diff options
author | Chris Wilson <chris@chris-wilson.co.uk> | 2019-01-29 20:52:29 +0000 |
---|---|---|
committer | Chris Wilson <chris@chris-wilson.co.uk> | 2019-01-29 21:45:22 +0000 |
commit | 52c0fdb25c7c919334b97976d05096b441a3eada (patch) | |
tree | 23b9d41a8b270d4f2d6b34d3843224ada5012526 /drivers/gpu/drm/i915/i915_request.h | |
parent | 3df0bd19193c47c48b7904e5f41c3041a431da33 (diff) | |
download | lwn-52c0fdb25c7c919334b97976d05096b441a3eada.tar.gz lwn-52c0fdb25c7c919334b97976d05096b441a3eada.zip |
drm/i915: Replace global breadcrumbs with per-context interrupt tracking
A few years ago, see commit 688e6c725816 ("drm/i915: Slaughter the
thundering i915_wait_request herd"), the issue of handling multiple
clients waiting in parallel was brought to our attention. The
requirement was that every client should be woken immediately upon its
request being signaled, without incurring any cpu overhead.
To handle certain fragility of our hw meant that we could not do a
simple check inside the irq handler (some generations required almost
unbounded delays before we could be sure of seqno coherency) and so
request completion checking required delegation.
Before commit 688e6c725816, the solution was simple. Every client
waiting on a request would be woken on every interrupt and each would do
a heavyweight check to see if their request was complete. Commit
688e6c725816 introduced an rbtree so that only the earliest waiter on
the global timeline would woken, and would wake the next and so on.
(Along with various complications to handle requests being reordered
along the global timeline, and also a requirement for kthread to provide
a delegate for fence signaling that had no process context.)
The global rbtree depends on knowing the execution timeline (and global
seqno). Without knowing that order, we must instead check all contexts
queued to the HW to see which may have advanced. We trim that list by
only checking queued contexts that are being waited on, but still we
keep a list of all active contexts and their active signalers that we
inspect from inside the irq handler. By moving the waiters onto the fence
signal list, we can combine the client wakeup with the dma_fence
signaling (a dramatic reduction in complexity, but does require the HW
being coherent, the seqno must be visible from the cpu before the
interrupt is raised - we keep a timer backup just in case).
Having previously fixed all the issues with irq-seqno serialisation (by
inserting delays onto the GPU after each request instead of random delays
on the CPU after each interrupt), we can rely on the seqno state to
perfom direct wakeups from the interrupt handler. This allows us to
preserve our single context switch behaviour of the current routine,
with the only downside that we lose the RT priority sorting of wakeups.
In general, direct wakeup latency of multiple clients is about the same
(about 10% better in most cases) with a reduction in total CPU time spent
in the waiter (about 20-50% depending on gen). Average herd behaviour is
improved, but at the cost of not delegating wakeups on task_prio.
v2: Capture fence signaling state for error state and add comments to
warm even the most cold of hearts.
v3: Check if the request is still active before busywaiting
v4: Reduce the amount of pointer misdirection with list_for_each_safe
and using a local i915_request variable inside the loops
v5: Add a missing pluralisation to a purely informative selftest message.
References: 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190129205230.19056-2-chris@chris-wilson.co.uk
Diffstat (limited to 'drivers/gpu/drm/i915/i915_request.h')
-rw-r--r-- | drivers/gpu/drm/i915/i915_request.h | 72 |
1 files changed, 56 insertions, 16 deletions
diff --git a/drivers/gpu/drm/i915/i915_request.h b/drivers/gpu/drm/i915/i915_request.h index 340d6216791c..3cffb96203b9 100644 --- a/drivers/gpu/drm/i915/i915_request.h +++ b/drivers/gpu/drm/i915/i915_request.h @@ -38,23 +38,34 @@ struct drm_i915_gem_object; struct i915_request; struct i915_timeline; -struct intel_wait { - struct rb_node node; - struct task_struct *tsk; - struct i915_request *request; - u32 seqno; -}; - -struct intel_signal_node { - struct intel_wait wait; - struct list_head link; -}; - struct i915_capture_list { struct i915_capture_list *next; struct i915_vma *vma; }; +enum { + /* + * I915_FENCE_FLAG_ACTIVE - this request is currently submitted to HW. + * + * Set by __i915_request_submit() on handing over to HW, and cleared + * by __i915_request_unsubmit() if we preempt this request. + * + * Finally cleared for consistency on retiring the request, when + * we know the HW is no longer running this request. + * + * See i915_request_is_active() + */ + I915_FENCE_FLAG_ACTIVE = DMA_FENCE_FLAG_USER_BITS, + + /* + * I915_FENCE_FLAG_SIGNAL - this request is currently on signal_list + * + * Internal bookkeeping used by the breadcrumb code to track when + * a request is on the various signal_list. + */ + I915_FENCE_FLAG_SIGNAL, +}; + /** * Request queue structure. * @@ -97,7 +108,7 @@ struct i915_request { struct intel_context *hw_context; struct intel_ring *ring; struct i915_timeline *timeline; - struct intel_signal_node signaling; + struct list_head signal_link; /* * The rcu epoch of when this request was allocated. Used to judiciously @@ -116,7 +127,6 @@ struct i915_request { */ struct i915_sw_fence submit; wait_queue_entry_t submitq; - wait_queue_head_t execute; /* * A list of everyone we wait upon, and everyone who waits upon us. @@ -255,7 +265,7 @@ i915_request_put(struct i915_request *rq) * that it has passed the global seqno and the global seqno is unchanged * after the read, it is indeed complete). */ -static u32 +static inline u32 i915_request_global_seqno(const struct i915_request *request) { return READ_ONCE(request->global_seqno); @@ -277,6 +287,10 @@ void i915_request_skip(struct i915_request *request, int error); void __i915_request_unsubmit(struct i915_request *request); void i915_request_unsubmit(struct i915_request *request); +/* Note: part of the intel_breadcrumbs family */ +bool i915_request_enable_breadcrumb(struct i915_request *request); +void i915_request_cancel_breadcrumb(struct i915_request *request); + long i915_request_wait(struct i915_request *rq, unsigned int flags, long timeout) @@ -293,6 +307,11 @@ static inline bool i915_request_signaled(const struct i915_request *rq) return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags); } +static inline bool i915_request_is_active(const struct i915_request *rq) +{ + return test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); +} + /** * Returns true if seq1 is later than seq2. */ @@ -330,6 +349,11 @@ static inline u32 hwsp_seqno(const struct i915_request *rq) return seqno; } +static inline bool __i915_request_has_started(const struct i915_request *rq) +{ + return i915_seqno_passed(hwsp_seqno(rq), rq->fence.seqno - 1); +} + /** * i915_request_started - check if the request has begun being executed * @rq: the request @@ -345,7 +369,23 @@ static inline bool i915_request_started(const struct i915_request *rq) return true; /* Remember: started but may have since been preempted! */ - return i915_seqno_passed(hwsp_seqno(rq), rq->fence.seqno - 1); + return __i915_request_has_started(rq); +} + +/** + * i915_request_is_running - check if the request may actually be executing + * @rq: the request + * + * Returns true if the request is currently submitted to hardware, has passed + * its start point (i.e. the context is setup and not busywaiting). Note that + * it may no longer be running by the time the function returns! + */ +static inline bool i915_request_is_running(const struct i915_request *rq) +{ + if (!i915_request_is_active(rq)) + return false; + + return __i915_request_has_started(rq); } static inline bool i915_request_completed(const struct i915_request *rq) |