diff options
author | Paul Mackerras <paulus@ozlabs.org> | 2019-02-04 22:07:20 +1100 |
---|---|---|
committer | Paul Mackerras <paulus@ozlabs.org> | 2019-02-19 16:00:15 +1100 |
commit | 03f953329bd872b176e825584d8c0b50685f16ee (patch) | |
tree | a2b9f0f8dc0422347c7e5f244bccf7469f0e8b2d /arch/powerpc/kvm/book3s_rtas.c | |
parent | f1adb9c48a01779311aff57d96dc578f91f37eb7 (diff) | |
download | lwn-03f953329bd872b176e825584d8c0b50685f16ee.tar.gz lwn-03f953329bd872b176e825584d8c0b50685f16ee.zip |
KVM: PPC: Book3S: Allow XICS emulation to work in nested hosts using XIVE
Currently, the KVM code assumes that if the host kernel is using the
XIVE interrupt controller (the new interrupt controller that first
appeared in POWER9 systems), then the in-kernel XICS emulation will
use the XIVE hardware to deliver interrupts to the guest. However,
this only works when the host is running in hypervisor mode and has
full access to all of the XIVE functionality. It doesn't work in any
nested virtualization scenario, either with PR KVM or nested-HV KVM,
because the XICS-on-XIVE code calls directly into the native-XIVE
routines, which are not initialized and cannot function correctly
because they use OPAL calls, and OPAL is not available in a guest.
This means that using the in-kernel XICS emulation in a nested
hypervisor that is using XIVE as its interrupt controller will cause a
(nested) host kernel crash. To fix this, we change most of the places
where the current code calls xive_enabled() to select between the
XICS-on-XIVE emulation and the plain XICS emulation to call a new
function, xics_on_xive(), which returns false in a guest.
However, there is a further twist. The plain XICS emulation has some
functions which are used in real mode and access the underlying XICS
controller (the interrupt controller of the host) directly. In the
case of a nested hypervisor, this means doing XICS hypercalls
directly. When the nested host is using XIVE as its interrupt
controller, these hypercalls will fail. Therefore this also adds
checks in the places where the XICS emulation wants to access the
underlying interrupt controller directly, and if that is XIVE, makes
the code use the virtual mode fallback paths, which call generic
kernel infrastructure rather than doing direct XICS access.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Diffstat (limited to 'arch/powerpc/kvm/book3s_rtas.c')
-rw-r--r-- | arch/powerpc/kvm/book3s_rtas.c | 8 |
1 files changed, 4 insertions, 4 deletions
diff --git a/arch/powerpc/kvm/book3s_rtas.c b/arch/powerpc/kvm/book3s_rtas.c index 2d3b2b1cc272..4e178c4c1ea5 100644 --- a/arch/powerpc/kvm/book3s_rtas.c +++ b/arch/powerpc/kvm/book3s_rtas.c @@ -33,7 +33,7 @@ static void kvm_rtas_set_xive(struct kvm_vcpu *vcpu, struct rtas_args *args) server = be32_to_cpu(args->args[1]); priority = be32_to_cpu(args->args[2]); - if (xive_enabled()) + if (xics_on_xive()) rc = kvmppc_xive_set_xive(vcpu->kvm, irq, server, priority); else rc = kvmppc_xics_set_xive(vcpu->kvm, irq, server, priority); @@ -56,7 +56,7 @@ static void kvm_rtas_get_xive(struct kvm_vcpu *vcpu, struct rtas_args *args) irq = be32_to_cpu(args->args[0]); server = priority = 0; - if (xive_enabled()) + if (xics_on_xive()) rc = kvmppc_xive_get_xive(vcpu->kvm, irq, &server, &priority); else rc = kvmppc_xics_get_xive(vcpu->kvm, irq, &server, &priority); @@ -83,7 +83,7 @@ static void kvm_rtas_int_off(struct kvm_vcpu *vcpu, struct rtas_args *args) irq = be32_to_cpu(args->args[0]); - if (xive_enabled()) + if (xics_on_xive()) rc = kvmppc_xive_int_off(vcpu->kvm, irq); else rc = kvmppc_xics_int_off(vcpu->kvm, irq); @@ -105,7 +105,7 @@ static void kvm_rtas_int_on(struct kvm_vcpu *vcpu, struct rtas_args *args) irq = be32_to_cpu(args->args[0]); - if (xive_enabled()) + if (xics_on_xive()) rc = kvmppc_xive_int_on(vcpu->kvm, irq); else rc = kvmppc_xics_int_on(vcpu->kvm, irq); |