diff options
author | Soheil Hassas Yeganeh <soheil@google.com> | 2016-09-19 23:39:15 -0400 |
---|---|---|
committer | David S. Miller <davem@davemloft.net> | 2016-09-21 00:23:00 -0400 |
commit | d7722e8570fc0f1e003cee7cf37694041828918b (patch) | |
tree | 8118e0e16e57723d6a9cb3601eb6cc626d657b23 /net/ipv4/tcp_rate.c | |
parent | b9f64820fb226a4e8ab10591f46cecd91ca56b30 (diff) | |
download | lwn-d7722e8570fc0f1e003cee7cf37694041828918b.tar.gz lwn-d7722e8570fc0f1e003cee7cf37694041828918b.zip |
tcp: track application-limited rate samples
This commit adds code to track whether the delivery rate represented
by each rate_sample was limited by the application.
Upon each transmit, we store in the is_app_limited field in the skb a
boolean bit indicating whether there is a known "bubble in the pipe":
a point in the rate sample interval where the sender was
application-limited, and did not transmit even though the cwnd and
pacing rate allowed it.
This logic marks the flow app-limited on a write if *all* of the
following are true:
1) There is less than 1 MSS of unsent data in the write queue
available to transmit.
2) There is no packet in the sender's queues (e.g. in fq or the NIC
tx queue).
3) The connection is not limited by cwnd.
4) There are no lost packets to retransmit.
The tcp_rate_check_app_limited() code in tcp_rate.c determines whether
the connection is application-limited at the moment. If the flow is
application-limited, it sets the tp->app_limited field. If the flow is
application-limited then that means there is effectively a "bubble" of
silence in the pipe now, and this silence will be reflected in a lower
bandwidth sample for any rate samples from now until we get an ACK
indicating this bubble has exited the pipe: specifically, until we get
an ACK for the next packet we transmit.
When we send every skb we record in scb->tx.is_app_limited whether the
resulting rate sample will be application-limited.
The code in tcp_rate_gen() checks to see when it is safe to mark all
known application-limited bubbles of silence as having exited the
pipe. It does this by checking to see when the delivered count moves
past the tp->app_limited marker. At this point it zeroes the
tp->app_limited marker, as all known bubbles are out of the pipe.
We make room for the tx.is_app_limited bit in the skb by borrowing a
bit from the in_flight field used by NV to record the number of bytes
in flight. The receive window in the TCP header is 16 bits, and the
max receive window scaling shift factor is 14 (RFC 1323). So the max
receive window offered by the TCP protocol is 2^(16+14) = 2^30. So we
only need 30 bits for the tx.in_flight used by NV.
Signed-off-by: Van Jacobson <vanj@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Nandita Dukkipati <nanditad@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'net/ipv4/tcp_rate.c')
-rw-r--r-- | net/ipv4/tcp_rate.c | 29 |
1 files changed, 28 insertions, 1 deletions
diff --git a/net/ipv4/tcp_rate.c b/net/ipv4/tcp_rate.c index 1daed6af6e80..52ff84be59ab 100644 --- a/net/ipv4/tcp_rate.c +++ b/net/ipv4/tcp_rate.c @@ -26,9 +26,13 @@ * other factors like applications or receiver window limits. The estimator * deliberately avoids using the inter-packet spacing approach because that * approach requires a large number of samples and sophisticated filtering. + * + * TCP flows can often be application-limited in request/response workloads. + * The estimator marks a bandwidth sample as application-limited if there + * was some moment during the sampled window of packets when there was no data + * ready to send in the write queue. */ - /* Snapshot the current delivery information in the skb, to generate * a rate sample later when the skb is (s)acked in tcp_rate_skb_delivered(). */ @@ -58,6 +62,7 @@ void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb) TCP_SKB_CB(skb)->tx.first_tx_mstamp = tp->first_tx_mstamp; TCP_SKB_CB(skb)->tx.delivered_mstamp = tp->delivered_mstamp; TCP_SKB_CB(skb)->tx.delivered = tp->delivered; + TCP_SKB_CB(skb)->tx.is_app_limited = tp->app_limited ? 1 : 0; } /* When an skb is sacked or acked, we fill in the rate sample with the (prior) @@ -80,6 +85,7 @@ void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb, after(scb->tx.delivered, rs->prior_delivered)) { rs->prior_delivered = scb->tx.delivered; rs->prior_mstamp = scb->tx.delivered_mstamp; + rs->is_app_limited = scb->tx.is_app_limited; rs->is_retrans = scb->sacked & TCPCB_RETRANS; /* Find the duration of the "send phase" of this window: */ @@ -105,6 +111,10 @@ void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, struct tcp_sock *tp = tcp_sk(sk); u32 snd_us, ack_us; + /* Clear app limited if bubble is acked and gone. */ + if (tp->app_limited && after(tp->delivered, tp->app_limited)) + tp->app_limited = 0; + /* TODO: there are multiple places throughout tcp_ack() to get * current time. Refactor the code using a new "tcp_acktag_state" * to carry current time, flags, stats like "tcp_sacktag_state". @@ -147,3 +157,20 @@ void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, tp->rx_opt.sack_ok, tcp_min_rtt(tp)); } } + +/* If a gap is detected between sends, mark the socket application-limited. */ +void tcp_rate_check_app_limited(struct sock *sk) +{ + struct tcp_sock *tp = tcp_sk(sk); + + if (/* We have less than one packet to send. */ + tp->write_seq - tp->snd_nxt < tp->mss_cache && + /* Nothing in sending host's qdisc queues or NIC tx queue. */ + sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) && + /* We are not limited by CWND. */ + tcp_packets_in_flight(tp) < tp->snd_cwnd && + /* All lost packets have been retransmitted. */ + tp->lost_out <= tp->retrans_out) + tp->app_limited = + (tp->delivered + tcp_packets_in_flight(tp)) ? : 1; +} |