summaryrefslogtreecommitdiff
path: root/arch/x86/crypto/aes-xts-avx-x86_64.S
diff options
context:
space:
mode:
authorEric Biggers <ebiggers@google.com>2024-04-12 20:17:28 -0700
committerHerbert Xu <herbert@gondor.apana.org.au>2024-04-19 18:54:19 +0800
commit543ea178fbfadeaf79e15766ac989f3351349f02 (patch)
tree5244ff86ad62ad2922eb7e6c60822976ba6a71b1 /arch/x86/crypto/aes-xts-avx-x86_64.S
parente619723a857dfdcf0050713f12b3916816cd8d12 (diff)
downloadlwn-543ea178fbfadeaf79e15766ac989f3351349f02.tar.gz
lwn-543ea178fbfadeaf79e15766ac989f3351349f02.zip
crypto: x86/aes-xts - optimize size of instructions operating on lengths
x86_64 has the "interesting" property that the instruction size is generally a bit shorter for instructions that operate on the 32-bit (or less) part of registers, or registers that are in the original set of 8. This patch adjusts the AES-XTS code to take advantage of that property by changing the LEN parameter from size_t to unsigned int (which is all that's needed and is what the non-AVX implementation uses) and using the %eax register for KEYLEN. This decreases the size of aes-xts-avx-x86_64.o by 1.2%. Note that changing the kmovq to kmovd was going to be needed anyway to make the AVX10/256 code really work on CPUs that don't support 512-bit vectors (since the AVX10 spec says that 64-bit opmask instructions will only be supported on processors that support 512-bit vectors). Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Diffstat (limited to 'arch/x86/crypto/aes-xts-avx-x86_64.S')
-rw-r--r--arch/x86/crypto/aes-xts-avx-x86_64.S40
1 files changed, 21 insertions, 19 deletions
diff --git a/arch/x86/crypto/aes-xts-avx-x86_64.S b/arch/x86/crypto/aes-xts-avx-x86_64.S
index 802d3b90d337..48f97b79f7a9 100644
--- a/arch/x86/crypto/aes-xts-avx-x86_64.S
+++ b/arch/x86/crypto/aes-xts-avx-x86_64.S
@@ -85,14 +85,16 @@
// advanced to point to 7th-from-last round key
.set SRC, %rsi // Pointer to next source data
.set DST, %rdx // Pointer to next destination data
-.set LEN, %rcx // Remaining length in bytes
+.set LEN, %ecx // Remaining length in bytes
+.set LEN8, %cl
+.set LEN64, %rcx
.set TWEAK, %r8 // Pointer to next tweak
-// %r9 holds the AES key length in bytes.
-.set KEYLEN, %r9d
-.set KEYLEN64, %r9
+// %rax holds the AES key length in bytes.
+.set KEYLEN, %eax
+.set KEYLEN64, %rax
-// %rax and %r10-r11 are available as temporaries.
+// %r9-r11 are available as temporaries.
.macro _define_Vi i
.if VL == 16
@@ -565,9 +567,9 @@
// subtracting 16 from LEN. This is needed because ciphertext stealing
// decryption uses the last two tweaks in reverse order. We'll handle
// the last full block and the partial block specially at the end.
- lea -16(LEN), %rax
- test $15, LEN
- cmovnz %rax, LEN
+ lea -16(LEN), %eax
+ test $15, LEN8
+ cmovnz %eax, LEN
.endif
// Load the AES key length: 16 (AES-128), 24 (AES-192), or 32 (AES-256).
@@ -650,7 +652,7 @@
// Check for the uncommon case where the data length isn't a multiple of
// 4*VL. Handle it out-of-line in order to optimize for the common
// case. In the common case, just fall through to the ret.
- test $4*VL-1, LEN
+ test $4*VL-1, LEN8
jnz .Lhandle_remainder\@
.Ldone\@:
// Store the next tweak back to *TWEAK to support continuation calls.
@@ -718,9 +720,9 @@
.if USE_AVX10
// Create a mask that has the first LEN bits set.
- mov $-1, %rax
- bzhi LEN, %rax, %rax
- kmovq %rax, %k1
+ mov $-1, %r9d
+ bzhi LEN, %r9d, %r9d
+ kmovd %r9d, %k1
// Swap the first LEN bytes of the en/decryption of the last full block
// with the partial block. Note that to support in-place en/decryption,
@@ -730,23 +732,23 @@
vmovdqu8 16(SRC), %xmm0{%k1}
vmovdqu8 %xmm1, 16(DST){%k1}
.else
- lea .Lcts_permute_table(%rip), %rax
+ lea .Lcts_permute_table(%rip), %r9
// Load the src partial block, left-aligned. Note that to support
// in-place en/decryption, this must happen before the store to the dst
// partial block.
- vmovdqu (SRC, LEN, 1), %xmm1
+ vmovdqu (SRC, LEN64, 1), %xmm1
// Shift the first LEN bytes of the en/decryption of the last full block
// to the end of a register, then store it to DST+LEN. This stores the
// dst partial block. It also writes to the second part of the dst last
// full block, but that part is overwritten later.
- vpshufb (%rax, LEN, 1), %xmm0, %xmm2
- vmovdqu %xmm2, (DST, LEN, 1)
+ vpshufb (%r9, LEN64, 1), %xmm0, %xmm2
+ vmovdqu %xmm2, (DST, LEN64, 1)
// Make xmm3 contain [16-LEN,16-LEN+1,...,14,15,0x80,0x80,...].
- sub LEN, %rax
- vmovdqu 32(%rax), %xmm3
+ sub LEN64, %r9
+ vmovdqu 32(%r9), %xmm3
// Shift the src partial block to the beginning of its register.
vpshufb %xmm3, %xmm1, %xmm1
@@ -795,7 +797,7 @@ SYM_FUNC_END(aes_xts_encrypt_iv)
// instantiated from the above macro. They all have the following prototype:
//
// void (*xts_asm_func)(const struct crypto_aes_ctx *key,
-// const u8 *src, u8 *dst, size_t len,
+// const u8 *src, u8 *dst, unsigned int len,
// u8 tweak[AES_BLOCK_SIZE]);
//
// |key| is the data key. |tweak| contains the next tweak; the encryption of