diff options
author | SeongJae Park <sjpark@amazon.de> | 2021-09-07 19:56:44 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2021-09-08 11:50:24 -0700 |
commit | 3f49584b262cf8f42b25f4c1ad9f5bfd3bdc1bca (patch) | |
tree | c4a6ad9181756276dc91010032930097a6db110a /mm/damon/Kconfig | |
parent | 1c676e0d9b1a59b98885b24a0e16a81fe4cc8301 (diff) | |
download | lwn-3f49584b262cf8f42b25f4c1ad9f5bfd3bdc1bca.tar.gz lwn-3f49584b262cf8f42b25f4c1ad9f5bfd3bdc1bca.zip |
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/damon/Kconfig')
-rw-r--r-- | mm/damon/Kconfig | 8 |
1 files changed, 8 insertions, 0 deletions
diff --git a/mm/damon/Kconfig b/mm/damon/Kconfig index d00e99ac1a15..5cbb5db54158 100644 --- a/mm/damon/Kconfig +++ b/mm/damon/Kconfig @@ -12,4 +12,12 @@ config DAMON See https://damonitor.github.io/doc/html/latest-damon/index.html for more information. +config DAMON_VADDR + bool "Data access monitoring primitives for virtual address spaces" + depends on DAMON && MMU + select PAGE_IDLE_FLAG + help + This builds the default data access monitoring primitives for DAMON + that works for virtual address spaces. + endmenu |