #8 ) - // XOR the initial_crc value - eor v0.16b, v0.16b, v10.16b - - ldr_l q10, rk3, x8 // xmm10 has rk3 and rk4 - // type of pmull instruction - // will determine which constant to use - __pmull_pre_\p v10 - - // - // we subtract 256 instead of 128 to save one instruction from the loop - // - sub arg3, arg3, #256 - - // at this section of the code, there is 64*x+y (0<=y<64) bytes of - // buffer. The _fold_64_B_loop will fold 64B at a time - // until we have 64+y Bytes of buffer + // XOR the first 16 data *bits* with the initial CRC value. + movi v8.16b, #0 + mov v8.h[7], init_crc + eor v0.16b, v0.16b, v8.16b - // fold 64B at a time. This section of the code folds 4 vector - // registers in parallel -.L_fold_64_B_loop_\@: + // Load the constants for folding across 128 bytes. + ld1 {fold_consts.2d}, [fold_consts_ptr] + __pmull_pre_\p fold_consts - fold64 \p, v0, v1 - fold64 \p, v2, v3 - fold64 \p, v4, v5 - fold64 \p, v6, v7 + // Subtract 128 for the 128 data bytes just consumed. Subtract another + // 128 to simplify the termination condition of the following loop. + sub len, len, #256 - subs arg3, arg3, #128 + // While >= 128 data bytes remain (not counting v0-v7), fold the 128 + // bytes v0-v7 into them, storing the result back into v0-v7. +.Lfold_128_bytes_loop_\@: + fold_32_bytes \p, v0, v1 + fold_32_bytes \p, v2, v3 + fold_32_bytes \p, v4, v5 + fold_32_bytes \p, v6, v7 - // check if there is another 64B in the buffer to be able to fold - b.lt .L_fold_64_B_end_\@ + subs len, len, #128 + b.lt .Lfold_128_bytes_loop_done_\@ if_will_cond_yield_neon stp q0, q1, [sp, #.Lframe_local_offset] @@ -353,217 +329,207 @@ CPU_LE( ext v7.16b, v7.16b, v7.16b, #8 ) ldp q2, q3, [sp, #.Lframe_local_offset + 32] ldp q4, q5, [sp, #.Lframe_local_offset + 64] ldp q6, q7, [sp, #.Lframe_local_offset + 96] - ldr_l q10, rk3, x8 - movi vzr.16b, #0 // init zero register + ld1 {fold_consts.2d}, [fold_consts_ptr] __pmull_init_\p - __pmull_pre_\p v10 + __pmull_pre_\p fold_consts endif_yield_neon - b .L_fold_64_B_loop_\@ - -.L_fold_64_B_end_\@: - // at this point, the buffer pointer is pointing at the last y Bytes - // of the buffer the 64B of folded data is in 4 of the vector - // registers: v0, v1, v2, v3 - - // fold the 8 vector registers to 1 vector register with different - // constants - - ldr_l q10, rk9, x8 - __pmull_pre_\p v10 - - fold16 \p, v0, rk11 - fold16 \p, v1, rk13 - fold16 \p, v2, rk15 - fold16 \p, v3, rk17 - fold16 \p, v4, rk19 - fold16 \p, v5, rk1 - fold16 \p, v6 - - // instead of 64, we add 48 to the loop counter to save 1 instruction - // from the loop instead of a cmp instruction, we use the negative - // flag with the jl instruction - adds arg3, arg3, #(128-16) - b.lt .L_final_reduction_for_128_\@ - - // now we have 16+y bytes left to reduce. 16 Bytes is in register v7 - // and the rest is in memory. We can fold 16 bytes at a time if y>=16 - // continue folding 16B at a time - -.L_16B_reduction_loop_\@: - __pmull_\p v8, v7, v10 - __pmull_\p v7, v7, v10, 2 + b .Lfold_128_bytes_loop_\@ + +.Lfold_128_bytes_loop_done_\@: + + // Now fold the 112 bytes in v0-v6 into the 16 bytes in v7. + + // Fold across 64 bytes. + add fold_consts_ptr, fold_consts_ptr, #16 + ld1 {fold_consts.2d}, [fold_consts_ptr], #16 + __pmull_pre_\p fold_consts + fold_16_bytes \p, v0, v4 + fold_16_bytes \p, v1, v5 + fold_16_bytes \p, v2, v6 + fold_16_bytes \p, v3, v7, 1 + // Fold across 32 bytes. + fold_16_bytes \p, v4, v6 + fold_16_bytes \p, v5, v7, 1 + // Fold across 16 bytes. + fold_16_bytes \p, v6, v7 + + // Add 128 to get the correct number of data bytes remaining in 0...127 + // (not counting v7), following the previous extra subtraction by 128. + // Then subtract 16 to simplify the termination condition of the + // following loop. + adds len, len, #(128-16) + + // While >= 16 data bytes remain (not counting v7), fold the 16 bytes v7 + // into them, storing the result back into v7. + b.lt .Lfold_16_bytes_loop_done_\@ +.Lfold_16_bytes_loop_\@: + __pmull_\p v8, v7, fold_consts + __pmull_\p v7, v7, fold_consts, 2 eor v7.16b, v7.16b, v8.16b - - ldr q0, [arg2], #16 + ldr q0, [buf], #16 CPU_LE( rev64 v0.16b, v0.16b ) CPU_LE( ext v0.16b, v0.16b, v0.16b, #8 ) eor v7.16b, v7.16b, v0.16b - subs arg3, arg3, #16 - - // instead of a cmp instruction, we utilize the flags with the - // jge instruction equivalent of: cmp arg3, 16-16 - // check if there is any more 16B in the buffer to be able to fold - b.ge .L_16B_reduction_loop_\@ - - // now we have 16+z bytes left to reduce, where 0<= z < 16. - // first, we reduce the data in the xmm7 register - -.L_final_reduction_for_128_\@: - // check if any more data to fold. If not, compute the CRC of - // the final 128 bits - adds arg3, arg3, #16 - b.eq .L_128_done_\@ - - // here we are getting data that is less than 16 bytes. - // since we know that there was data before the pointer, we can - // offset the input pointer before the actual point, to receive - // exactly 16 bytes. after that the registers need to be adjusted. -.L_get_last_two_regs_\@: - add arg2, arg2, arg3 - ldr q1, [arg2, #-16] -CPU_LE( rev64 v1.16b, v1.16b ) -CPU_LE( ext v1.16b, v1.16b, v1.16b, #8 ) - - // get rid of the extra data that was loaded before - // load the shift constant - adr_l x4, tbl_shf_table + 16 - sub x4, x4, arg3 - ld1 {v0.16b}, [x4] - - // shift v2 to the left by arg3 bytes - tbl v2.16b, {v7.16b}, v0.16b - - // shift v7 to the right by 16-arg3 bytes - movi v9.16b, #0x80 - eor v0.16b, v0.16b, v9.16b - tbl v7.16b, {v7.16b}, v0.16b - - // blend - sshr v0.16b, v0.16b, #7 // convert to 8-bit mask - bsl v0.16b, v2.16b, v1.16b - - // fold 16 Bytes - __pmull_\p v8, v7, v10 - __pmull_\p v7, v7, v10, 2 - eor v7.16b, v7.16b, v8.16b - eor v7.16b, v7.16b, v0.16b + subs len, len, #16 + b.ge .Lfold_16_bytes_loop_\@ + +.Lfold_16_bytes_loop_done_\@: + // Add 16 to get the correct number of data bytes remaining in 0...15 + // (not counting v7), following the previous extra subtraction by 16. + adds len, len, #16 + b.eq .Lreduce_final_16_bytes_\@ + +.Lhandle_partial_segment_\@: + // Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first + // 16 bytes are in v7 and the rest are the remaining data in 'buf'. To + // do this without needing a fold constant for each possible 'len', + // redivide the bytes into a first chunk of 'len' bytes and a second + // chunk of 16 bytes, then fold the first chunk into the second. + + // v0 = last 16 original data bytes + add buf, buf, len + ldr q0, [buf, #-16] +CPU_LE( rev64 v0.16b, v0.16b ) +CPU_LE( ext v0.16b, v0.16b, v0.16b, #8 ) -.L_128_done_\@: - // compute crc of a 128-bit value - ldr_l q10, rk5, x8 // rk5 and rk6 in xmm10 - __pmull_pre_\p v10 + // v1 = high order part of second chunk: v7 left-shifted by 'len' bytes. + adr_l x4, .Lbyteshift_table + 16 + sub x4, x4, len + ld1 {v2.16b}, [x4] + tbl v1.16b, {v7.16b}, v2.16b - // 64b fold - ext v0.16b, vzr.16b, v7.16b, #8 - mov v7.d[0], v7.d[1] - __pmull_\p v7, v7, v10 - eor v7.16b, v7.16b, v0.16b + // v3 = first chunk: v7 right-shifted by '16-len' bytes. + movi v3.16b, #0x80 + eor v2.16b, v2.16b, v3.16b + tbl v3.16b, {v7.16b}, v2.16b - // 32b fold - ext v0.16b, v7.16b, vzr.16b, #4 - mov v7.s[3], vzr.s[0] - __pmull_\p v0, v0, v10, 2 - eor v7.16b, v7.16b, v0.16b + // Convert to 8-bit masks: 'len' 0x00 bytes, then '16-len' 0xff bytes. + sshr v2.16b, v2.16b, #7 - // barrett reduction - ldr_l q10, rk7, x8 - __pmull_pre_\p v10 - mov v0.d[0], v7.d[1] + // v2 = second chunk: 'len' bytes from v0 (low-order bytes), + // then '16-len' bytes from v1 (high-order bytes). + bsl v2.16b, v1.16b, v0.16b - __pmull_\p v0, v0, v10 - ext v0.16b, vzr.16b, v0.16b, #12 - __pmull_\p v0, v0, v10, 2 - ext v0.16b, vzr.16b, v0.16b, #12 + // Fold the first chunk into the second chunk, storing the result in v7. + __pmull_\p v0, v3, fold_consts + __pmull_\p v7, v3, fold_consts, 2 eor v7.16b, v7.16b, v0.16b - mov w0, v7.s[1] - -.L_cleanup_\@: - // scale the result back to 16 bits - lsr x0, x0, #16 + eor v7.16b, v7.16b, v2.16b + +.Lreduce_final_16_bytes_\@: + // Reduce the 128-bit value M(x), stored in v7, to the final 16-bit CRC. + + movi v2.16b, #0 // init zero register + + // Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'. + ld1 {fold_consts.2d}, [fold_consts_ptr], #16 + __pmull_pre_\p fold_consts + + // Fold the high 64 bits into the low 64 bits, while also multiplying by + // x^64. This produces a 128-bit value congruent to x^64 * M(x) and + // whose low 48 bits are 0. + ext v0.16b, v2.16b, v7.16b, #8 + __pmull_\p v7, v7, fold_consts, 2 // high bits * x^48 * (x^80 mod G(x)) + eor v0.16b, v0.16b, v7.16b // + low bits * x^64 + + // Fold the high 32 bits into the low 96 bits. This produces a 96-bit + // value congruent to x^64 * M(x) and whose low 48 bits are 0. + ext v1.16b, v0.16b, v2.16b, #12 // extract high 32 bits + mov v0.s[3], v2.s[0] // zero high 32 bits + __pmull_\p v1, v1, fold_consts // high 32 bits * x^48 * (x^48 mod G(x)) + eor v0.16b, v0.16b, v1.16b // + low bits + + // Load G(x) and floor(x^48 / G(x)). + ld1 {fold_consts.2d}, [fold_consts_ptr] + __pmull_pre_\p fold_consts + + // Use Barrett reduction to compute the final CRC value. + __pmull_\p v1, v0, fold_consts, 2 // high 32 bits * floor(x^48 / G(x)) + ushr v1.2d, v1.2d, #32 // /= x^32 + __pmull_\p v1, v1, fold_consts // *= G(x) + ushr v0.2d, v0.2d, #48 + eor v0.16b, v0.16b, v1.16b // + low 16 nonzero bits + // Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of v0. + + umov w0, v0.h[0] frame_pop ret -.L_less_than_128_\@: - cbz arg3, .L_cleanup_\@ +.Lless_than_256_bytes_\@: + // Checksumming a buffer of length 16...255 bytes - movi v0.16b, #0 - mov v0.s[3], arg1_low32 // get the initial crc value + adr_l fold_consts_ptr, .Lfold_across_16_bytes_consts - ldr q7, [arg2], #0x10 + // Load the first 16 data bytes. + ldr q7, [buf], #0x10 CPU_LE( rev64 v7.16b, v7.16b ) CPU_LE( ext v7.16b, v7.16b, v7.16b, #8 ) - eor v7.16b, v7.16b, v0.16b // xor the initial crc value - - cmp arg3, #16 - b.eq .L_128_done_\@ // exactly 16 left - ldr_l q10, rk1, x8 // rk1 and rk2 in xmm10 - __pmull_pre_\p v10 + // XOR the first 16 data *bits* with the initial CRC value. + movi v0.16b, #0 + mov v0.h[7], init_crc + eor v7.16b, v7.16b, v0.16b - // update the counter. subtract 32 instead of 16 to save one - // instruction from the loop - subs arg3, arg3, #32 - b.ge .L_16B_reduction_loop_\@ + // Load the fold-across-16-bytes constants. + ld1 {fold_consts.2d}, [fold_consts_ptr], #16 + __pmull_pre_\p fold_consts - add arg3, arg3, #16 - b .L_get_last_two_regs_\@ + cmp len, #16 + b.eq .Lreduce_final_16_bytes_\@ // len == 16 + subs len, len, #32 + b.ge .Lfold_16_bytes_loop_\@ // 32 <= len <= 255 + add len, len, #16 + b .Lhandle_partial_segment_\@ // 17 <= len <= 31 .endm +// +// u16 crc_t10dif_pmull_p8(u16 init_crc, const u8 *buf, size_t len); +// +// Assumes len >= 16. +// ENTRY(crc_t10dif_pmull_p8) crc_t10dif_pmull p8 ENDPROC(crc_t10dif_pmull_p8) .align 5 +// +// u16 crc_t10dif_pmull_p64(u16 init_crc, const u8 *buf, size_t len); +// +// Assumes len >= 16. +// ENTRY(crc_t10dif_pmull_p64) crc_t10dif_pmull p64 ENDPROC(crc_t10dif_pmull_p64) -// precomputed constants -// these constants are precomputed from the poly: -// 0x8bb70000 (0x8bb7 scaled to 32 bits) .section ".rodata", "a" .align 4 -// Q = 0x18BB70000 -// rk1 = 2^(32*3) mod Q << 32 -// rk2 = 2^(32*5) mod Q << 32 -// rk3 = 2^(32*15) mod Q << 32 -// rk4 = 2^(32*17) mod Q << 32 -// rk5 = 2^(32*3) mod Q << 32 -// rk6 = 2^(32*2) mod Q << 32 -// rk7 = floor(2^64/Q) -// rk8 = Q - -rk1: .octa 0x06df0000000000002d56000000000000 -rk3: .octa 0x7cf50000000000009d9d000000000000 -rk5: .octa 0x13680000000000002d56000000000000 -rk7: .octa 0x000000018bb7000000000001f65a57f8 -rk9: .octa 0xbfd6000000000000ceae000000000000 -rk11: .octa 0x713c0000000000001e16000000000000 -rk13: .octa 0x80a6000000000000f7f9000000000000 -rk15: .octa 0xe658000000000000044c000000000000 -rk17: .octa 0xa497000000000000ad18000000000000 -rk19: .octa 0xe7b50000000000006ee3000000000000 - -tbl_shf_table: -// use these values for shift constants for the tbl/tbx instruction -// different alignments result in values as shown: -// DDQ 0x008f8e8d8c8b8a898887868584838281 # shl 15 (16-1) / shr1 -// DDQ 0x01008f8e8d8c8b8a8988878685848382 # shl 14 (16-3) / shr2 -// DDQ 0x0201008f8e8d8c8b8a89888786858483 # shl 13 (16-4) / shr3 -// DDQ 0x030201008f8e8d8c8b8a898887868584 # shl 12 (16-4) / shr4 -// DDQ 0x04030201008f8e8d8c8b8a8988878685 # shl 11 (16-5) / shr5 -// DDQ 0x0504030201008f8e8d8c8b8a89888786 # shl 10 (16-6) / shr6 -// DDQ 0x060504030201008f8e8d8c8b8a898887 # shl 9 (16-7) / shr7 -// DDQ 0x07060504030201008f8e8d8c8b8a8988 # shl 8 (16-8) / shr8 -// DDQ 0x0807060504030201008f8e8d8c8b8a89 # shl 7 (16-9) / shr9 -// DDQ 0x090807060504030201008f8e8d8c8b8a # shl 6 (16-10) / shr10 -// DDQ 0x0a090807060504030201008f8e8d8c8b # shl 5 (16-11) / shr11 -// DDQ 0x0b0a090807060504030201008f8e8d8c # shl 4 (16-12) / shr12 -// DDQ 0x0c0b0a090807060504030201008f8e8d # shl 3 (16-13) / shr13 -// DDQ 0x0d0c0b0a090807060504030201008f8e # shl 2 (16-14) / shr14 -// DDQ 0x0e0d0c0b0a090807060504030201008f # shl 1 (16-15) / shr15 +// Fold constants precomputed from the polynomial 0x18bb7 +// G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0 +.Lfold_across_128_bytes_consts: + .quad 0x0000000000006123 // x^(8*128) mod G(x) + .quad 0x0000000000002295 // x^(8*128+64) mod G(x) +// .Lfold_across_64_bytes_consts: + .quad 0x0000000000001069 // x^(4*128) mod G(x) + .quad 0x000000000000dd31 // x^(4*128+64) mod G(x) +// .Lfold_across_32_bytes_consts: + .quad 0x000000000000857d // x^(2*128) mod G(x) + .quad 0x0000000000007acc // x^(2*128+64) mod G(x) +.Lfold_across_16_bytes_consts: + .quad 0x000000000000a010 // x^(1*128) mod G(x) + .quad 0x0000000000001faa // x^(1*128+64) mod G(x) +// .Lfinal_fold_consts: + .quad 0x1368000000000000 // x^48 * (x^48 mod G(x)) + .quad 0x2d56000000000000 // x^48 * (x^80 mod G(x)) +// .Lbarrett_reduction_consts: + .quad 0x0000000000018bb7 // G(x) + .quad 0x00000001f65a57f8 // floor(x^48 / G(x)) + +// For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 - +// len] is the index vector to shift left by 'len' bytes, and is also {0x80, +// ..., 0x80} XOR the index vector to shift right by '16 - len' bytes. +.Lbyteshift_table: .byte 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87 .byte 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f .byte 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7 |