diff options
author | Nicolas Saenz Julienne <nsaenzjulienne@suse.de> | 2019-09-11 20:25:46 +0200 |
---|---|---|
committer | Catalin Marinas <catalin.marinas@arm.com> | 2019-10-14 10:56:29 +0100 |
commit | 734f9246e791d8da278957b2c326d7709b2a97c0 (patch) | |
tree | e77cad0627ad538dbd7359718e77fdc109be83e4 /include/linux/mmzone.h | |
parent | 1a8e1cef7603e218339ac63cb3178b25554524e5 (diff) | |
download | lwn-734f9246e791d8da278957b2c326d7709b2a97c0.tar.gz lwn-734f9246e791d8da278957b2c326d7709b2a97c0.zip |
mm: refresh ZONE_DMA and ZONE_DMA32 comments in 'enum zone_type'
These zones usage has evolved with time and the comments were outdated.
This joins both ZONE_DMA and ZONE_DMA32 explanation and gives up to date
examples on how they are used on different architectures.
Signed-off-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Diffstat (limited to 'include/linux/mmzone.h')
-rw-r--r-- | include/linux/mmzone.h | 45 |
1 files changed, 26 insertions, 19 deletions
diff --git a/include/linux/mmzone.h b/include/linux/mmzone.h index bda20282746b..b0a36d1580b6 100644 --- a/include/linux/mmzone.h +++ b/include/linux/mmzone.h @@ -359,33 +359,40 @@ struct per_cpu_nodestat { #endif /* !__GENERATING_BOUNDS.H */ enum zone_type { -#ifdef CONFIG_ZONE_DMA /* - * ZONE_DMA is used when there are devices that are not able - * to do DMA to all of addressable memory (ZONE_NORMAL). Then we - * carve out the portion of memory that is needed for these devices. - * The range is arch specific. + * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able + * to DMA to all of the addressable memory (ZONE_NORMAL). + * On architectures where this area covers the whole 32 bit address + * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller + * DMA addressing constraints. This distinction is important as a 32bit + * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit + * platforms may need both zones as they support peripherals with + * different DMA addressing limitations. + * + * Some examples: + * + * - i386 and x86_64 have a fixed 16M ZONE_DMA and ZONE_DMA32 for the + * rest of the lower 4G. + * + * - arm only uses ZONE_DMA, the size, up to 4G, may vary depending on + * the specific device. + * + * - arm64 has a fixed 1G ZONE_DMA and ZONE_DMA32 for the rest of the + * lower 4G. * - * Some examples + * - powerpc only uses ZONE_DMA, the size, up to 2G, may vary + * depending on the specific device. * - * Architecture Limit - * --------------------------- - * parisc, ia64, sparc <4G - * s390, powerpc <2G - * arm Various - * alpha Unlimited or 0-16MB. + * - s390 uses ZONE_DMA fixed to the lower 2G. * - * i386, x86_64 and multiple other arches - * <16M. + * - ia64 and riscv only use ZONE_DMA32. + * + * - parisc uses neither. */ +#ifdef CONFIG_ZONE_DMA ZONE_DMA, #endif #ifdef CONFIG_ZONE_DMA32 - /* - * x86_64 needs two ZONE_DMAs because it supports devices that are - * only able to do DMA to the lower 16M but also 32 bit devices that - * can only do DMA areas below 4G. - */ ZONE_DMA32, #endif /* |