diff options
-rw-r--r-- | rust/kernel/types.rs | 126 |
1 files changed, 125 insertions, 1 deletions
diff --git a/rust/kernel/types.rs b/rust/kernel/types.rs index e84e51ec9716..dd834bfcb57b 100644 --- a/rust/kernel/types.rs +++ b/rust/kernel/types.rs @@ -2,7 +2,131 @@ //! Kernel types. -use core::{cell::UnsafeCell, mem::MaybeUninit}; +use core::{ + cell::UnsafeCell, + mem::MaybeUninit, + ops::{Deref, DerefMut}, +}; + +/// Runs a cleanup function/closure when dropped. +/// +/// The [`ScopeGuard::dismiss`] function prevents the cleanup function from running. +/// +/// # Examples +/// +/// In the example below, we have multiple exit paths and we want to log regardless of which one is +/// taken: +/// ``` +/// # use kernel::ScopeGuard; +/// fn example1(arg: bool) { +/// let _log = ScopeGuard::new(|| pr_info!("example1 completed\n")); +/// +/// if arg { +/// return; +/// } +/// +/// pr_info!("Do something...\n"); +/// } +/// +/// # example1(false); +/// # example1(true); +/// ``` +/// +/// In the example below, we want to log the same message on all early exits but a different one on +/// the main exit path: +/// ``` +/// # use kernel::ScopeGuard; +/// fn example2(arg: bool) { +/// let log = ScopeGuard::new(|| pr_info!("example2 returned early\n")); +/// +/// if arg { +/// return; +/// } +/// +/// // (Other early returns...) +/// +/// log.dismiss(); +/// pr_info!("example2 no early return\n"); +/// } +/// +/// # example2(false); +/// # example2(true); +/// ``` +/// +/// In the example below, we need a mutable object (the vector) to be accessible within the log +/// function, so we wrap it in the [`ScopeGuard`]: +/// ``` +/// # use kernel::ScopeGuard; +/// fn example3(arg: bool) -> Result { +/// let mut vec = +/// ScopeGuard::new_with_data(Vec::new(), |v| pr_info!("vec had {} elements\n", v.len())); +/// +/// vec.try_push(10u8)?; +/// if arg { +/// return Ok(()); +/// } +/// vec.try_push(20u8)?; +/// Ok(()) +/// } +/// +/// # assert_eq!(example3(false), Ok(())); +/// # assert_eq!(example3(true), Ok(())); +/// ``` +/// +/// # Invariants +/// +/// The value stored in the struct is nearly always `Some(_)`, except between +/// [`ScopeGuard::dismiss`] and [`ScopeGuard::drop`]: in this case, it will be `None` as the value +/// will have been returned to the caller. Since [`ScopeGuard::dismiss`] consumes the guard, +/// callers won't be able to use it anymore. +pub struct ScopeGuard<T, F: FnOnce(T)>(Option<(T, F)>); + +impl<T, F: FnOnce(T)> ScopeGuard<T, F> { + /// Creates a new guarded object wrapping the given data and with the given cleanup function. + pub fn new_with_data(data: T, cleanup_func: F) -> Self { + // INVARIANT: The struct is being initialised with `Some(_)`. + Self(Some((data, cleanup_func))) + } + + /// Prevents the cleanup function from running and returns the guarded data. + pub fn dismiss(mut self) -> T { + // INVARIANT: This is the exception case in the invariant; it is not visible to callers + // because this function consumes `self`. + self.0.take().unwrap().0 + } +} + +impl ScopeGuard<(), fn(())> { + /// Creates a new guarded object with the given cleanup function. + pub fn new(cleanup: impl FnOnce()) -> ScopeGuard<(), impl FnOnce(())> { + ScopeGuard::new_with_data((), move |_| cleanup()) + } +} + +impl<T, F: FnOnce(T)> Deref for ScopeGuard<T, F> { + type Target = T; + + fn deref(&self) -> &T { + // The type invariants guarantee that `unwrap` will succeed. + &self.0.as_ref().unwrap().0 + } +} + +impl<T, F: FnOnce(T)> DerefMut for ScopeGuard<T, F> { + fn deref_mut(&mut self) -> &mut T { + // The type invariants guarantee that `unwrap` will succeed. + &mut self.0.as_mut().unwrap().0 + } +} + +impl<T, F: FnOnce(T)> Drop for ScopeGuard<T, F> { + fn drop(&mut self) { + // Run the cleanup function if one is still present. + if let Some((data, cleanup)) = self.0.take() { + cleanup(data) + } + } +} /// Stores an opaque value. /// |